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Рассмотрены задачи вычислительной диагностики потока теплоносителя в замк-
нутом циркуляционном контуре. Разработаны математические модели акус-
тических колебаний в двухфазном потоке. Использована косвенная диагностиче-
ская информация, которую содержат спектры колебаний потока, регистриру-
емые штатными системами. Сформулирована обратная задача на собственные 
значения, при решении которой реализован оптимизационный подход. Предполага-
ется, что частные критерии представлены непрерывными, липшицевыми, не всю-
ду дифференцируемыми, многоэкстремальными функциями. Поиск глобальных ре-
шений проведен с использованием новых гибридных алгоритмов, интегрирующих 
стохастический алгоритм сканирования пространства переменных и детермини-
рованные методы локального поиска. Приведен численный пример модельного диа-
гностирования фазового состава теплоносителя в циркуляционном контуре ядер-
ной реакторной установки. 
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Введение. Математическое моделирование многофазных потоков 
является актуальным направлением современных исследований. Сле-
дует отметить, что к настоящему времени, например для сжимаемых 
двухфазных потоков, отсутствуют общепринятые формулировки раз-
решающих уравнений как основы формирования полной математи-
ческой теории начально-краевых задач, а также численных методов 
их решения [1]. Стандартный подход к выводу таких уравнений для 
двухфазного потока основан на процедуре осреднения, что ведет к 
системе уравнений в форме законов баланса массы, момента и энер-
гии. В работе [2] представлена одномерная модель вязкого двухфаз-
ного потока, разработанная с использованием условия гидродинами-
ческого замыкания. Так, для модели вязкого газожидкостного потока 
сформулированы условия существования и единственности слабых 
решений. Проблема вибрации, возникающей при реализации матема-
тической модели двухфазного потока, исследована в работе [3]. От-
мечено, что наличие вибрации снижает вычислительную эффектив-
ность модели и ограничивает возможности ее применения. В работе 
[4] дано описание математической модели двухфазного потока при 
наличии растворимых частиц (без перемешивания). Приведены ре-
зультаты численного моделирования, соответствующие различным 
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значениям начальных концентраций частиц в двухфазном потоке. 
Проблеме существования и единственности глобальных слабых ре-
шений при моделировании двухфазных потоков посвящены работы 
[5, 6]. Значительный интерес представляют исследования, в которых 
сопоставляются результаты численного моделирования с использо-
ванием коммерческих комплексов программ, и экспериментальные 
данные. Результаты такого анализа для стратифицированного двух-
фазного потока представлены в [7]. 

Практическое значение в аспекте обеспечения безопасной дли-
тельной эксплуатации ядерных реакторов под давлением имеют ис-
следования двухфазных газожидкостных потоков теплоносителя в 
циркуляционных контурах [8—11]. К числу актуальных направле-
ний относится вычислительная диагностика фазового состава тепло-
носителя. Такая диагностика включает в себя методы и средства, 
предназначенные для определения характеристик исследуемых объ-
ектов по некоторой косвенной информации о них, измеряемых 
штатными средствами. Подход основан на формулировке и после-
дующем решении соответствующей обратной задачи, обычно свя-
занной с минимизацией некоторого функционала невязки. Принци-
пиальной особенностью вычислительной диагностики является воз-
можность использования значительных объемов информации об ис-
следуемых объектах, для обработки и интерпретации которой при-
меняется специализированное алгоритмическое и программное 
обеспечение, реализуемое на высокопроизводительных компьюте-
рах. Выбор диагностической информации определяется, в частно-
сти, наличием штатных систем, регистрирующих полезные сигналы. 
Такую информацию содержат, например, спектры акустических ко-
лебаний в двухфазном потоке теплоносителя. Поэтому значитель-
ное внимание при моделировании двухфазных потоков уделяется 
разработке эффективных методов решения прямой задачи [12]. 
Естественными критериями качества математической модели диа-
гностируемого объекта являются ее точность, вычислительная эф-
фективность, способность корректно воспроизводить свойства объ-
екта в требуемых пределах изменения переменных модели (пере-
менных управления). Коррекцию моделей проводят с использованием 
результатов численного моделирования и соответствующих экспе-
риментальных данных [13]. Примеры коррекции моделей двухфаз-
ных потоков приведены в [14, 15]. Следует отметить, что процедура 
коррекции модели связана, в свою очередь, с решением некоторой 
обратной задачи. При формулировке обратных задач коррекции мо-
делей и диагностирования двухфазных потоков, в частности по 
спектральным данным, необходимо обеспечить корректность по-
становки задачи, а также учесть неполноту косвенной информации, 
наличие в спектрах систем кратных частот, зашумленность измеря-
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емых данных и др. [16–22]. Как следствие, критериальные функции 
обратных задач в общем случае являются непрерывными, липшице-
выми, многоэкстремальными и не всюду дифференцируемыми. 
Примеры использования методов глобальной оптимизации в зада-
чах идентификации переходных процессов и диагностирования 
ядерных реакторов представлены в работах [23, 24]. 

При обеспечении безопасной эксплуатации реакторных устано-
вок значительное внимание уделяется исследованиям переходных 
процессов в циркуляционных контурах реакторов под давлением,  
в том числе контролю фазового состава теплоносителя. Появление 
второй фазы в потоке теплоносителя приводит, в частности, к изме-
нению значений относительной скорости звука на участках локали-
зации газожидкостной смеси. Это проявляется в соответствующих 
изменениях спектра колебаний потока, что может быть использовано 
в качестве косвенной информации для диагностирования фазового 
состава газожидкостной смеси. Критериальные функции обратной 
задачи определяются рассогласованием спектральных составляющих, 
полученных для математической модели потока, и соответствующих 
данных, регистрируемых штатными системами. При минимизации 
критериальных функций в общем случае требуются методы глобаль-
ной недифференцируемой оптимизации. Некоторые современные ме-
тоды недифференцируемой оптимизации, основанные на построении 
сглаживающих аппроксимаций критериальных функций, представле-
ны в работах [25—27]. Детерминированные методы решения задач 
глобальной оптимизации многоэкстремальных функций к настоящему 
времени достаточно хорошо разработаны и получили широкое рас-
пространение. Следует отметить, что эффективность детерминиро-
ванных алгоритмов существенно ограничена их зависимостью от 
размерности задачи. В случае большого числа переменных применя-
ют алгоритмы стохастической глобальной оптимизации. К ним отно-
сятся, например, популяционные алгоритмы [28, 29]. Вместе с тем 
чувствительность к выбору параметров алгоритмов этого типа, уста-
навливаемых пользователем или обусловленных содержанием зада-
чи, во многом определяет скорость сходимости итерационного про-
цесса. Этого недостатка лишен кратный алгоритм столкновения ча-
стиц M-PCA (Multi-Particle Collision Algorithm), который основан на 
алгоритме Метрополиса и входит в число наиболее мощных совре-
менных стохастических алгоритмов глобальной оптимизации [30]. 
Существенно, что применение стохастических алгоритмов глобаль-
ной оптимизации требует значительных вычислительных ресурсов. 
Одним из путей повышения эффективности таких алгоритмов явля-
ется совершенствование процедуры локального поиска. В работе [31] 
представлены гибридные алгоритмы, объединяющие генетический 
алгоритм сканирования пространства переменных и детерминиро-
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ванные методы локального поиска; отмечен также ряд недостатков 
описанных гибридных алгоритмов.  

Целью настоящей работы является разработка новых гибридных 
алгоритмов глобальной недифференцируемой оптимизации, ориен-
тированных на решение задач вычислительной диагностики гидро-
механических систем. 

Представлены математические модели акустических колебаний 
двухфазного газожидкостного потока в циркуляционном контуре, 
сформулирована обратная задача вычислительной диагностики фазо-
вого состава теплоносителя по спектральным данным. Предполагает-
ся, что регистрируемые данные могут быть неполными, спектры ко-
лебаний потока содержат кратные частоты, шумы отсутствуют. Опи-
саны методы недифференцируемой оптимизации, используемые при 
локальном поиске в гибридных алгоритмах. Процедуры локального 
поиска основаны на построении сглаживающих аппроксимаций кри-
териальных функций. Приведено описание двух новых гибридных 
алгоритмов глобальной недифференцируемой оптимизации, а также 
результаты решения модельной задачи вычислительной диагностики 
фазового состава теплоносителя в циркуляционном контуре ядерной 
реакторной установки. 

Математические модели. Важной характеристикой объектов, 
имеющих в своем составе гидравлические системы, является спектр 
собственных частот колебаний рабочей жидкости в этих системах и 
ее отдельных контурах. Для разветвленных гидросистем, включа-
ющих различные элементы и агрегаты, объединенные в единую си-
стему гидролиниями с потоком рабочей жидкости, методика расчета 
собственных частот может быть построена, например, на объединен-
ном импедансно-матричном способе получения характеристического 
уравнения для расчета собственных частот [20]. В этом случае нахо-
дятся передаточные матрицы jB  по отдельным j-м ветвям гидроси-

стемы как результат перемножения передаточных матриц отдельных 
элементов гидросистемы, представляемых в форме многополюсни-
ков, заключенных между узловыми точками на входе и выходе общего 
участка в каждой ветви. В месте соединения элементов рассчитыва-
ются переходные матрицы стыков и ответвлений. Потери напора на 
разных участках могут быть учтены введением эквивалентных сосре-
доточенных гидравлических сопротивлений на стыках элементов 
гидросистемы. Тогда 

,j ji
i

B B  

где jiB  — матрицы перехода отдельных элементов, стыков и ответ-

влений в каждой ветви гидросистемы, имеющие вид квадратной мат-
рицы порядка n: 
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1
.

n
ji mkbB  

Здесь mkb  — элементы матрицы перехода i-го элемента j-й ветви; n = 1 
для элементов с сосредоточенными параметрами, представляемых в 
виде двухполюсников; n = 2 для систем с распределенными парамет-
рами (для четырехполюсников) и дополнительно с учетом тепловых 
процессов n = 3 (для шестиполюсников).  

В узловых точках, т. е. в местах соединения отдельных ветвей 
гидросистемы, должны выполняться условия баланса расходов и ра-
венства давлений в потоке рабочей жидкости. 

При вычислениях следует учитывать, что скорость распростране-
ния малых возмущений в гидролиниях и элементах системы зависит 
как от температуры теплоносителя, так и (в большей степени) от его 
фазового состава. Приведенная скорость распространения малых 
возмущений в гидролиниях, например при пузырьковой структуре 
двухфазного потока, может быть рассчитана по формуле 

12 2 1
0 0(1 ) .l l l la p a a p

           

Здесь la  — скорость распространения малых возмущений на рас-
сматриваемом участке гидролинии с капельной жидкостью, опреде-
ляемая по формуле Жуковского с учетом податливости стенок тру-
бопровода; при этом плотность смеси   определяется в виде 

(1 ) ,l g       

где ,l g  — плотности капельной жидкости и парогазовой фазы со-

ответственно;   — объемное паросодержание в смеси. При этом сле-
дует отметить, что даже малое присутствие свободной парогазовой 
фазы в потоке рабочей жидкости приводит к существенному сниже-
нию скорости звука в ней, в то время как плотность смеси практически 
остается равной плотности капельной жидкости. 

Граничные условия в концевых сечениях незамкнутых ветвей гид-
росистемы могут быть заданы в форме граничных импедансов, в общем 
случае зависящих от частоты и имеющих комплексную форму [20]. 

Используя известные соотношения для расчета эквивалентных 
передаточных матриц, параллельно и последовательно соединенных 
контуров гидросистемы, граничные условия и условия в узлах ветв-
ления гидросистемы, можно получить систему уравнений, из кото-
рой, приравнивая к нулю ее главный определитель, находится харак-
теристическое уравнение для поиска собственных частот колебаний 
рабочей жидкости в гидросистеме.  
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Для закольцованных систем типа главных циркуляционных конту-
ров АЭС [21] с эквивалентной матрицей перехода B характеристиче-
ское уравнение для отыскания собственных частот имеет общий вид  

 det 0, B E  

где Е — единичная матрица. 
Решение последнего уравнения возможно, например, методом 

начального параметра с уточнением по методу Ньютона. Расчеты, 
выполненные таким способом, в диапазоне частот до 50 Гц хорошо 
коррелируют с результатами расчетов на основе метода конечных 
элементов в пакете прикладных программ ANSYS®. 

Постановка обратной задачи. Рассматривается обратная задача 
вычислительной диагностики, которая в рамках выбранной матема-
тической модели описывается операторным уравнением 

, , ,Ax y x X y Y    

где ,X Y  — гильбертовы пространства; A  — компактный линейный 
оператор, действующий из X  в .Y  Правая часть возмущенного опе-
раторного уравнения представляет приближенные входные данные 

,y  определенные из эксперимента. Предполагается, что погреш-
ность задания входной информации   известна и имеет место 

  y y    . Требуется определить устойчивые приближенные ре-

шения по заданной приближенной информации .y  Существенно, 
что во многих приложениях обратные задачи являются некорректно 
поставленными. Далее реализуется подход, основанный на методе 
регуляризации [17, 18]. 

Приближенное решение рассматриваемой обратной задачи связа-
но с поиском минимума функционала Тихонова: 

arg min ( ),
x X

x J x
 


  0  . 

Здесь x  — регуляризованное решение уравнения Ax y  с пара-
метром регуляризации  ; при этом минимизируемый функционал 
определен в виде 

2 2
( )     ,

XY
J x Ax y x
      

где 
2

  
Y

Ax y  — функционал невязки (квадрат нормы в простран-

стве Y ); 
2

 
X

x  — стабилизирующий функционал. 
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Реализуемый метод называют сходящимся методом регуляриза-
ции, если выполнено условие 

  

sup   0
y y

R y x





 

   при 0.  

Здесь введено семейство линейных ограниченных операторов 
:R Y X   с параметром регуляризации 0  , таких, что 

0
lim .R Ax x x X


    

При использовании заданной aприори информации 1x X X   
погрешность решения в наихудшем случае составляет [16] 

 1 1( , , ) sup   : , ,    .X R R y x x X y Y y y 
           

Кроме того, для любого (0) 0R   имеет место 

1 0 1( , , ) ( , ),X R X      
где 

 0 1 1( , ) sup   : ,    .X x x X Ax       

Задача вычислительной диагностики системы как обратная задача 
на собственные значения связана с поиском вектора переменных управ-
ления, при котором первые N  собственных частот (или соответству-
ющих им собственных значений) модели совпадают с составляющими 
некоторого заданного ограниченного спектра или достаточно близки к 
ним. Для оценки уровня рассогласования сравниваемых характеристик 
объекта используется векторный способ описания. Так как информация 
о формах колебаний объекта зачастую отсутствует или является суще-
ственно неполной, далее рассматривается только рассогласование меж-
ду частотными составляющими нормального и заданного спектров. 
Возможные подходы основаны на минимизации квадратичной функции 
рассогласования или минимизации максимальной из функций рассогла-
сования спектральных составляющих. Так, для попарно сравниваемых 
спектральных составляющих может быть построено следующее конеч-
ное множество критериев рассогласования 

*( ) ( ) ( ) ,  R ,  ,n
i i if x X i J     x x x  

где *( ), ( )i i x x  — собственные значения, относящиеся к исходному 
(текущему) и заданному спектрам; x  — вектор переменных управле-

ния; X  — допустимая область; n  — размерность задачи; Rn  —  
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n -мерное вещественное линейное пространство;  1,  ... ,J n . Необ-

ходимо найти такой вектор переменных управления, который приводит 
к наименьшим различиям между сравниваемыми спектрами, т. е. следу-
ет произвести настройку модели объекта на заданный спектр. Задача 
диагностирования формулируется в следующем виде: определить век-
тор переменных управления x X , который минимизирует максималь-
ное значение критерия рассогласования, т. е. требуется найти 

  
R

min max  ( ) .
n i

i Ix X
f x

 
  P  

Решением сформулированной дискретной минимаксной задачи 

(P)  является такой вектор  т* * *
1 , ..., nx x x , принадлежащий множе-

ству допустимых значений, при котором скалярная критериальная 
функция  1( ) max  ( ), ..., ( )Nf x f x f x  принимает минимальное зна-

чение. В случае, когда ( ) 0f x  , спектр частот настраиваемой моде-
ли полностью совпадает с заданным спектром по N  низшим часто-
там. Последнее условие вследствие неполноты экспериментальных 
данных и погрешностей, полученных при измерениях, не выполняет-
ся. Ниже рассматривается регуляризованная задача (P)  с многоэкс-
тремальной не всюду дифференцируемой критериальной функцией 

( )f x  и параметром регуляризации 0  . 
В обобщение постановок экстремальных задач вычислительной 

диагностики формулируется следующая задача глобальной оптими-
зации: требуется найти 

 
R

( ) min ( ),
nx X

f x f x

 
  (1) 

где 
   :  0,   ;iX x D g x i I     (2) 

  R :  ,  ,n
j j jD x a x b j J      (3) 

( )f x  — целевая функция; ( )ig x  — функции ограничений задачи, 

i I ;  1,  ...,I m  — конечное множество индексов; D  — область 

поиска; *x  — глобальное решение. Функции ( ),f x  ( )ig x , i I , зада-
чи (1)–(3) полагаются непрерывными липшицевыми. Предполагается 

также, что действительная функция : R Rnf   является многоэкс-
тремальной, не всюду дифференцируемой и для нее задана вычисли-
тельная процедура, позволяющая определять значения функции в точ-
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ках допустимой области. Необходимо также учесть возможную высо-
кую трудоемкость вычисления критериальных функций, что может 
потребовать значительных вычислительных ресурсов. 

Методы сглаживающих аппроксимаций и локальная мини-
мизация критериальных функций. Рассмотрим задачу (1)—(3), 
ограничившись поиском локального решения. Предварительно ис-
следуется задача поиска минимума действительной функции 

: R Rnf  , определенной в виде 

    
R

( ) max  ( ) ,   1,  ..., .
n i M

x X
f x x i I M

 
     (4) 

Здесь X  — допустимое множество; предполагается, что все 
функции ( ),   ,i Mx i I   выпуклы и непрерывно дифференцируемы. 

Задачи, формулируемые в минимаксной форме, относят к классу 
задач недифференцируемой оптимизации. Для их решения применя-
ют специальные методы, например модифицированный метод со-
пряженных градиентов, метод гиперболической сглаживающей 
функции и др. [25, 26]. Рассматриваемый далее подход основан на по-
строении сглаживающих аппроксимаций критериальных функций с 
последующим применением эффективных методов, разработанных 
для задач дифференцируемой оптимизации. Подход предполагает за-
мену каждой недифференцируемой функции некоторой ее аппрокси-
мацией, которая была бы выпуклой и дифференцируемой в области 
допустимых значений переменных управления. Далее в качестве про-
цедур локального поиска гибридных алгоритмов рассматривают метод 
гиперболической сглаживающей функции [25, 26], а также метод по-
строения двухпараметрических сглаживающих ( , )p q -аппроксимаций 
критериальной функции [27]. 

Применительно к задаче недифференцируемой оптимизации под-
ход с использованием гиперболического сглаживания основан на 
введении новой критериальной функции [26] 

0

( , ) max{0 ,  ( ) } i
i I

F x t t f x t


    

с последующей аппроксимацией функции ( , )F x t  в виде 

0

2 2( ) ( ( ) )
( , ) ,

2
i i

i I

f x t f x t
x t t



    
     

где 0   — параметр точности; .t R  Следует отметить, что функ-
ции ( )if x , 0i I , должны быть непрерывно дифференцируемыми; 
параметр l  определяется числом ограничений. 



Гибридные методы вычислительной диагностики двухфазного потока… 

77 

Предложение [26]. Для любых nx R  и t R  справедлива оценка 

0 ( , ) ( , ) .
2

l
x t F x t


     

Далее рассматриваемая задача заменяется последовательностью 
задач минимизации функций ( , ( ))

k
x f x  и имеет место 0k   при 

k  . В работе [26] предложен алгоритм решения указанной по-
следовательности задач и доказана его сходимость. 

Второй подход состоит в следующем. Целевую функцию (4) 
можно определить в эквивалентной форме 

 
  

1 2 1

1 2 1

( ) ( ) ( ( ) ( )

... ( ) ( ) ( ( ) ( ))... ,M M M M

f x x x x

x x x x  

      

          
 (5) 

где 
  

R
( ( )) max 0, ( ) ,    .

ni i M
x X

x x i I
 

      (6) 

Основная идея рассматриваемого метода состоит в том, чтобы 
каждую функцию ( ( )),  i Mx i I   , входящую в (5), заменить некото-
рой гладкой функцией, построить сглаженную приближенную целе-
вую функцию, а затем применить эффективные методы гладкой ми-
нимизации. При возрастании точности аппроксимации функций (6) 
имеет место сходимость приближенного решения к точному. 

Существенно, что уже в одномерном случае функция ( )x   

 max 0,
x X R

x
 

  в точке 0x   дифференцируема только по направлени-

ям. Возможен следующий подход: на числовой оси выделяется отре-
зок  , ,p q  содержащий точку, в которой функция ( )x  имеет ука-

занную особенность, и на этом отрезке исходная функция заменяется 
некоторой приближенной функцией, выпуклой и дифференцируемой 
в каждой точке по построению. Пусть выбраны числа 0p   и 0q  . 
Вводится двухпараметрическая аппроксимация функции : R R   

   
0,   ;

, , , , ,     ;

,  .

x p

p q x s p q x p x q

x x q


   
 

  

Здесь ,p q  — параметры аппроксимации, определяющие соответ-

ственно левую и правую границы отрезка  ,p q , на котором задана 

сглаживающая функция  , ,s p q x . Приближенная функция  , ,p q x  



В.Д. Сулимов, П.М. Шкапов 

78 

совпадает с исходной ( )x  всюду, за исключением отрезка  ,p q . 

Потребуем, чтобы функция  , ,s p q x  была выпуклой и по крайней 

мере один раз дифференцируемой на  ,p q . При этом 

   , , 0 ,s p q p p q   , где  ,p q  определяется свойствами сгла-

живающей функции. 
Теорема 1 [27]. Пусть nx R   и nx R  — суть точки минимума 

для ( )f x  и  , ,f p q x  соответственно. Тогда  0 , ,f p q x  

  
R

( ) min 1,  ( 1) ,
nx X

f x p M p q

 
     .  

Теперь, с использованием сглаживающих аппроксимаций, могут 
быть сформулированы необходимые условия Каруша — Куна — 
Таккера. Пусть рассматривается задача оптимизации со смешанными 
функциональными ограничениями 

 ( ) minf x  , x D ; (7) 

  nD x R  : ( ) 0,   ( ) 0F x G x  , (8) 

где : nf R R  — заданная функция; : n lF R R  и : n mG R R  — 
заданные отображения; l  — число ограничений в форме равенств; 
m  — число ограничений-неравенств. 

Пусть x D  — локальное решение задачи (7), (8), причем функ-

ция f  дифференцируема в точке x , отображения F  и G  удовлетво-
ряют условиям гладкости. Вводится обобщенная функция Лагранжа 
задачи (7), (8) 

0 : ;n l mL R R R R R     

0 0 0( , , , ) ( ) , ( ) , ( )L x f x F x G x         . 

С использованием сглаживающих аппроксимаций можно опре-
делить 

0 0 0( , ; , , , ) ( , ; ) , ( , ; ) , ( , ; ) ,L p q x f p q x F p q x G p q x            

при этом 

0( , ; , , ) ( , ; ) ( ( , ; )) ( ( , ; )) ,T TL
p q x f p q x F p q x G p q x

x

          


    

0, 0, , .n l mx R R R        
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Теорема 2. Пусть выбраны параметры , ,p q  функция : nf R R  

и отображение : n mG R R , дифференцируемое в точке : ,nx R  а 

отображение : n lF R R  дифференцируемо в некоторой окрестно-
сти этой точки, причем его производная непрерывна в точке x . 

Тогда если x  является локальным решением задачи (7), (8), то 

найдутся число 0 0   и элементы lR   и mR  , не равные нулю 
одновременно, и такие, что 

0
0( , ; , , , ) 0,

L
p q x

x


   




 

, ( , ; ) 0.G p q x   

Д о к а з а т е л ь с т в о. Доказательство получается прямой ссыл-
кой на теорему 3 [31, с. 42] и теорему 1.  

Далее рассмотрим важный практический случай задачи вычисли-
тельной диагностики — задачу минимизации (1), (3) для случая про-
стых ограничений (на переменные управления). Требуется найти 

   min , , :  ,  ,j j j
x

f p q x a x b j J    (9) 

где  , ,f p q x  — выпуклая функция; допустимая область X  совпа-

дает с областью поиска D . Вспомогательная задача квадратичного 
программирования с вектором nw R  формулируется в виде: найти 

 
   2

1 1

, , 1
min :  ,  .

2

n n

j j j j j
jj j

f p q x
w w a x b j J

x 

        
 


 (10) 

Решение задачи (10) дает jw , после чего определяются множите-

ли Каруша — Куна — Таккера ju  и ju , соответствующие неравен-

ствам 0j j jx w b    и 0j j jx w b    , j J . Существенно, что 

для минимизируемой в задаче (9) целевой функции должны выпол-
няться условия [27]: 

 , ,
0, ;j j j

j

f p q x
u u w j J

x
 

    



 

0ju  ,   0;j j j ju a x w     

0ju  ,   0j j j ju x w b    , j J . 
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Пусть требуется решить задачу (9). Выбраны числа ,j ja b , j J ,  

а также число ,  0 1   , и параметры аппроксимации 0p  , 0q  . 
Алгоритм минимизации включает следующие основные шаги. 

0. Выбрать точку 0x , 0
j j ja x b  , .j J  

1. Если точка kx  уже построена, то вычислить вектор   .k kw w x  

2. Определить первое значение 0,  1,  ...,r   при котором для 

 1 / 2
r   будет выполнено неравенство 

    2
, , , , ;k k k kf p q x w f p q x w     

если такое 0r r  найдено, то положить 0 12 , .r k k k
k kx x w      

Перейти к шагу 1. 
3. Критерий останова: 0kw  . 
Локальную сходимость алгоритма минимизации при использовании 

сглаживающих аппроксимаций критериальных функций для случая 
простых ограничений устанавливает приведенное далее утверждение. 

Теорема 3 [27]. Пусть выбраны параметры 0,  0p q  . Если 

числа , ,j ja b  ,j J  конечны и градиент функции  , ,f p q x  удовле-

творяет условию Липшица, то во всякой предельной точке последо-

вательности ,kx  0,  1,  ... ,k   удовлетворяются необходимые усло-
вия минимума.  

Гибридные алгоритмы. Структуры алгоритмов глобальной мини-
мизации построены на основе стохастического алгоритма M-PCA [20], 
объединенного с процедурами поиска локальных минимумов не всюду 
дифференцируемых функций. Работа современного алгоритма глобаль-
ной оптимизации M-PCA основана на использовании аналогии с физи-
ческими процессами абсорбции и рассеяния частиц при ядерных реак-
циях. В простейшей версии алгоритма для исследования области поиска 
используется одна частица. На начальном шаге выбирается пробное 
решение (Old_Config), которое затем модифицируется посредством 
стохастического возмущения (Perturbation(.)), что позволяет найти 
новое решение (New_Conf ig). С помощью функции Fitness(.) дается 
сравнительная оценка нового и предыдущего решений, на основании 
которой новое решение может быть принято или отвергнуто. Если 
новое решение отвергнуто, то происходит переход к функции Scatter-
ing(.), реализующей схему Метрополиса. Для сканирования области, 
перспективной на минимум, применяются функции Perturbation(.) и 
Small_Perturbation(.). Новое решение принимается, если оно лучше 
предыдущего (абсорбция); если найденное решение хуже предыдущего, 
то происходит переход в отдаленную область пространства поиска (рас-
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сеяние), что позволяет преодолевать локальные минимумы. Эффектив-
ность описанного поиска глобального решения алгоритмом значительно 
повышается за счет одновременного использования большого числа  
частиц. Такой подход реализует алгоритм M-PCA, который непосред-
ственно ориентирован на применение в среде параллельных вычисле-
ний. Наилучшее решение определяется с учетом данных обо всех ча-
стицах, участвующих в процессе. Единственным задаваемым парамет-
ром для алгоритма M-PCA является число итераций. 

Предложены гибридные алгоритмы, интегрирующие алгоритм 
M-PCA, и детерминированные алгоритмы локальной минимизации.  
В работе [26] реализован метод гиперболической сглаживающей 
функции. Первый гибридный алгоритм объединяет стохастический 
алгоритм M-PCA сканирования пространства переменных и детер-
минированный градиентный локальный поиск GHS, использующий 
метод гиперболической сглаживающей функции. В работе [27] пред-
ставлен двухпараметрический метод построения сглаживающих ап-
проксимаций не всюду дифференцируемых функций и предложен 
вариант метода линеаризации LMS со сглаживанием. Второй ги-
бридный алгоритм объединяет алгоритм M-PCA глобального скани-
рования и детерминированный метод LMS локального поиска.  
Результирующие гибридные алгоритмы M-PCAGHS и M-PCALMS 
реализованы в виде прикладного программного обеспечения. Рас-
смотрим фрагмент псевдокода гибридного алгоритма M-PCALMS. 

 
 1. Generate an initial solution Old_Config 
Best_Fitness = Fitness (Old_Config) 
Update Blackboard 
For 0n   to # of particles 
For 0n   to # of iterations 
Update Blackboard 
Perturbation ( ) 
  If Fitness (New_Config) > Fitness (Old_Config) 
   If Fitness (New_Config) > Best_Fitness 
    Best_Fitness := Fitness (New_Config) 
   End If 
Old_Config := New_Config 
   Exploration ( ) 
  Else 
   Scattering ( ) 
  End If 
End For 
End For 

2. Exploration ( ) 
 For 0n   to # of iterations 
  Small_Perturbation ( ) 
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Local search 
   using Linearization Method with 
    Smoothing Approximations 
   Check stopping criterion: 
   Find global solution Best Fitness  
   Else continue 
   If Fitness (New_Config) > Best_Fitness 
Best_Fitness := Fitness (New_Config) 
End If 
   Old_Config := New_Config 
   End For 
Return 

3. Scattering ( ) 
 1scattp   ( Fitness (New_Config)) / (Best_Fitness) 

 If scattp > random(0, 1) 
  Old_Config := random solution 
 Else 
  Exploration ( ) 
 End If 
Return 
 

В состав алгоритма M-PCALMS входят также стандартные про-
цедуры Perturbation(.) и Small_Perturbation(.) [31]. 

Численный пример. Рассматривается модельная задача вычис-
лительной диагностики фазового состава теплоносителя в замкнутом 
циркуляционном контуре ядерной реакторной установки [23, 32, 33]. 
Диагностирование проводится по косвенной информации о частотах 
акустических колебаний в газожидкостном потоке, полученных при 
измерениях. Переменными модели потока являются относительные 
значения скорости звука , %ix  на участках контура, соответству-
ющих: зоне нагрева теплоносителя в напорном баке системы компен-
сации объема (СКО) 1( )x ; выходному объему реактора 2( )x ; актив-

ной зоне реактора 3( )x ; проточной части главного циркуляционного 

насоса циркуляционной петли с СКО 4( )x . При отсутствии в тепло-

носителе второй фазы представленный далее нормальный спектр j , 

1,  10j  , соответствует максимальным значениям скорости звука на 
выделенных участках контура. 

 

Нормальный и аномальный спектры частот колебаний теплоносителя 
 

j   .....................  1 2 3 4 5 6 7 8 9 10 

j , Гц  ............  0,89  6,77  9,82  15,44  15,96  18,94  24,56  26,69  27,07  30,52 
*
j , Гц  ............  0,81  6,76  9,33  15,15  15,74  18,80  20,79  26,63  26,89 29,32 



Гибридные методы вычислительной диагностики двухфазного потока… 

83 

В модельной задаче аномальный спектр j
 , 1,  10j  , получен 

при наличии двухфазной смеси в напорном баке СКО, в выходном 
объеме и активной зоне реактора, а также в проточной части главного 
циркуляционного насоса циркуляционной петли с СКО, при этом 

1 74,5 %x  ; 2 87,25 %x  ; 3 81,5 %x  ; 4 91,0 %x  . Критериальная 
функция определена с учетом десяти низших спектральных состав-
ляющих. Для решения задачи вычислительной диагностики исполь-
зуется гибридный алгоритм M-PCALMS. После определения области 
переменных модели, содержащей глобальный минимум, заверша-
ющие итерации алгоритма проводятся с использованием градиентной 
информации для сглаживающих аппроксимаций критериальной 
функции. Сходимость решения иллюстрируют рис. 1 и 2. 

 

Рис. 1. Изменение значений переменных управления ix   
с ростом числа итераций iN  

Рис. 2. Зависимость критериальной функции ( )f x   
и нормы вектора ( )Nr w  от числа итераций iN  

По завершении локального поиска получено приближенное ре-
шение: 1 74,48 %x  ; 2 87,35 %x  ; 3 81,77 %x  ; 4 90,12 %x  . От-
носительная погрешность определения значений переменных модели 
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не превышает 1,0  % при точности настройки спектра частот порядка 
0,01  Гц. Итак, по завершении настройки спектра частот математиче-
ской модели газожидкостного потока на заданный аномальный 
спектр установлено, что имеет место появление второй фазы в потоке 
теплоносителя на выделенных участках циркуляционного контура. 

Выводы. Разработана математическая модель акустических коле-
баний в двухфазном потоке теплоносителя, циркулирующем в замкну-
том контуре ядерной реакторной установки. Предложен подход к ре-
шению обратных задач вычислительной диагностики фазового состава 
теплоносителя с использованием новых гибридных алгоритмов гло-
бальной оптимизации. Исследование пространства переменных моде-
ли проводится стохастическим методом, реализуемым кратным алго-
ритмом столкновения частиц. При локальном поиске в гибридных ал-
горитмах градиентная информация определяется для сглаживающих 
аппроксимаций не всюду дифференцируемых критериальных функ-
ций. Модельное диагностирование показало возможность идентифи-
кации аномалий фазового состава теплоносителя в контуре реакторной 
установки с достаточной для приложений точностью. 

 

Работа выполнена при финансовой поддержке Министерства 
образования и науки РФ (грант Президента РФ по поддержке науч-
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Hybrid methods of computer diagnosis of two-phase flow  
in the circulation loop 

© V.D. Sulimov, P.M. Shkapov  

Bauman Moscow State Technical University, Moscow, 105005, Russia  

The article considers the problems of coolant flow computational diagnostics in a closed 
circulation loop. The mathematical models of acoustic waves in two-phase flow are de-
veloped. Indirect diagnostic information, contained in the flow vibrational spectra rec-
orded by regular systems is used. The inverse eigenvalue problem is formulated. Solving 
it the optimization approach is implemented. It is supposed that partial criteria are pre-
sented by continuous, Lipschitz, not everywhere differentiable, multi-extremal functions. 
Search of global solutions was performed using a new hybrid algorithms integrating sto-
chastic algorithm of variable space viewing and deterministic methods of local search. A 
numerical example of model diagnosing the phase composition of the coolant in the cir-
culation loop of nuclear reactor plant is presented. 

Keywords: two-phase flow, inverse problem, regularization, global optimization, Me-
tropolis algorithm, hybrid algorithm. 
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