
ISSN 2309-3684 

Математическое 
моделирование
и численные методы

Котенев В. П., Сысенко В. А. Расчет давления при обтекании
затупленных тел с малыми сверхзвуковыми скоростями.
Математическое моделирование и численные методы, 2015, №3
(7), c. 58-67

Источник: https://mmcm.bmstu.ru/articles/57/

Параметры загрузки:

IP: 216.73.216.47

13.02.2026 04:42:45



В.П. Котенев, В.А. Сысенко 

58 

УДК 533.6.011.31.5:532.582.33 

Расчет давления при обтекании затупленных тел  
с малыми сверхзвуковыми скоростями 

© В.П. Котенев1,2, В.А. Сысенко2 

1МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 
2ОАО «ВПК «НПО машиностроения», Реутов Московской обл., 143966, Россия 

Рассмотрена задача определения давления на поверхности тел, обтекаемых по-
током газа с малой сверхзвуковой скоростью ( M 1,5).   Разработан экономич-

ный алгоритм для расчета давления на участке поверхности затупленных тел 
вращения. Приведены примеры расчетов обтекания сферы и эллипсоидов с разны-
ми отношениями полуосей. Сравнение с точными численными расчетами показы-
вает эффективность предложенного подхода.  

Ключевые слова: сверхзвуковой поток, звуковая точка. 

Введение. Рассмотрение течений при числах Маха, близких к 
единице, приводит к большим усложнениям, требующим для иссле-
дования специальных аналитических, численных и эксперименталь-
ных методов [1–6]. В последнее время активизировались исследова-
ния околозвуковых течений газа около поверхности перспективных 
летательных аппаратов как с помощью численных методов [7], так и 
экспериментально [8]. Оба эти подхода требуют больших временных, 
а эксперименты — и стоимостных затрат.  

В связи с этим большое значение имеет построение простых ме-
тодов, позволяющих достаточно точно получить параметры на по-
верхности тела. Аналитические зависимости могут быть полезными и 
при рассмотрении задач волнового воздействия на различные кон-
струкции [9]. Ранее в работе [10] были рассмотрены зависимости 
распределения давления на различных затупленных телах при числах 
Маха набегающего потока M 1,5.   В данной статье описан разра-
ботанный метод определения давления на выпуклых затупленных 
телах вращения при обтекании их газом с малыми сверхзвуковыми 
скоростями (M 1,5).   

Разработка метода для определения давления при малых 
сверхзвуковых скоростях. 

1. Использование безразмерных параметров. Давление P  отне-
сем к давлению в точке торможения 0 ,P  которое определяют по из-
вестной формуле Рэлея: 
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где M  — число Маха набегающего потока; P  — давление газа в 
набегающем потоке;   — показатель адиабаты, для совершенного 
газа   = 1,4. 

2. Метод определения давления на поверхности тел большого 
удлинения (отношение длины к диаметру миделя больше, чем у сфе-
ры). Сначала определим некоторые параметры на сфере, обтекаемой 
потоком газа. Для расчета давления используем формулу из [11]: 
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**
  — положение звуковой точки на сфере (  — угол между осью 

тела и вектором скорости, град). Эта формула дает в случае сферы 
хорошие результаты и при малых числах Маха при соответствующем 
выборе 

**
.  

Для умеренных сверхзвуковых чисел Маха ( M 2  ) в набегаю-
щем потоке положение звуковой точки на сфере определим с исполь-
зованием классической формулы Ньютона 
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   — показатель адиабаты, равный 1,4 для совер-

шенного газа; 
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ное к давлению в точке торможения. 

Рассмотрим теперь контурную функцию 
1

f
r V




 и найдем на 

поверхности затупленного выпуклого тела такую точку  , где 
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Следовательно, в точке   при 0f   должно быть выполнено урав-
нение 
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Например, для сферы ( ( ) cos )r     
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При нахождении точки   на поверхности сферы, описанной урав-
нением (4), давление в ее окрестности рассчитываем по формуле (1).  

Найдем на сфере такую точку x0, в которой выполняется равенство 
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Из условий обтекания выпуклого тела имеем: 
 первое слагаемое в уравнении (5) меньше нуля. 
 вдоль тела давление падает, т. е. для выпуклого тела (  убыва-

ет) 0
dP

d



, поэтому второе слагаемое в уравнении (5) больше нуля в 

сверхзвуковой части потока при **   . 
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Для выпуклого тела существует такая точка 0 **x   , для которой 
выполняется равенство (5), поскольку первое слагаемое в нем мень-
ше нуля, а второе при M 1  неотрицательно и непрерывно возраста-
ет при 0 . Это справедливо также и для затупленного выпуклого 
тела произвольного очертания. Таким образом, из нелинейного урав-
нения (5) найдем точку 0x  и вычислим в ней давление 0( )P x  по 
формуле (1). 

Найдем на теле большого удлинения точку 00,x  давление в кото-
рой совпадает с давлением на сфере в точке 0 ,x  а также малых 
окрестностях этих точек.  

Запишем выражение для производной от контурной функции по 
углу   [12]:  
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где R — радиус кривизны тела; n — нормаль к поверхности тела. 
В общем случае угол ( , )P    , где   — функция тока, кото-
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** 0 0045 ,x x    для чисел Маха в набегающем потоке, близких к 
единице, то линии тока в этой области почти коллинеарны поверхно-
сти тела в его окрестности. Поэтому будем считать, что здесь движе-
ние газа удовлетворяет модели Прандтля — Майера, т. е. ( )P   . 
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Подставим в (6) выражение для производной от угла   по нор-
мали к поверхности тела (7) и проведя несложные преобразования, 
получим 
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Так как поставлено условие равенства давлений в точках 0x  и 

00x  и некоторых их окрестностях, то правые части выражения (8) в 
этих точках одинаковы.  

Тогда получаем уравнение для нахождения точки 00x : 
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Если в качестве тела большого удлинения взять эллипсоид с по-
луосями 1 и 1b  , то условие (9) примет вид 
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На телах большого удлинения давление будем считать по форму-
ле, аналогичной для сферы, с тем изменением, что звуковая точка в 
зависимости, приведенной в [11], заменена на 00x  и введен дополни-
тельный коэффициент a , т. е. 
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3. Метод определения давления на телах малого удлинения. Для 
затупленного тела малого удлинения вращения хороший результат 
дает использование следующих формул для расчета давления.  

Найдем звуковую точку   на рассматриваемом теле, используя 

работы [13—15]. При     давление рассчитываем по формуле 
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При *    давление рассчитываем по правилу «местного тела» 
из [11]: 
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Положение точки 0  определим эмпирически в зависимости от 
положения звуковой точки на поверхности тела из условий: если 

    , то 0 1,15    ; если     , то 0 0,85    . В небольшой 
окрестности звуковой точки для расчета давления с высокой точно-
стью воспользуемся модификацией формулы Ньютона: 
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Величину 0  будем искать из равенства давления, рассчитывае-
мого по формуле (13), давлению, рассчитываемому по формулам (14) 
или (15) в точке 0.x  

Анализ результатов. Геометрию тел большого и малого удлине-
ния будем моделировать с помощью эллипсоидов.  

В качестве тела большого удлинения рассмотрен эллипсоид с со-
отношением полуосей b/a = 1/2. Для этого тела были проведены рас-
четы давления при числах Маха, равных 1; 1,1 и 1,2. На рис. 1 пред-
ставлены расчетные и экспериментальные данные [16] параметра 
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 для рассматриваемого тела. 

Для иллюстрации расчета давления на теле малого удлинения 
выбран эллипсоид с соотношением полуосей b/a = 2, на поверхности 
которого было рассчитано давление при числах Маха набегающего 
потока, равных 1,4 и 2,0. Графики численного расчета и табличных 
данных [17] представлены на рис. 2.  

Для эллипсоида с соотношением полуосей b/a =1/2 сравнение 
расчетных данных с экспериментальными [16] позволяет сделать вы-
вод, что применение формулы (11) дает результат с максимальной 
относительной погрешностью, не превышающей 11 % для всех вари-
антов. В то же время формула Ньютона для малых значений 
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Рис. 1. Расчетные и эксперименталь-

ные данные параметра СР: 
а — эллипсоид b/a = 1/2, M = 1,0; б — 
эллипсоид b/a = 1/2, M = 1,1; в — 
эллипсоид b/a = 1/2, M = 1,2; ◦◦◦◦◦◦ — 
табличные данные [7]; –––– — 

формула (8); ---- — формула 
                      Ньютона 

Рис. 2. Графики численного расчета 
давления и табличных данных: 

а — эллипсоид b/a = 2, M = 1,4; б — 
эллипсоид b/a = 2, M = 2,0; ◦◦◦◦◦◦ —
табличные данные [7]; –––– —

формулы (9), (10); ---- — формула 
                    Ньютона 

 

числа Маха удовлетворительно описывает распределение давления 
лишь на начальном участке при значениях 0,5z b  , а в конце рас-
четного интервала дает расхождение с экспериментальными данны-
ми в несколько раз. 

Для эллипсоида с соотношением полуосей b/a =2 сравнение рас-
четных данных с табличными [17] показывает, что применение фор-
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мул (12) и (13) дает результат с максимальной относительной по-
грешностью, не превышающей 11 % для всех вариантов. В то же 
время формула Ньютона дает погрешность до 42 %. 

Заключение. Предложенный в данной работе метод дает суще-
ственно более точные результаты по распределению давления, чем 
метод Ньютона. Таким образом, данный метод может быть использо-
ван для поиска начального распределения, а также быстрой оценки 
давления на поверхности выпуклых затупленных тел вращения при 
обтекании их газом с малыми сверхзвуковыми скоростями, когда 
числа Маха набегающего потока близки к единице.  
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Calculation of the pressure when streamlining blunt bodies 
with small supersonic speeds 

© V.P. Kotenev1,2, V.A. Sysenko2 

1Bauman Moscow State Technical University, Moscow, 105005, Russia  
2JSC "MIC "NPO Mashinostroenia", M.O., Reutov-town, 143966, Russia  

The article considers the problem of determining the pressure on the body surface 
streamlined by a gas flow with a small supersonic speed ( 1,5M  ).The economic al-

gorithm for calculating the pressure on the part of the surface of blunt bodies of revolu-
tion is developed. Examples of flow calculations over spheres and ellipsoids with differ-
ent semi-axes ratios are presented. Comparison with accurate numerical calculations 
shows the effectiveness of the proposed approach. 

Keywords: supersonic flow, sonic point. 
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