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УДК 629.1.028 

Математическая модель движения многоосной  
колесной машины с податливой на кручение  

несущей системой 

© М.М. Жилейкин, Е.Б. Сарач  

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

В рамках решения задачи активного управления упругими и демпфирующими эле-
ментами подвесок многоосных колесных машин (МКМ) остро стоит задача ис-
следования свойств семейств подвесок, спроектированных как для различных хо-
дов, так и для различных нагрузок. При этом их кинематические схемы также 
могут быть весьма разнообразны. Сбор требуемого объема информации для се-
мейств автомобилей, различных по конструкции и эксплуатационным характери-
стикам, представляется неосуществимым. Провести полные аналитические ис-
следования по определению соответствующих характеристик не представляется 
возможным. Эта задача с успехом может быть решена только с помощью моде-
лирования. 
Разработана математическая модель движения МКМ, особенностью которой 
является то, что скорость машины задается не принудительно, а формируется 
силами взаимодействия вращающихся колесных движителей с опорным основани-
ем. Это позволяет получить высокую точность при моделировании реальных про-
цессов движения МКМ по неровностям. Разработанная модель может быть при-
менена для исследования различных законов управления подвеской многоосных ко-
лесных машин. 

Ключевые слова: математическая модель, прямолинейное движение многоосной 
колесной машины, дифференциальные уравнения движения, имитационное моде-
лирование, уравнения динамики, уравнения кинематических связей. 

Введение. В рамках решения задачи активного управления упру-
гими и демпфирующими элементами подвесок многоосных колесных 
машин (МКМ) остро стоит задача исследования свойств семейств 
подвесок, спроектированных как для различных ходов, так и для раз-
личных нагрузок. При этом их кинематические схемы также могут 
быть весьма разнообразны. Сбор требуемого объема информации для 
семейств автомобилей, различных по конструкции и эксплуатацион-
ным характеристикам, представляется неосуществимым. Сроки и 
объемы натурных испытаний для сбора статистических данных в та-
кой постановке задачи крайне велики. В свою очередь, увеличение 
сроков испытаний приводит к моральному старению создаваемой си-
стемы. Для вновь проектируемых транспортных средств еще на этапе 
предпроектных исследований желательно иметь наиболее полную 
информацию не только о статических, но и о динамических характе-
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ристиках разрабатываемой системы. Провести полные аналитические 
исследования по определению соответствующих характеристик не 
представляется возможным. Эта задача с успехом может быть реше-
на только с помощью моделирования, в частности, средствами ком-
пьютерных имитационных математических моделей (ИММ) [1]. 

Имитационное математическое моделирование движения транс-
портного средства в различных режимах по различным трассам, а 
также преодоления типовых препятствий является основным мето-
дом исследования в теории подрессоривания современных машин.  

Для выявления особенностей функционирования и определения 
требований как к информационному полю, так и к структуре и типу 
исполнительных элементов системы активного подрессоривания 
была поставлена задача синтеза математической модели, позволя-
ющей: 

 выявить особенности работы управляемых систем подрессори-
вания; 

 сформировать требования к информационному полю для про-
ектируемой системы автоматического управления (САУ) системой 
подрессоривания колес МКМ; 

 сформировать требования к системам активного подрессорива-
ния с энергетической точки зрения. 

Требования к математической модели, процесс моделирова-
ния, основные допущения. Требования к математической модели 
динамики МКМ определяются совокупностью задач, при решении 
которых должна быть получена необходимая информация для оценки 
эксплуатационных качеств. К числу основных можно отнести следу-
ющие требования: 

 модель должна описывать совместную динамику кузова, сило-
вой установки и ходовой части МКМ с точностью, необходимой для 
оценки плавности хода и нагруженности ее элементов; 

 в модели должны быть учтены конструктивные особенности 
системы подрессоривания и движителя, неудерживающий и неголо-
номный характер связей, наложенных на МКМ; 

 в модели не должно быть ограничений на характеристики про-
филя трасс в вертикальной плоскости, что позволит исследовать по-
ведение машины при движении как по реальным неровностям, так и 
через искусственные препятствия; 

 движение МКМ должно моделироваться с учетом характери-
стик сопротивления и сцепления грунта, так как тягово-сцепные ха-
рактеристики влияют на скорость машины. 

При выводе дифференциальных уравнений прямолинейного дви-
жения МКМ особое место занимает обоснованное принятие допуще-
ний. Допущения должны, с одной стороны, обеспечить выполнение 
требований, предъявляемых к математической модели, а с другой — 
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ограничить число моделируемых параметров системы самыми необ-
ходимыми. 

В соответствии с требованиями к математической модели примем 
следующие допущения: 

 массы неподрессоренных элементов МКМ приведены к осям 
колес, а подрессоренных — к несущей системе; 

 вращающиеся массы силовой установки и трансмиссии приве-
дены к ведущим колесам; 

 опорное основание полагается недеформируемым (необходимая 
податливость по нормали к грунту может быть учтена в соответ-
ствующих характеристиках шин колес, а тангенциальная податли-
вость грунта учитывается в характеристике его сцепных свойств); 

 профиль опорного основания полагается кусочно-линейным. 
Общее уравнение динамики многоосной колесной машины. 

Рассмотрим пространственное движение МКМ как твердого тела. 
Связь между кинематическими параметрами и внешними возмуще-
ниями устанавливается дифференциальными уравнениями, состав-
ляющими математическую модель движения машины. 

Система уравнений движения МКМ содержит: 
 динамические уравнения, описывающие движение МКМ, полу-

ченные на основе закона сохранения количества движения и момента 
количества движения; 

 кинематические уравнения связи угловых и линейных скоростей 
с угловыми и пространственными координатами, полученные на осно-
ве уравнений связи между различными координатными системами; 

 динамические уравнения движения неподрессоренных масс от-
носительно корпуса. 

Системы координат, используемые в моделировании. В пред-
лагаемой модели использованы три различные системы координат 
(рис. 1), что объясняется структурой и формой уравнений движения 
объекта. 

Первая, неподвижная, система координат (НСК) O2X2Y2Z2 служит 
для моделирования заданных дорожно-грунтовых условий движения. 
Начало координат системы, точка О2, совпадает с началом моделиру-
емой трассы. 

Вторая, полусвязанная, система координат (ПСК) O1X1Y1Z1 ха-
рактеризуется тем, что ее начало, точка О1, всегда совпадает с цен-
тром масс МКМ и перемещается вместе с ним в пространстве. Оси 
O1X1, O1Y1, O1Z1 параллельны соответствующим осям несвязанной 
системы координат. 

Третья система координат, OXYZ, используемая для математиче-
ского описания движения МКМ, — глобальная подвижная система 
координат (ГПСК), ее центр О всегда совпадает с центром масс С, а 
оси совпадают с главными осями инерции машины. 
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Рис. 1. Положение МКМ в пространстве 

Уравнения динамики МКМ записываются в связанной системе 
координат, поэтому в качестве параметров движения выступают про-
екции линейной (VX, VY, VZ) и угловой (X, Y, Z) скоростей на свя-
занные оси. 

Использование связанной системы координат для записи уравне-
ний динамики МКМ определяются следующими положениями: 

 будем считать, что подвижные оси с началом координат в центре 
масс являются главными осями инерции тела и моменты инерции от-
носительно них не зависят от изменения кинематических параметров; 

 основные внешние силы, действующие на МКМ, ориентирова-
ны по отношению к корпусу и наиболее просто выражаются в коор-
динатных осях, жестко с ним связанных. 

В связи с этим форма уравнений динамики МКМ, записанных в 
подвижной системе координат, наиболее проста и удобна для после-
дующего решения при достаточно полном отражении процессов вза-
имодействия движущегося тела и внешней среды.  

Общая форма уравнений движения корпуса колесной маши-
ны. Схема сил, действующих на МКМ, приведена на рис. 2.  

Первые три уравнения поступательного движения колесной ма-
шины могут быть получены на основе теоремы об изменении коли-
чества движения. Проецируя векторное выражение теоремы на оси 
системы OXYZ, получим 
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Рис. 2. Схема сил, действующих на МКМ 

Уравнения динамики вращательного движения корпуса вокруг 
ЦМ можно получить на основе теоремы об изменении главного мо-
мента количества движения. В векторной форме для общего случая в 
соответствии с формулой Бура 
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В данном случае главный момент может быть найден с помощью 
третьего закона Ньютона. В проекциях на оси подвижной системы 
координат уравнения динамики вращательного движения корпуса 
вокруг ЦМ могут быть записаны в виде системы 
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Раскрывая проекции векторного произведения 0( )K  и под-
ставляя компоненты из (1), рассматриваемую систему динамических 
уравнений можно представить в виде 
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В частном случае совпадения выбранных осей с осями эллипсоида 
инерции корпуса система уравнений (2) принимает вид динамических 
уравнений Эйлера и в проекции на подвижные оси системы имеет вид 
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где А, B, C — соответствующие осевые моменты инерции тела отно-
сительно трех ортогональных главных осей инерции.  
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Кинематические параметры и уравнения связи поступательно-
го движения. Поскольку оси несвязанной системы координат O2X2Y2Z2 
параллельны осям полусвязанной системы координат O1X1Y1Z1, то для 
определения кинематических параметров поступательного движения 
 

используются матрицы линейного 
преобразования координат из свя-
занной системы в полусвязанную. 
Эти матрицы линейного преобразо-
вания выражаются через углы Эй-
лера — Крылова (рис. 3): 
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где VcX2, VcY2, VcZ2 — проекции 
мгновенной скорости движения на 
оси несвязанной системы коорди-

нат; aij — направляющие косинусы; VcX, VcY, VcZ — проекции мгно-
венной скорости движения центра масс на оси связанной системы 
координат.  

В более простой форме матричные уравнения могут быть записа-
ны следующим образом: 

     т т т
2 2 2, , , , , , ,  , 1, 2, 3,cX cY cZ ij cX cY cZ cX cY cZV V V a V V V V V V i j  B  

где В — квадратная матрица направляющих косинусов. Аналогич-
ным образом получим проекции скорости центра масс машины на 
оси связанной системы координат: 
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Здесь 
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B   (3) 

— транспонированная квадратная матрица направляющих косинусов.  
С помощью несложных преобразований можно получить сами значе-
ния направляющих косинусов: 

Рис. 3. Углы Эйлера — Крылова 
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Таким образом, имеем возможность определять проекции скоро-
сти движения центра масс МКМ в различных координатных системах, 
что значительно упрощает процесс моделирования движения объекта. 

Определение взаимной ориентации 
микроподвижной и неподвижной коор-
динатных систем. Для определения сил, 
действующих на МКМ со стороны грунта, 
введем микроподвижную систему коорди-
нат, под которой будем понимать систему 
OTXTYTZT, центр которой ОТ совпадает с 
геометрическим центром пятна контакта 
колеса, ось ОTXT совпадает с проекцией 
продольной оси симметрии колеса на 
опорную поверхность, а ось OTYT — соот-
ветственно с проекцией оси колеса (рис. 4).  

Для ориентации микроподвижной системы координат OTXTYTZT 
относительно неподвижной O2X2Y2Z2 используют направляющие ко-
синусы осей микроподвижной координатной системы. Проекции лю-
бого вектора, определенные в микроподвижной системе координат, 
можно однозначно перевести в неподвижную и наоборот, используя 
матрицу преобразований с направляющими косинусами 
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где V  — матрица преобразования. 

 
Рис. 4. Микроподвижная  

система координат 
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Аналогичным образом осуществим переход из неподвижной в 
микроподвижную координатную систему: 
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Представление несущей системы колесной машины как 
упругодеформируемого тела. При движении по неровностям мно-
гоосных колесных машин с достаточно длинной базой наблюдаются 
значительные перемещения крайних элементов рамы вследствие ее 
закручивания. Для учета данного фактора составлена модель несу-
щей системы МКМ, представленная в виде упругодеформируемого 
тела, с податливостью на кручение. 

Разумеется, создать адекватную и в то же время простую матема-
тическую модель, учитывающую деформации несущей системы ко-
лесной машины, невозможно. Однако для данного исследования 
вполне достаточно оценить на качественном уровне влияние работы 
управляемой системы подрессоривания на упругие колебания рамы. 
Поэтому в первом приближении будем рассматривать несущую си-
стему МКМ в виде длинного стрежня, имеющего практически беско-
нечное сопротивление изгибу и растяжению и податливому при кру-
чении. При колебаниях стержень нагружается сосредоточенными 
моментами в местах крепления подвески. При этом приняты следу-
ющие основные допущения: 

 после снятия нагрузки рассматриваемая конструкция полно-
стью восстанавливает свою геометрию, т. е. рассматривается работа в 
зоне упругих деформаций; 

 тело считается абсолютно жестким на изгиб во всех плоскостях 
и на растяжение‐сжатие. Вектор, соединяющий любые две точки в 
нормальном сечении, имеет постоянную длину при любом значении 
внешних нагрузок, а расстояние между любыми нормальными сече-
ниями неизменно; 

 контур поперечного сечения несущей системы принимается не-
деформируемым. Этот метод расчета охватывает значительную часть 
конструктивных модификаций рам и имеет существенно более низ-
кую степень статической неопределимости [3]. 

Указанные допущения позволяют представить несущую систему 
в виде тонкостенного призматического стержня с открытым конту-
ром поперечного сечения, имеющего одну ось симметрии [3]. По 
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длине стержня установлены поперечные жесткие в своей плоскости 
диафрагмы. Такой стержень при его закручивании будет следовать 
схеме, разработанной В.З. Власовым [4], т. е. все сечения такого 
стержня будут поворачиваться как жесткое целое вокруг прямой ли-
нии, являющейся геометрическим центром кручения сечений. 

Большинство рамных и корпусных конструкций имеют малую 
толщину стенок сравнительно с характерным размером поперечного 
сечения. Оставаясь в пределах гипотезы жесткого контура, за харак-
терный размер сечения примем расстояние между бортами корпуса 
или между лонжеронами рамы. В результате толщина несущих эле-

ментов оказывается такой, что 0,02
2b


 , где δ — толщина контура 

поперечного сечения; 2b — расстояние между бортами или лонжеро-
нами [3]. 

В этом случае, как показано В.З. Власовым, жесткость свободно-
го кручения GJd, которая выступает в качестве сомножителя перед 
второй производной угла закручивания в полном дифференциальном 
уравнении стесненного кручения 

IV II
dEJ GJ M     

как величина, пропорциональная кубу толщины, без ощутимой по-
грешности может быть принята равной нулю. 

Это допущение равносильно пренебрежению касательными 
напряжениями свободного сен-венановского кручения. В результате 
этого дифференциальное уравнение стесненного кручения приобре-

тает вид ,IVEJ M   решение которого является более простым. 
Системы координат для случая упругодеформируемой несу-

щей системы многоосной колесной машины. В дальнейшем будем 
предполагать, что рассматриваемое транспортное средство симмет-
рично в силовом и геометрическом смыслах относительно верти-
кальной продольной плоскости, равноудаленной от бортов. В соот-
ветствии с допущением о жестком контуре для всякой рамы или вся-
кого корпуса можно выделить линию центров кручения (ЛЦК), т.е. 
такую линию, вокруг которой происходит поворот поперечных сече-
ний несущей конструкции при ее кручении. Все узлы и агрегаты ма-
шины, в том числе и полезный груз, будут обладать относительно 
ЛЦК некоторыми моментами инерции. Представим условно все узлы 
транспортного средства в виде конечного числа сосредоточенных 
моментов инерции Ik1, Ik2, …, Ikn+1, расположенных в местах крепле-
ния осей мостов МКМ (рис. 5). При этом k-е сечение разместим в 
центре масс корпуса машины.  
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Будем считать, что вся угловая жесткость несущей системы со-
средоточена на ЛЦК, а объемные силы несущей системы отнесены к 
сосредоточенным моментам инерции. Кроме того, полагаем, что ЛЦК 
является прямой, а жесткости участков ЛЦК между соседними со-
средоточенными моментами постоянны и равны соответственно χ12, 
χ23, …, χk−1,k. 

Рис. 5. Представление несущей системы МКМ в виде стержня,  
податливого на кручение 

Ось OX связанной системы координат будем в дальнейшем сов-
мещать с выделенной таким образом ЛЦК. Наряду с глобальной по-
движной системой координат OXYZ, которая перемещается совместно 
с сечением, связанным с центром масс корпуса МКМ, введем n + 1 ло-
кальных подвижных систем координат (ЛПСК) Oi Xi Yi Zi, связанных с 
каждым сечением несущей системы, где приложены сосредоточенные 
моменты инерции. При этом ЛПСК Ok Xk Yk Zk, расположенная в центре 
масс МКМ, будет совпадать с ГПСК OXYZ. 

Углы закручивания рамы в сечениях сосредоточенных моментов 
инерции будем рассматривать как обобщенные координаты и обо-
значать ψ1, ψ2, …, ψn. Кроме того, условимся считать, что производ-
ная угла закручивания ψ′j,j+1 на участке j, j + 1 не зависит от произ-
водных угла закручивания на других участках. Это предположение 
несколько противоречит теории стесненного кручения. Однако для 
упрощения выкладок и получения численного результата в работе [3] 
рекомендовано ввести это упрощение. 

При крутильных колебаниях несущей системы происходит рассе-
яние энергии за счет конструктивного и гистерезисного трения. Рас-
сеяние энергии за счет конструктивного трения происходит в местах 
сочленения отдельных деталей и узлов как в самой несущей кон-
струкции, так и в закрепленных агрегатах и оборудовании. Специ-
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ально поставленные эксперименты [5] показали, что конструктивное 
трение в первом приближении можно считать пропорциональным 
скорости угла закручивания силовой конструкции, т. е. можно счи-
тать трение вязким. В работе [3] были получены ориентировочные 
данные по коэффициенту конструктивного трения, который для кор-
пусных и рамных конструкций многоосных большегрузных автомо-
билей составляет α = 2,5 · 104 (Н ∙	м ∙	с)/рад. 

Данное рассмотрение во многом схоже с представлением корпуса 
в виде абсолютно жесткого твердого тела. Корпус участвует в сво-
бодном движении, имеет шесть степеней свободы, характерных для 
абсолютно жесткого твердого тела, плюс еще n углов закручивания 
по одной оси вдоль корпуса (для каждого сечения, где расположены 
сосредоточенные массы и нагрузки на несущую систему). Таким об-
разом, для описания динамики движения любой точки корпуса до-
статочно 6 + n независимых дифференциальных уравнений динамики 
для 6 + n обобщенных координат.  

Кинематические параметры и уравнения связи вращательно-
го движения. Положение МКМ в пространстве в любой момент вре-
мени определяется взаимным расположением полусвязанной и ло-
кальных подвижных координатных систем, которые характеризуются 
тремя угловыми координатами. Эти угловые координаты являются 
углами Эйлера — Крылова [6]: угол рыскания θ, угол дифферента , 
угол крена i. 

Связь углов Эйлера — Крылова с другими кинематическими па-
раметрами вращательного движения — проекциями угловой скорости 
на связанные оси — устанавливается на основе кинематических соот-
ношений, называемых уравнениями связи вращательного движения: 
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Практический интерес для расчетов представляет соотношение, 
определяющее скорости изменения значения углов , i, . После не-
сложных преобразований получаем 
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Матрица перехода из i-й ЛПСК в НСК имеет следующий вид: 

cos cos sin sin sin cos sin sin cos cos sin sin

sin cos cos sin sin cos cos sin sin sin cos cos ,

cos sin sin cos cos

i i i

i i i i

i i i

               
                
       

B  (8)

 
где i  — угол крена i-й ЛПСК;   — угол дифферента;   — угол 
курса. 

Общая форма уравнений движения колесной машины с упру-
годеформируемой несущей системой. Используя теоремы об изме-
нении количества движения тела и момента количества движения в 
проекциях на оси подвижных систем координат, получим: 
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где , ,c
Xk Y Z    — проекции вектора угловой скорости МКМ на оси 

глобальной подвижной системы координат Ok Xk Yk Zk; Xi — проек-
ция вектора угловой скорости i-го сечения несущей системы на ось Х 
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локальной подвижной системы координат Oi Xi Yi Zi; Xi  — проекция 
вектора углового ускорения i-го сечения несущей системы на ось Х 
локальной подвижной системы координат Oi Xi Yi Zi; VcX, VcY, VcZ — 
проекции вектора линейной скорости точки С на оси глобальной 
подвижной системы координат Ok Xk Yk Zk; , ,cX cY cZV V V    — проекции 
вектора ускорения точки С на оси глобальной подвижной системы 
координат Ok Xk Yk Zk; GX, GY, GZ — проекции вектора силы тяжести 
на оси глобальной подвижной системы координат OkXkYkZk; FX, FY, 
FZ — проекции вектора силы внешнего воздействия на оси глобаль-
ной подвижной системы координат Ok Xk Yk Zk; , ,X Y Z

i i iR R R  — проек-
ции вектора сил взаимодействия колес с грунтом на оси локальной 
подвижной системы координат OiXiYiZi; Z

iP  — проекция сил в под-
веске на ось Zi локальной подвижной системы координат Oi Xi Yi Zi; 
MX(F), MY(F), MZ(F) — проекции момента от силы внешнего воздей-
ствия на оси глобальной подвижной системы координат Ok Xk Yk Zk; 
MX(Ri), MY(Ri), MZ(Ri) — проекции момента от сил взаимодействия 
колес с грунтом на оси локальной подвижной системы координат  
Oi Xi Yi Zi; MX(Pi), MY(Pi) — проекции момента от сил в подвеске на 
оси локальной подвижной системы координат Oi Xi Yi Zi; IY, IZ — мо-
менты инерции МКМ относительно осей глобальной подвижной си-
стемы координат Ok Xk Yk Zk; IXi — момент инерции i-го сечения не-
сущей системы МКМ относительно оси Х локальной подвижной си-
стемы координат Oi Xi Yi Zi; αij — коэффициент конструктивного 
трения участка несущей системы МКМ между сечениями i и j; χ ij — 
угловая жесткость участка несущей системы МКМ между сечения-
ми i и j. 

Процесс передвижения колесной машины при моделировании. 
В математической модели движения МКМ скорость машины задает-
ся не принудительным изменением координаты центра масс кузова, а 
формируется моделированием процесса взаимодействия ведущих ко-
лес с опорным основанием. Это позволяет не только более адекватно 
представлять движение МКМ по неровностям, но и моделировать 
 

трогание машины, разгон, торможение, пре-
одоление препятствий, процессы буксования 
и юза с учетом характеристик шины и сцеп-
ных свойств грунта. 

В математической модели сделано до-
пущение, что при прямолинейном движении 
все ведущие колеса МКМ вращаются с оди-
наковой постоянной угловой скоростью к =  
= V/rк0, где V — требуемая скорость движе-
ния МКМ; rк0 — статический радиус колеса. 
При этом формируются реакции в пятне кон-
такта колеса с грунтом (рис. 6). 

 
Рис. 6. Силы взаимодей-
ствия колеса с грунтом 
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Уравнения вращательного движения колеса: 

0

0 ш

;

, ,

k k t f k

f gr k k k

J M M Rr

M f Nr r r r 

   

  


 

где Mt — тяговый момент на колесе; Mf — момент сопротивления ка-
чению колеса; R — сила взаимодействия колеса с грунтом; fgr — ко-
эффициент сопротивления качению; rш — прогиб шины. Поскольку 
рассматривается равномерное движение, то k = 0, тогда 

0.t f kM M Rr   

Величина силы взаимодействия колеса с грунтом в соответствии 
с [7] составит 

 ,sR N   (10) 

где N — нормальная реакция; s  — коэффициент трения частичного 
скольжения, 

 0
max 1 ,

kS

s
s s e





 
    
 
 

 (11) 

где maxs  — коэффициент трения полного скольжения для данного 

угла  поворота вектора скорости скольжения относительно оси x ; 
kS  — коэффициент скольжения; 0s  — константа. Данное выражение 

справедливо для несвязных грунтов. 
Величина maxs  определяет максимальное значение функции 

  ,s kS  а в совокупности с константой s0 — градиент функции 

 s kS  в начале координат. Выражение для производной от функции 

 s kS  в начале координат имеет вид 

 
  max

00

.
k

s k s

k S

d S

dS s




 
  (12) 

На рис. 7 представлены графики функции  s kS  при различных 

значениях maxs  и 0s  для несвязных грунтов. 
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Рис. 7. Графики функции  s kS  для несвязных грунтов: 

а — maxs  = 0,3; 0s  = 0,015; б — maxs  = 0,3; 0s  = 0,04; 

в — maxs  = 0,6; 0s  = 0,015; г — maxs  = 0,6; 0s  = 0,04 

Для связных грунтов может быть принято следующее выражение 
для :s  

 0 1
max 1 1 ,

k kS S
s s

s s e e
 



  
          (13) 

где maxs  — коэффициент трения полного скольжения для данного 

угла  поворота вектора скорости скольжения относительно оси x ; 
kS  — коэффициент буксования; 0s  и 1s  — константы. 

Величина maxs  определяет значение функции  s kS  при kS    

 , а в совокупности с константами s0 и s1 — координаты точки 

экстремума функции  s kS  (sex, ex). 

Константы 0s  и 1s  можно найти из решения следующей системы 
уравнений: 

 

  
   

ex ex

0 1

ex exex ex

0 01 1

max ex

0 1

1 1 ;

1 1
0.

s s
s s

s

s ss s
s ss s

e e

e e e e

s s

 



  


    


  

 


 (14) 



Математическая модель движения многоосной колесной машины… 

33 

На рис. 8 представлены графики функции ( )s kS  при различных 

значениях maxs , s0 и 1s  для связных грунтов. 

Рис. 8. Графики функции  s kS  для связных грунтов: 

а — maxs  = 0,3; 0s  = 0,0458; 1s  = 0,0864; б — maxs  = 0,3; 0s  = 0,1373;  

1s  = 0,2593; в — maxs  = 0,6; 0s  = 0,0458; 1s  = 0,0864; г — maxs  = 0,6;  

0s  = 0,1373; 1s  = 0,2593 

Коэффициент трения полного скольже-
ния в соответствии с представлениями об 
эллипсе трения [8] может быть представлен в 
виде 

max max
max 2 2 2 2

max max

,
sin cos

sX sY
s

sX sY


 

 
    

  (15) 

где max ,sX  maxsY  — параметры эллипса 
трения (рис. 9). 

Коэффициент буксования 

 ск

к к0

,k
V

S
r




 (16) 

где Vск — скорость скольжения. 

 
Рис. 9. Эллипс трения 
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При прямолинейном движении Vск = Vк – кrк0, где Vк — скорость 
оси колеса, параллельная плоскости опорной поверхности. 

При моделировании движения машины могут возникнуть случаи 
положения колес на грунте, когда определение значения силы в шине 
Pш и направление  ее действия представляет отдельную задачу. 
Процедура решения может существенно замедлить вычислительный 
процесс. В связи с этим для определения Pш и  воспользуемся спо-
собом, предложенным Г.О. Котиевым [9], который позволяет избе-
жать громоздких вычислений, а в качестве силовой характеристики 
амортизационного элемента колеса использовать экспериментальные 
зависимости вертикальной силы нагружения от вертикального про-
гиба и скорости прогиба шины колеса, стоящего на жесткой горизон-
тальной поверхности (рис. 10).  

Рис. 10. Варианты положения колес на грунте 

Полагая, что на вибронагруженность МКМ влияет не столько тип 
амортизационного элемента колеса, сколько его характеристика 

ш ш ( , ),P P r r   при моделировании будем считать, что колеса имеют 
внутреннюю амортизацию, наружный контур колес радиусом rк0 не-
деформируемый, а амортизирующий элемент податлив только в ра-
диальном направлении по нормали к опорной поверхности. 

Перед началом процесса моделирования кусочно-линейный про-
филь трассы в вертикальной плоскости под обоими бортами разбива-
ется на зоны по специальному алгоритму [9] (рис. 11). В результате 
обкатывания профиля трассы колесом радиусом rк0 без отрыва от 
опорного основания получаем три типа зон: I — прямоугольные, II — 
секторные на вершине, III — секторные во впадине. 

Тогда Pш и гр при моделировании определяются положением и 
радиальной скоростью оси колеса К в зонах (см. рис. 11). В случае 
если ось колеса оказалась вне зон, колесо находится в отрыве: Pш = 0 
и гр = 0 и при этом считается жестким целым. 

На основании приведенной на рис. 11 схемы можно определить 

направляющие косинусы гр гр грcos , cos , cosXi Yi Zi    нормальной реакции 
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Ni к плоскости опорного основания для i-го колеса, i = 1…2Nос (Nос — 
количество осей МКМ) [9]. 

Рис. 11. Положение колеса в зонах 

Направляющие косинусы оси OТXТ микроподвижной системы ко-

ординат в НСК cos ,cos ,cosT T TX X X
X Y Z   , i = 1…2Nос, определяются 

следующим образом: 

гр гр

гр гр

гр гр

2 2 2

2 2 2

2 2 2

1 cos [3, 2] cos [2, 2];

1 cos [1, 2] cos [3, 2];

1 cos [2, 2] cos [1, 2];

1
cos ;

( 1 ) ( 1 ) ( 1 )

1
cos ;

( 1 ) ( 1 ) ( 1 )

1
cos .

( 1 ) ( 1 ) ( 1 )
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i Yi Zi

i Zi Xi
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X i
X

i i i

X i
Y

i i i

X i
Z

i i i

K B B

L B B

M B B

K

K L M

L

K L M

M

K L M

   

   

   

 
 

 
 

 
 

 

Если  cos [1,1] cos [2,1] cos [3,1] 0T T TX X X
X Y ZB B B      , то cos TX

X   

cos ;TX
X    cos cosT TX X

Y Y    ; cos cos .T TX X
Z Z     Здесь B[i, j] — 

элемент матрицы В (см. (8)), стоящий на пересечении i-й строки и j-го 
столбца. 

Направляющие косинусы оси OТYТ микроподвижной системы ко-

ординат в НСК cos ,cos ,cosT T TY Y Y
X Y Z   , i = 1…2Nос, определяются 

следующим образом: 
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гр гр

гр гр

гр гр

2 cos cos cos cos ;

2 cos cos cos cos ;

2 cos cos cos cos ;
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M
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 
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Радиус-вектор точки контакта i-го колеса с опорной поверхно-
стью в ПСК  

 (0) т (2) (2)
оск к , 1...2 .cт i т i i N  R B R P  

Радиус-вектор центра масс i-го колеса в ГНСК  

(2) (0) (2)
оск к , 1...2 ,ci i i N   R B R P  

где (0)
кiR  — радиус-вектор центра масс i-го колеса в ГПСК; (2)

cP  — 
радиус-вектор центра масс машины в ГНСК. 

Вектор переносной скорости i-го колеса в ГПСК  

(0) (0) (0) (0)
оспер к , 1...2 ,c ci т i i N   V V R  

где (0)
c  — вектор угловой скорости вращения машины вокруг цен-

тра масс в ГПСК. 
Вектор переносной скорости i-го колеса в НСК 

(2) (0)
оспер пер , 1...2 .i i i N V BV  

Вектор переносной скорости i-го колеса в i-й микроподвижной 
системе координат  

 тт (2)
пер оспер , 1...2 .i i iV i N V V  

Вектор относительной скорости i-го колеса в i-й микроподвиж-
ной системе координат  
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вкл к14
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 
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 
 

V  

где вкл  — угловая скорость вращения i-го колеса, i = 1…2Nос. 
Вектор скорости скольжения i-го колеса в i-й микроподвижной 

системе координат  

т т
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отнiV  относительно 

оси OтXт i-й микроподвижной системы координат i , i = 1…2Nос, 
можно описать следующим образом:  
если 
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Коэффициент трения частичного скольжения i-го колеса i , i =  
= 1…2Nос: 

если т
отн [1] 0i V , тогда  
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           
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где maxx , maxy  — параметры эллипса трения; 0s  — характеристика 

опорного основания. 
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Если    2 2т т
ск ск[1] [2] 0i i V V , тогда 0.i   

Уравнения динамики движения колеса относительно корпуса 
многоосной колесной машины. Ряд силовых факторов, определяю-
щих движение МКМ, являются функциями нормальной реакции 
грунта Ni под колесами. Для определения на каждом шаге интегриро-
вания самой нормальной реакции грунта используем математиче-
скую модель движения колеса относительно корпуса.  

В процессе моделирования движения 
МКМ определяется деформация шины 
колеса. Величина усилия в шине Pшi опре-
деляет нормальную реакцию грунта Ni 

(рис. 12). Если колесо на грунте, то Ni = Pшi, 
если колесо в отрыве от грунта, то Ni = 0. 

Поскольку при движении относитель-
но корпуса колеса совершают практиче-
ски вертикальные перемещения, в модели 
примем допущение, что колеса переме-
щаются вертикально вдоль оси CZ1. Про-
цесс определения величины деформации 
шины непосредственно связан с модели-
рованием перемещения колеса относи-
тельно корпуса (хода подвески), которое определяет положение ко-
леса на грунте и, как следствие, деформацию шины. Моделирование 
хода подвески и определение усилия в шине вписывается в процесс 
общего математического моделирования динамики движения МКМ.  

Чтобы моделировать движение колеса в вертикальной плоскости, 
необходимо располагать информацией о силовых факторах, дей-
ствующих на него в каждый момент времени. В общем случае на i-е 
колесо действуют (см. рис. 12): сила со стороны подвески Pi, вес ко-
леса mкg и сила инерции, сила в шине колеса (или внутреннем амор-
тизирующем элементе) Pшi. 

Сила в подвеске складывается из упругой Pуi и демпфирующей 
Pдi составляющих сил подвески. Упругая сила подвески зависит 
только от относительного хода колеса f:  

Pу = Pу( f ). 

Эта зависимость в общем случае носит нелинейный характер. 
Демпфирующая сила подвески, приведенная к колесу, в общем слу-
чае зависит от скорости колеса относительно корпуса и его хода:  

д д( , ).P P f f   

Сила в шине колеса Pш складывается из двух составляющих — 
упругой Pш у и диссипативной Pш д. Обе они могут быть вычислены 
через величину и скорость деформации шины: 

 
Рис. 12. Схема сил, действу-
ющих на колесо в вертикаль-

ной плоскости 
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шу шу ш шд шд ш( ); ( ).P P r P P r    

Упругая и диссипативная характеристики шины колеса задаются 
также в кусочно-линейном виде. 

В итоге уравнение движения колеса относительно корпуса МКМ 
в проекции на ось CZ1 имеет следующий вид: 

1 1 1
к к ш .Z Z Z

i i im f m g P P     

Разработанная математическая модель реализована в программ-
ном комплексе MATLAB/SIMULINK. 

Заключение. Разработана математическая модель движения мно-
гоосной колесной машины, учитывающая упругие крутильные коле-
бания податливой несущей системы. 
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Mathematical model of movement of the multi-wheeled  
vehicles with torsional flexible bearing system  

© M.M. Zhileykin, E.B. Sarach  

Bauman Moscow State Technical University, Moscow, 105005, Russia  

Within the framework of solving the problem of active control of the elastic and damping ele-
ments of multi-wheeled vehicle (MWV) suspension brackets investigating the properties of 
suspension bracket families designed both for different travels and for different loading is of 
great importance. Their kinematic schemes can be also rather various. It is not feasible to 
collect the required amount of information for families of vehicles of different design and op-
erating characteristics. Performing a full analytical study to determine the appropriate char-
acteristics is not possible. This problem could be successfully solved only by simulation. A 
mathematical model of the MWV motion is developed. The characteristic feature of the model 
is that the vehicle speed is not set forcedly, but it is generated by the interaction of the rotating 
wheeled propellers with the supporting base. It results in high accuracy in modeling real pro-
cesses of MWV moving along an uneven road. The developed model can be applied to re-
search various laws of multi-wheeled vehicle suspension bracket control. 

Keywords: mathematical model, rectilinear motion of multi-wheeled vehicle, differential 
equations, simulation, dynamics equations, equations of kinematic relations. 
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