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УДК 539.384 

Моделирование устойчивости сжатого и скрученного 
стержня в точной постановке задачи 

© В.М. Дубровин, Т.А. Бутина 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

Предложен метод расчета устойчивости стержня при одновременном действии 
осевой силы и крутящего момента, учитывающий изменение кручения стержня 
при его искривлениях и основанный на использовании полной системы уравнений. 
Рассмотрены случаи: стержень с заделанными концами, стержень с шарнирными 
опорами, стержень в виде сжатой и скрученной консоли. Получены графики зави-
симости критической осевой силы от критического крутящего момента, т. е. 
определена область устойчивости стержня для рассматриваемого случая нагру-
жения. 
Ключевые слова: стержень, сжатие, кручение, устойчивость, изгибная жест-
кость, критическая сила, крутящий момент. 

Исследование устойчивости скрученного стержня произвольной 
формы поперечного сечения при различных граничных условиях по-
казывает, что величина расхождения результатов точного и прибли-
женного решений зависит не только от соотношения главных изгиб-
ных жесткостей стержня, но и от формы его поперечного сечения, 
характеризуемого параметром λ. В работах [1, 2] показано, что если A 
и B — главные изгибные жесткости стержня, то это расхождение не 
превышает 15 % при выполнении условий 

 

0,45 1 при 0,5; 0,55 1 при 0,9;

0,65 1 при 1,27; 0,75 1 при 1,5.

B B
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 (1) 

Следовательно, приближенная постановка задачи об устойчиво-

сти скрученного стержня практически возможна при значениях 
B

A
, 

лежащих в пределах 0,65 1.
B

A
   

В общем случае одновременного действия крутящего момента и 
осевой силы, приложенных к концам стержня с неравными изгибны-
ми жесткостями, необходимо оценить расхождение результатов точ-
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ного и приближенного решений во всем диапазоне изменений соот-
ношения критических нагрузок. При решении задачи в точной поста-
новке следует использовать систему уравнений [3െ7]: 
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(2)

 

Здесь xV , yV — перерезывающие силы в направлении осей x и y; zV  — 

осевое усилие; xM , yM — изгибающие моменты в направлении осей x 

и y; zM  — крутящий момент; u ,   — прогибы по осям x и y; w  — 
перемещение произвольного сечения стержня при осевой деформации; 
  — кручение стержня; C — жесткость стержня при кручении; ,  ,  
  — углы поворота триэдра осей x, y, z вокруг осей x0, y0, z0; ds — 
элемент длины стержня. 

Полагаем, что 0w   и 0.
d

ds


  Из уравнений xdM

ds
  

0,y y
B C

M V
B


    0zdV

ds
  и условий статики на концах стержня 

получаем const,zV P    const,zM M   где P — осевая сила; M — 
крутящий момент, приложенные к концам стержня. Осевому сжатию 
стержня соответствует P > 0, растяжению — P < 0. 

Совместное интегрирование уравнений (2) дает выражения пере-
мещений u и ,  углов поворота   и   и изгибных моментов xM  и .yM  
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Рассмотрим задачу устойчивости прямолинейной формы равно-
весия сжатого и скрученного стержня с заделанными концами. Для 
этого разместим начало координат в середине оси стержня и обозна-
чим длину стержня через l. Тогда получим граничные условия: 0,u   

0,   0,   0,   при которых характеристические уравнения могут 
быть представлены в следующем виде: 
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 (6) 

При решении уравнений (3) введены обозначения: 

 1 ; ,m l l      (7) 
а также  
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Величины k, ,    и   могут быть только вещественными, а пара-
метры m и   — как вещественными, так и мнимыми, причем веще-
ственным m соответствуют вещественные ,  мнимым m — мнимые ω. 

Можно показать, что вещественные значения m и   лежат в пре-
делах 1 1,m    ,      при этом знаки m и ω всегда совпадают, 
и уравнения (3) достаточно решить при m > 0,   > 0, 0 1k  , 
0 1,5.    

При каждой комбинации значений k, λ, m можно вычислить соот-
ветствующие значения ,  1,  2  и решением уравнений (3) найти 
наименьший положительный корень ,k  которому будет соответ-
ствовать определенное сочетание критических значений осевой силы 
Pk и крутящего момента Mk, определяемых по формулам [8–11]: 
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P0 — критическая сила при чистом сжатии стержня; M0 — критиче-
ский крутящий момент при чистом кручении стержня; p  — 

наименьший положительный корень характеристических уравнений 
при чистом сжатии; k  — наименьший положительный корень ха-
рактеристических уравнений при чистом кручении; 
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При мнимых m и ,  полагая ,m i   ,i    вводим в уравнения 
(3) и в формулы (10) и (12) вещественные величины   и .  При этом 
уравнения (3) видоизменяются, а формулы (10) сохраняют свой вид 
неизменным, за исключением выражений для qf  и T, которые прини-

мают форму 
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Можно показать, что значения   лежат в пределах  

1 1,n n n n        

где 
2

2
;

(1 )

kF
n F

k
 


2 2

1 1

k
F

k k

          
. 

Характеристические уравнения (3) достаточно решать при поло-

жительных значениях ,  лежащих в пределах 0 1.n n      
Как и в случае вещественных m, при каждой комбинации значе-

ний k, λ, m решением характеристических уравнений можно найти 
наименьший корень ,k  которому будет соответствовать определен-
ное сочетание критических значений Pk и Mk, отличное от всех воз-
можных их сочетаний, найденных при вещественных значениях m.  

При каждом значении k по совокупности найденных и мнимых m 
и заданных λ сочетаний Pk и Mk можно построить семейство кривых, 
характеризующих изменение величины критической силы Pk в зави-
симости от величины Mk и формы поперечного сечения стержня. Ха-
рактер изменения величин Pk и Mk при некоторых значениях k и λ 
представлен на рис. 1, где по оси абсцисс отложены величины отно-
шений критического крутящего момента Mk к его значению при чи-
стом кручении M0, по оси ординат — величины отношения критиче-
ской осевой силы Pk к ее значению при чистом осевом сжатии. Это 
позволяет определить область устойчивости стержня при рассматри-
ваемом нагружении [12–14].  

Из графиков видно, что на начальных участках кривых критиче-
ская сила возрастает с увеличением величины момента, оставаясь 
больше критической силы при чистом осевом сжатии. При этом экс-
тремальное значение приращения критической силы тем больше, чем 
меньше величина параметра λ и отношение главных изгибных жест-

костей стержня 
A

k
B

 , и наступает тем позже, чем больше λ и k.  

С увеличением растягивающей силы величина критического крутя-
щего момента Mk возрастает.  

Следует иметь в виду, что в случае сжатого и скрученного 
стержня с заделанными концами максимальное значение критиче-
ской силы при всех k < 1 и рассмотренных значениях λ больше кри-
тической силы при чистом сжатии, тогда как в случаях стержня с 
шарнирными опорами это имеет место только при малых значениях k 
и λ. Указанные свойства скрученного стержня могут быть использо-
ваны при проектировании конструкций, работающих при совместном 
действии осевой силы и крутящего момента.  
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Рис. 1. Графики изменения критических нагрузок при совместном действии 
осевой силы и крутящего момента для стержня с заделанными концами при 

0,3k   (а); k ൌ	0,5 (б); k ൌ	0,7 (в) 

На рис. 2 представлены графики изменения критического угла 

закручивания k  в зависимости от отношения 
0

kM

M
при различных λ. 
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Эти данные позволяют оценить влияние угла закручивания на рабо-
тоспособность конструкции.  

Рис. 2. Графики изменения критического угла закручивания стержня  
с заделанными концами при 0,3k   (а); k ൌ	0,5 (б); k ൌ	0,7 (в) 

Для оценки величин расхождения результатов точного и прибли-
женного решений при совместном действии осевой силы и крутящего 
момента формулы критических нагрузок точного и упрощенного ре-
шений представим в следующем виде: 

 0 0; ;k q k mP P M M     (13) 

 0 0; ,k q mQ P K M     (14) 

где  

 

2

; ;k k
q q m m

p M

f f
  

       
 (15) 

 
 22
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k k

q m
p M

c kc c k

k k c k
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 (16) 
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k  — наименьший положительный корень характеристических 
уравнений приближенного решения при совместном действии осевой 
силы Q и крутящего момента K;  

     
   2 22 2

2
1,2

1
, 2 ;

4 4

K Q A B K Q A Br
c r

r AB AB

   
     (17) 

qf  и mf  определяются по формулам (10). 

Искомые расхождения результатов определяются по критической 
длине стержня при использовании соотношения 

 
2 2

1

2

1
,

m q m qk

k m q

l l

l

        
 

   
 (18) 

где kl , 1l  — критические длины стержня соответственно при точном 
и приближенном решениях. 

Расчеты по формуле (18) показывают, что при k = 0,7 наиболь-
шие расхождения результатов составляют 8 % при λ = 0,5 и 12,7 % 
при λ = 1,5. 

Расхождения результатов по осевой силе и крутящему моменту 
представлены на рис. 1, где пунктирные линии характеризуют изме-
нение критических нагрузок Qk и Kk, найденных приближенным ре-
шением задачи при λ = 0,5 и λ = 1,5. Как следует из этих графиков, 
расхождение результатов точного и приближенного решений умень-

шается с приближением отношения 
B

A
 к единице.  

Расчеты по формулам q qk k

k q

P Q

P

  



 для осевой силы и 

k k m m

k m

M K

M

   



 для крутящего момента показывают, что при 

0,7
B

A
  наибольшие расхождения результатов составляют: по мак-

симуму осевой силы — 15,5 % при λ=0,5 и 20 % при λ = 1,5; по мак-
симуму крутящего момента — 4,6 % при λ = 0,5 и 20 % при λ = 1,5. 
Таким образом, учитывая, что в практических задачах λ = 1,2…1,3, 
приближенная постановка задачи при совместном действии осевой 
силы и крутящего момента приводит к результату с точностью 

10…15 % при выполнении условия 0,65 1.
B

A
   
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При осевом и следящем моментах исследование устойчивости 
сжатого и скрученного стержня с шарнирными опорами в прибли-
женной постановке задачи приводит к одному и тому же результату. 
Представляет интерес, сохранится ли такое же совпадение результа-
тов при решении в точной постановке. В случае следящего момента 
задача рассмотрена в работах [1, 2]. Рассмотрим ее в случае осевого 
направления вектора момента. 

Подставим выражения для перемещений u и ,  изгибающих мо-
ментов Mx и My и углов поворота   и ,  полученных интегрировани-
ем уравнений (2), в граничные условия 

0;u   0;   ;xM M  yM M   при .
2

l
s    

После некоторых преобразований приходим к характеристиче-
ским уравнениям 

     

   

   

1 1 2 1 2 1 2 2 1 2

2 2 2 2 1 1 1 1 1

1 1 1 1 2 2 2 2 2

1 sin cos 1 cos sin
2 2

sin cos cos sin 1 cos sin sin cos
2 2 2 2

sin cos cos sin 1 cos sin sin c
2 2 2

l l
p M q M m l m l q M p M m l m l

l l l l
M m l m l q M m l p M m l

l l l
M m l m l q M m l p M m l

       

                    
           

 

     

   

 

1 2 2 1 2 2 1 1 1 2

2 2 2 2 1 1 1 2 1

1 1 1 1 2 2 2

os 0;
2

1 sin cos 1 cos sin
2 2

cos sin sin cos cos sin 1 sin cos
2 2 2 2

cos sin sin sin cos sin
2 2

l

l l
q M p M m l m l q M p M m l m l

l l l l
M m l m l p M m l q M m l

l l
M m l m l p M m l

    

        

                    
         

 
 2 21 sin cos 0.

2 2

l l
q M m l

     

 (19) 

Здесь обозначения те же, что и в формулах (4)−(6). 
Расчеты показывают, что при решении задачи в точной постанов-

ке при осевом и следящем моментах результаты отличаются незначи-
тельно, особенно вблизи наибольших значений критических осевых 
сил и при растяжении стержня, а при чистом кручении и чистом сжа-
тии совпадают. 

На рис. 3 приведены графики зависимости отношений 
0

kM

M
 и

0

kP

P
 

при λ = 0,5 и λ = 1,5 для k = 0,1 и k = 0,3. На этих графиках сплошные 
линии соответствуют осевым моментам, пунктирные — следящим 
моментам. Как следует из представленных графиков, с приближени-

ем отношения 
B

A
 к единице расхождение результатов уменьшается. 

Отсюда следует, что в случае стержня с шарнирными опорами при 
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решении задачи в точной постановке можно ограничиться рассмот-
рением или осевого, или тангенциального направления момента. Как 
показано в работах [1–3], при следящем моменте характеристические 
уравнения имеют более простой вид и поэтому целесообразно решать 
задачу, используя эти уравнения. В случае сжатой и скрученной кон-
соли с неравными изгибными жесткостями можно использовать ме-
тод малых колебаний. 

Рис. 3. Графики изменения критических нагрузок при совместном дей-
ствии осевой силы и крутящего момента для стержня с шарнирными опо- 
                                        рами при 0,1k   (а); k ൌ	0,3 (б) 

С учетом массы стержня эта задача в случае консоли решается 
без ограничения соотношений главных изгибных жесткостей с по-
мощью следующих уравнений [1]: 

 

4 3 2 2

4 3 2 2

4 3 2 2

4 3 2 2

0;

0,

u
A M P F

s s s t

u u u
B M P F

s s s t

      
   

   

    
    

   

 (20) 

где F  — масса стержня. 
Как показано в работе [2], уравнениями (20) можно пользоваться 

для решения поставленной задачи только при выполнении условия 

0,65 1
B

A
   и малых значениях кручения .  

В общем случае при произвольных соотношениях главных изгиб-
ных жесткостей стержня уравнения колебаний могут быть получены 
на основании уравнений (2). При этом будем иметь следующие соот-
ношения [1]: 
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 

  

 

  

4 3 2
2

4 3 2

2
2 2 2

2

4 3 2
2

4 3 2

2
2 2 2

2

2( ) (2 4 3 )

2 2( ) 3 ( ) 0;

2( ) (2 4 3 )

2 2( ) 3 ( ) 0.

u
A A B C P A B C

s s s

u
P A B C P A C F

s t

u
B A B C P B A C

s s s

u
P A B C P B C u F

s t

                 
                 

                
                

 (21) 

Здесь обозначения те же, что и в формулах (2). 
При решении уравнений (21) необходимо использовать соотно-

шения (7) и (8).  
Предложенная методика оценки устойчивости сжатого и скру-

ченного стержня позволяет получать точную оценку для различных 
способов закрепления стержня: с заделанными концами, с шарнир-
ными опорами, в виде консоли. 

Использование полной системы уравнений, выражающих компо-
ненты деформаций стержня в соответствии с действующими на него 
нагрузками, дает возможность получить как точную, так и прибли-
женную оценку устойчивости стержня для различных соотношений 
его главных изгибных жесткостей.  

В случае стержня с заделанными концами расхождение результа-
тов точного и приближенного решений уменьшается с приближением 
отношения главных изгибных жесткостей стержня к единице. 
Наибольшие расхождения результатов составляют: по экстремуму 
осевой силы — 15,5 % при λ = 0,5 и 20 % при λ = 1,5; по крутящему 
моменту — 4,6 % при λ = 0,5 и 20 % при λ = 1,5. С учетом того, что в 
практических задачах λ = 1,2…1,3, приближенное решение при сов-
местном действии осевой силы и крутящего момента приводит к ре-
зультату с точностью 10…15 % при условии, что отношение главных 
изгибных жесткостей находится в диапазоне 0,65…1,0. 

В случае стержня с шарнирными опорами результаты точного 
решения при осевом и следящем моментах различаются незначи-
тельно, особенно вблизи наибольших значений критических осевых 
сил и при растяжении стержня, а при чистом кручении и чистом сжа-
тии полностью совпадают. 
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Modeling the stability of compressed and twisted rods in 
precise problem statement  

© V.M. Dubrovin, T.A. Butina  

Bauman Moscow State Technical University, Moscow, 105005, Russia 

The article describes the method for calculating the stability of a rod under simultaneous ac-
tion of axial force and torque, considering changing the torsion of the rod when it’s bent. The 
method is based on the use of the complete system of equations. The following cases are con-
sidered: end clamped rod, rod with a hinged support, the rod in the form of compressed and 
twisted console. Diagrams of dependence of the critical axial force versus the critical torque 
are obtained, i.e., the range of rod stability for the case of loading is determined. 

Keywords: rod, compression, torsion, stability, flexural stiffness, critical force, torque. 
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