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Проведено факторное моделирование артериальной гипертензии начальной ста-
дии с помощью метода факторизации на базе нейронной сети и алгоритма об-
ратного распространения ошибки. Этот метод факторизации является альтер-
нативой классическому факторному анализу. Алгоритм построения факторной 
структуры на базе нейронной сети был реализован программно. Данный метод 
был усовершенствован для проведения факторного вращения и получения интер-
претируемого решения. Факторная структура артериальной гипертензии, полу-
ченная с помощью данного метода факторизации, находится в соответствии 
с результатами факторного моделирования посредством других методов.  
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Введение. Классический факторный анализ [1] позволяет на базе 

выборки различных показателей сформировать факторные показатели, 
с необходимой точностью описывающие исходный объект и умень-
шающие размерность задачи путем перехода к ним. Факторные пока-
затели являются линейной комбинацией исходных показателей. Тем 
самым факторные модели носят линейный характер. 

Нейронная сеть позволяет аппроксимировать отображения между 
исходными и целевыми показателями. При этом аппроксимируемые 
отображения могут иметь нелинейный характер. Двухслойный персеп-
трон позволяет аппроксимировать любую булеву функцию булевых 
переменных [2]. А двухуровневая нейронная сеть способна аппрокси-
мировать в равномерной метрике с любой заданной погрешностью 

  0   любую непрерывную функцию  1, , , nf x x  а в среднеквад-

ратической метрике — любую измеримую функцию, определенную на 
ограниченном множестве [3–6]. 

Для восстановления закономерностей между параметрами ис-
пользуется специальный алгоритм обучения нейронной сети — алго-
ритм обратного распространения ошибки [7]. Этот алгоритм с мате-
матической точки зрения представляет собой градиентный метод 
оптимизации. 

Суть данного метода для построения факторных моделей заклю-
чается в том, что для выявления закономерностей между параметра-
ми используется математическая модель нейронной сети с линейной 
передаточной функцией. Значения факторных переменных опреде-
ляются равными значениями выходных сигналов нейронов скрытого 
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слоя нейронной сети. Тем самым нейронная сеть осуществляет клас-
сический факторный анализ, т. е. строит линейные комбинации ис-
ходных параметров [8–10]. 

В данной работе предлагается усовершенствованный алгоритм 
обратного распространения ошибки посредством введения дополни-
тельного слагаемого в функцию ошибки для построения интерпрети-
руемой факторной структуры и решения задачи факторного враще-
ния на базе нейронной сети. 

Математическая модель нейрона. Состояние нейрона описыва-
ется набором переменных: 

 весами входных сигналов  1 2  , , ,  ,mw w w  где m — количе-

ство входных сигналов ;ix  

 свободным членом 0w  в вычислении выходного сигнала. Сиг-
нал на выходе нейрона вычисляется по формуле  

  ,z v   

где 0i i
i

v w x w   — взвешенная сумма сигналов на входах нейрона; 

σ — передаточная функция нейрона, например сигмоидальная функ-

ция   1
.

1 exp( )
v

v
 

 
 

Нейронная сеть. Отдельные нейроны объединяются в слои. Вы-
ходные сигналы нейронов из одного слоя поступают на вход нейронам 

следующего слоя, модель так называемого 
многослойного персептрона (рис. 1). В про-
граммной реализации авторской нейронной 
сети вводится понятие нейронов потомков и 
нейронов предков. Все нейроны, имеющие 
входной сигнал от этого нейрона являются 
его потомками или пассивными нейронами 
или аксонами. Все нейроны, образующие 
входные сигналы данного нейрона, являют-
ся его предками или активными нейронами 
или дендритами. 

Алгоритм обратного распростране-
ния ошибки. Алгоритм обратного распространения ошибки для обу-
чения нейронной сети соответствует минимизации функции ошибки 
E(wij). В качестве такой функции ошибки может быть использована 
сумма квадратов отклонений выходных сигналов сети от требуемых: 

2

1

( ) ,
m

i i
i

E z z


   

где iz  — выходное значение i-го нейрона выходного слоя; iz  — тре-
буемое значение i-го нейрона выходного слоя. 

 

Рис. 1. Схема простой 
нейронной сети (входные 
нейроны, скрытые нейроны,  

выходной нейрон) 
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В данном алгоритме итерация обучения состоит из трех процедур: 
1) распространение сигнала и вычисление сигналов на выходе 

каждого нейрона; 
2) вычисление ошибки для каждого нейрона; 
3) изменение весов связей. 
Путем многократного цикличного подставления наборов сигна-

лов на входе и выходе и обратного распространения ошибки произ-
водится обучение нейронной сети. Для многослойного персептрона и 
определенного вида передаточной функции нейрона при определен-
ном виде функции ошибки доказана сходимость этого метода [11]. 

Вычисление ошибок. Если передаточная функция нейронов яв-
ляется сигмоидальной, то ошибки для нейронов различных слоев вы-
числяют по определенным формулам. 

Вычисления ошибок для нейронов выходного слоя проводят по 
формуле 

( ) ( ) (1 ),  L
j j j j je z z z z  

где jz  — желаемое значение на выходе j-го нейрона выходного слоя L; 

jz  — сигнал на выходе j-го нейрона выходного слоя L; L — глубина 

нейронной сети. 
Ошибки для нейронов остальных слоев рассчитывают по формуле 

( ) ( 1) ( 1) ( ) ( )(1 ),  
  
 
l l l l l

j ji i j j
i

e w e y y  

где i — индексы нейронов-потомков данного нейрона; ( )l
jy  — сигнал 

на выходе j-го нейрона слоя l; ( 1)l
jiw   — связь между j-м нейроном 

l-го слоя и i-м нейроном (l+1)-го слоя. 
Изменение пороговых уровней нейронов и весов связей. Для 

изменения весов связей используют следующие формулы: 

 ( 1) : ( ( ) 1 ),      ij ij j iw n w n e y  

( 1) : ( ) ( 1),    ij ij ijw n w n w n  

 0 0( 1) : ( ( ) 1 ),       jw n w n e  

0 0 0( 1) : ( ) ( 1)w n w n w n    , 

где i — индекс активного нейрона (нейрона источника входных сигна-
лов пассивных нейронов); j — индекс пассивного нейрона; n — номер 
итерации обучения;  — коэффициент инерциальности для сглажива-
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ния резких скачков при перемещении по поверхности целевой функ-
ции; 0  1    — множитель, задающий скорость «движения». 

Метод построения факторной модели. Факторный анализ осно-
ван на следующей линейной модели, связывающей исходные показа-

тели iz


 и факторы :ip


 

1 1 2 2 ,i i i ig g i iz a p a p a p d u    
    

  

где m — число переменных; g — число факторов; iz


 — исходные 

переменные; ip


 — общие факторы; iu


 — специфичные факторы. 

В матричном виде линейная модель факторного анализа записы-
вается в виде 

,Z AP DU   

где ij
m n

Z z

  — матрица размерности m n  значений m параметров у n 

объектов; ij
g n

P p

  — матрица размерности g n  значений g факто-

ров у n объектов; ij
m n

U u

  — матрица размерности m n  значений m 

специфичных факторов у n объектов; ij
m g

A a

  — матрица факторного 

отображения размерности m g  весовых коэффициентов; ij
m m

D d

  — 

диагональная матрица размерности m m  весовых коэффициентов 
специфичных факторов. 

В этом методе построения факторной модели латентные характе-
ристики ставятся в соответствие нейронам скрытого слоя. При этом 
число нейронов скрытого слоя полагают меньшим числа нейронов 
входного слоя для осуществления факторного сжатия входной ин-
формации. Для оценки числа нейронов скрытого слоя можно приме-
нять правило классического факторного анализа Кайзера. Нейронам 
входного и выходного слоя ставятся в соответствие исходные харак-
теристики объектов исследования. Когда передаточная функция 
нейронов линейна, такая конфигурация нейронной сети соответству-
ет классическому факторному анализу. Тогда число нейронов вход-

ного слоя равно числу нейронов выход-
ного слоя, число нейронов скрытого слоя 
меньше числа нейронов входного слоя 
(рис. 2). 

С помощью обучения нейронной сети 
вычисляются веса входных связей нейро-
нов скрытого и выходного слоя, кото- 
рые соответствуют элементам обратного 

 

Рис. 2. Схема нейронной сети 
классического факторного ана- 

лиза 
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и прямого факторного отображения .ija  Веса нейронов ищутся в ин-

тервале [–1, 1]. Наполнение факторов исходными переменными 
определяется с помощью значений элементов факторного отображе-
ния и выбранного порогового уровня значимости  0,1 .p  Пере-

менная i входит в фактор j, если  ,1 .ija p  

Для раскрытия взаимосвязи факторной модели и нейронной сети 
применим формулы получения выходного сигнала нейронов скрыто-
го слоя. 

Обозначим выходной сигнал j-го нейрона скрытого слоя .jp  Вы-

ходной сигнал i-го нейрона входного слоя обозначим .iz  В качестве 

передаточной функции будем использовать линейную функцию 
  .out f x x   

В результате  

(1,2) (2) (1,2) (2)

1 1

,
m m

j ij i j ij i j
i i

p f w z t w z t
 

 
    

 
   

где m — число нейронов входного слоя;  ,s t
ijw  — связь между i-м 

нейроном s-го слоя и j-м нейроном t-го слоя;  s
jt  — пороговый уро-

вень j-го нейрона s-го слоя. 
Аналогично для выходного слоя: 

(2,3) (3) (2,3) (3)

1 1

,
 

 
      

 
 

g g

j ij i j ij i j
i i

z f w p t w p t  

где jz  — выходное значение j-го нейрона выходного слоя; g — число 

нейронов скрытого слоя. 
Полученная линейная взаимосвязь переменных соответствует 

классической модели факторного анализа, в которой факторы явля-
ются линейными комбинациями исходных переменных. Задача поис-
ка факторного отображения и значений факторов сводится к поиску 
весов связей и пороговых уровней нейронной сети. Поскольку фак-
торное отображение и значения факторов являются неизвестными, 
необходима сеть с промежуточным слоем. Сеть в целом осуществля-
ет тождественное преобразование, т. е. выходной сигнал на i-м 
нейроне входного слоя равен выходному сигналу i-го нейрона вы-
ходного слоя. Отдельные части сети (входная и выходная часть) со-
ответствуют прямому и обратному факторному отображению. 

Теорема 1. Пусть (2,3)
ijw  и (1,2)

ijw  — веса входных сигналов выход-

ного и скрытого слоя нейронной сети с линейной передаточной 
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функцией. Число нейронов на выходном слое равно числу нейронов 
входного слоя. Нейронная сеть состоит из входного, скрытого и вы-
ходного слоя и осуществляет тождественное преобразование для лю-
бого входного сигнала (вектор входных сигналов сети равен вектору 
выходных сигналов). 

Тогда выполняется следующее равенство: 

(1,2) (2,3)

1

1,
g

ik ki
k

w w


  

где ( , )s t
ijw  — связь между i-м нейроном s-го слоя и j-м нейроном 

t-го слоя; g — число нейронов скрытого слоя. 
Доказательство. Обозначим kiv  — выходной сигнал i-го нейро-

на k-го слоя, 1iv  — i-й выходной сигнал нейронов первого слоя. 

Для поиска весов нейронной сети необходимо выполнение усло-
вия 1 3 ,i iv v  выходной сигнал на i-м нейроне входного слоя должен 

быть равен выходному сигналу i-го нейрона выходного слоя. Из это-
го условия следует вспомогательное условие 1 3 ,i iv v    изменение 

i-го входного сигнала сети равно изменению i-го выходного сигнала. 
При этом справедливы следующие равенства: 

0
1 1 1 ,i i iv v v    

0
3 3 3 ,i i iv v v    

где 0
1iv  и 0

3iv  — входной и выходной сигнал до изменения, 0 0
1 3 .i iv v  

Допустим, что производилось изменение только i-го входного 
сигнала. 

Из этих условий следует: 

(2,3) (3) (2,3) (1,2) (2) (3)
3 2 1

1 1 1

g g m

i l i k ili li kl l
l l k

v w v t w w v t t
  

 
      

 
    

(2,3) (1,2) (1,2) (2) (3)
1 1

1 1

(2,3) (1,2) (1,2) 0 (1,2) (2) (3)
1 1 1

1 1

g m

k i i ili kl il
l k

k i

g m

k i i i ili kl il il
l k

k i

w w v w v t t

w w v w v w v t t

 


 


 
 

     
 
 

 
 

       
 
 

 

 
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(2,3) (1,2) 0 (1,2) (2) (3)
1 1

1 1

(2,3) (1,2) 0 (2) (3) (2,3) (1,2)
1 1

1 1 1

g m

k i i ili kl il
l k

g gm

k i i ili kl li il
l k l

w w v w v t t

w w v t t w w v

 

  

 
      

 
 

      
 

 

  
 

0 (2,3) (1,2)
3 1

1

,
g

i ili il
l

v w w v


    

(2,3) (1,2)
3 1

1

.
g

i ili il
l

v w w v


    

Поскольку 1 3 ,i iv v    то (2,3) (1,2)

1

1
g

li il
l

w w


  должно выполняться 

для всех i, поскольку выбор i-го входного сигнала был произволен. 
Теорема доказана ■. 

Веса (2,3)
ijw  и (1,2)

ijw  входных сигналов выходного и скрытого слоя 

нейронной сети с линейной передаточной функцией соответствуют 
коэффициентам прямого и обратного факторного отображения. Чем 
точнее нейронная сеть с факторным сжатием информации осуществ-
ляет тождественное преобразование, тем точнее будет выполняться 
равенство теоремы, соответствующее тому, что композиция прямого 
и обратного факторного преобразования должна давать тождествен-
ное преобразование. Докажем соответствующую теорему. 

Теорема 2. Пусть (2,3)
ijw  и (1,2)

ijw  — веса входных сигналов выход-

ного и скрытого слоя нейронной сети с линейной передаточной 
функцией. Число нейронов на выходном слое равно числу нейронов 
входного слоя. Нейронная сеть состоит из входного, скрытого и вы-
ходного слоя. Введем следующие величины: 

v  — средняя невязка сигнала между входом и выходом сети, 
приходящаяся на один входной (выходной) нейрон; 

w  — невязка равенства (1,2) (2,3)

1

1,
g

ik ki
k

w w


  т. е. w   

(1,2) (2,3)

1

1,
g

ik ki
k

w w


   

где ( , )s t
ikw  — связь между i-м нейроном s-го слоя и k-м нейроном 

t-го слоя; g — число нейронов скрытого слоя. 
Тогда чем меньше ,v  тем меньше .w  
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Доказательство. В предыдущей теореме доказано следующее 
равенство значения сигнала по одной переменной на выходе 3iv  от 

приращения сигнала по той же переменной на входе 1 :iv  

0 (2,3) (1,2)
3 3 1

1

.
g

i i ili il
l

v v w w v


    

Поскольку 0 0 0 0
3 1 3 1 1 3 3 1 3 1i i i i i i i i i iv v v v v v v v v v v             

0 0
3 3 1 ,i i iv v v v      где 0v  — начальная невязка сигналов между 

входом и выходом сети до изменения i-го входного сигнала, то 
0 0 0

(2,3) (1,2) 3 3 3 3 1

1 1 11

1 1 .
g

i i i i i
li il

i i il

v v v v v v v
w w w

v v v

     
      

    Это озна-

чает монотонную зависимость между w  и .v  
Теорема доказана ■. 
Для построения нелинейных главных компонент в качестве пере-

даточной функции может быть выбрана антисимметричная сигмои-
дальная функция: 

  2
1.

1 exp( )
x

x
  

 
 

В любом случае независимо от вида передаточной функции для полу-
чения интерпретируемого факторного отображения вводится дополни-
тельное слагаемое в общую целевую функцию квадратов невязок. Оно 
соответствует критерию «варимакс» классического факторного анали-
за — это максимизация дисперсии нагрузок переменной, приходящих-
ся на все факторы: 

 2(2,3) (2,3) (2,3)

1

max,
g

ij ij ij
i ii

D w w E w


    

(2,3)

1
min .

ij
i
D w

  

Учет «варимакс» критерия приводит к появлению дополнитель-
ных слагаемых при изменении весов нейронной сети на выходном 
слое: 

 
     2,3 (2,3) (2,3)

22,3
(2,3)

1
.ij ij ij

i
ij

ij
i

E
w w E w

w D w


     


 

Другим вариантом получения интерпретируемого факторного 
отображения может быть использование специального критерия ин-
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терпретируемости [12]. Данный критерий заключается в том, что толь-
ко одна факторная нагрузка для фиксированной переменной должна 
быть близкой к единице, тогда как остальные должны быть близкими к 
нулю. Учет эмпирического критерия интерпретируемости предлагает-
ся осуществить следующим образом: среди факторных нагрузок для 
фиксированной переменной выбирается максимальная по модулю. Все 
факторные нагрузки, отличные от максимальной, уменьшаются по мо-
дулю на γ, тогда как максимальная увеличивается на γ. 

Аналогичный учет главных условий факторного анализа на сумму 
квадратов факторных нагрузок переменной, приходящихся на все фак-

торы,  2(2,3)

1

1



g

ij
i

w  и поиск факторных нагрузок в допустимом интер-

вале  (2,3) 1, 1 ijw    приводит к поправкам на изменение весов нейрон-

ной сети для выходного слоя. В случае нарушения этих условий 

предлагается использовать штрафную функцию   22,3

1

min,
g

ij
i

w


  

соответствующую минимизации весов нейронов. Тогда  2,3
ijw 

 
 2,3

2,3
2 .ij

ij

E
w

w


   


 

Для стандартизации входных значений нейронной сети использу-
ется линейное преобразование 

,  y x  

переводящее диапазон исходных величин x из [min, max] в [s, t]. 

Тогда ,
max min

t s
 


 

max min
.

max min

s t
 


 

Для обратного преобразования выходных значений нейронной 
сети из диапазона [s, t] в [min, max] используется преобразование  

1
.x y


 
 

 

В качестве интервала [s, t] для антисимметричной сигмоидальной 

функции   2
1

1 exp( )
x

x
  

 
 может быть выбран интервал [–0,85, 

0,85].  

Тогда 
1,7

,
max min

 


 0,85.    

Численный эксперимент. В качестве исходных параметров бы-
ли взяты 15 биофизических показателей для 131 пациента с артери-
альной гипертензией начальной стадии: 
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1) вес; 
2) индекс массы тела (ИМТ); 
3) частота дыхания (ЧД); 
4) сегментоядерные нейтрофилы (С); 
5) лимфоциты (Л); 
6) конечно-систолический размер левого желудочка (КСР); 
7) конечно-систолический объем левого желудочка (КСО); 
8) конечно-диастолический размер левого желудочка (КДР); 
9) конечно-диастолический объем левого желудочка (КДО); 

10) ударный объем (УО); 
11) минутный объем сердца (МОС); 
12) общее периферическое сосудистое сопротивление (ОПСС); 
13) индекс Хильдебранта (ИХ); 
14) фракция выброса левого желудочка (ФВ);  
15) фракция укорочения левого желудочка (ФУ). 
При обучении нейронной сети на данных артериальной гипертен-

зии начальной стадии ошибка, приходящаяся на одну переменную, 
составляла не более 10 % от диапазона значений переменной по вы-
борке. Эти данные содержали 131 паттерн и 15 переменных с анти-
симметричной сигмоидальной передаточной функцией и пятью 
нейронами на скрытом слое. График сходимости процесса обучения 
представлен на рис. 3. Под итерацией обучения понимается одна 
эпоха обучения, когда в сеть подставляют весь набор паттернов обу-
чения. Под суммарной ошибкой на обучающей выборке понимается 
сумма ошибок для всех паттернов обучающего множества на одной 
итерации обучения. 

 

Рис. 3. График изменения суммарной ошибки 
на обучающей выборке (131 паттерн, 15 переменных) 

 
Для проверки эффективности обучения нейронной сети исходное 

множество входных-выходных значений было разделено на два неза-
висимых подмножества: обучающее и тестовое. Обучение проводи-
лось на обучающем множестве, а верификация — на тестовом. 



Факторное моделирование с помощью нейронной сети 

95 

Ошибка нейронной сети на тестовом множестве является показате-
лем того, насколько точно обучилась нейронная сеть. Относительный 
объем тестового множества был оценен [7] по формуле 

 
2 1 1

,
2 1opt

W
r

W

 



 

где W — количество входных параметров. 
При W = 15, 0,15.optr   При 131 паттерне на тестовое множество 

приходится 20 паттернов.  
График изменения суммарной ошибки для паттернов тестового 

множества при верификации на каждой эпохе процесса обучения 
представлен на рис. 4. Под суммарной ошибкой на тестовом множе-
стве понимается сумма ошибок для 20 паттернов тестового множе-
ства при процессе верификации на каждой эпохе обучения, т. е. когда 
для обучения был использован полный набор паттернов обучающего 
множества, но тестовое множество не участвовало в обучении. На 
каждой эпохе относительная ошибка для тестового множества боль-
ше относительной ошибки для обучающего множества. В пределе, 
когда ошибка для обучающего множества начинает сходиться, воз-
можен эффект переобучения, т. е. значение ошибки при верификации 
на тестовом множестве начинает не уменьшаться, а возрастать. Это 
связано с тем, что промежуточные точки между точками обучающего 
множества в многомерном пространстве плохо аппроксимируются 
восстанавливаемой зависимостью нейронной сети. Данные графика 
изменения ошибки на тестовом множестве (рис. 4) показывают, что 
эффекта переобучения нет, и объем обучающего множества достато-
чен для количества исходных показателей, равного 15. На графике за-
метны лишь незначительные флуктуации ошибки на обучающем мно-
жестве в процессе сходимости ошибки для обучающего множества. 

 

Рис. 4. График изменения суммарной ошибки 
на тестовом множестве (20 паттернов, 15 переменных) 
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Из данных графика видно, что эффекта переобучения не наблю-
дается, дальнейшее обучение приводит лишь к небольшой флуктуа-
ции суммарной ошибки на тестовом множестве. 

Средние ошибки, приходящиеся на 15 переменных для одного 
паттерна на обучающем и тестовом множестве, равны 1,28 и 1,54. 
При исходном диапазоне изменения параметров [–0,85, 0,85] ошибки, 
приходящиеся на одну переменную, для обучающего и тестового 
множества равны 5 и 6 %. Например, для параметра «вес» наиболь-
шее значение было равно 116 кг, наименьшее — 45 кг, при диапазоне 
в 71 кг, ошибка в 6% соответствует 4,26 кг. Это свидетельствует 
о хорошей способности нейронной сети к обобщению. Ошибка в 6 % 
для 15 входных параметров и 131 примера для обучения меньше тео-
ретической оценки ошибки в 10 %. Когда требуется 15–10 примеров 
для обучения, можно говорить о достаточности обучающего множе-
ства. Известно, что между действительно достаточным размером 
множества обучения и теоретическими оценками может существо-
вать большой разрыв [7]. 

Число нейронов на скрытом слое было выбрано согласно правилу 
факторного анализа Кайзера, когда число факторов должно быть не 
больше количества собственных значений корреляционной матрицы 
переменных больше единицы. График собственных значений исход-
ных переменных приведен на рис. 5.  

 

Рис. 5. Собственные значения исходных переменных 
 
В ходе численного эксперимента с данными артериальной гипер-

тензии было установлено, что хорошая обучаемость нейронной сети 
достигается при числе нейронов в скрытом слое, который не меньше 
верхней границы числа собственных значений исходных переменных 
по правилу Кайзера. При меньшем числе нейронов в скрытом слое 
наблюдались значительные ошибки на обучающей выборке, и наобо-
рот: чем больше нейронов выбиралось на скрытом слое, тем меньше 
была ошибка на тестовом и обучающем множестве. Это связано 
с факторным сжатием и потерей информации на скрытом слое. 
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Факторное отображение, полученное с помощью нейронной сети, 
незначительно отличается от факторного отображения, получаемого 
методом главных компонент с последующим «варимакс» вращением, 
и имеет тот же интерпретационный характер. Все значимые фактор-
ные нагрузки двух матриц факторных отображений близки друг к дру-
гу. Соответствующие факторные структуры приведены в табл. 1–3.  

С точки зрения совпадения факторных структур ошибка прогноза 
входного паттерна менее 10 % оказалась некритичной, и нейронная 
сеть является достаточно обученной для проведения факторного ана-
лиза. Данные факторные структуры подтверждаются работой [11]. 

Таблица 1  

Факторная структура «варимакс» 
(метод главных компонент + «варимакс» вращение) 

Показатели F1 F2 F3 F4 F5 

Вес 0,135 0,078 –0,073 –0,07 0,861 

ИМТ 0,085 0,095 –0,147 –0,07 0,858 

ЧД 0,087 0,043 –0,078 –0,849 0,087 

С –0,07 –0,913 –0,051 0,06 –0,108 

Л 0,012 0,923 0,029 –0,017 0,065 

КСР 0,739 0,015 –0,637 –0,093 0,151 

КСО 0,73 –0,005 –0,628 –0,083 0,137 

КДР 0,943 0,048 –0,256 –0,011 0,119 

КДО 0,932 0,016 –0,299 –0,034 0,132 

УО 0,947 0,053 0,07 –0,001 0,107 

МОС 0,93 0,017 0,046 0,011 0,039 

ОПСС –0,776 –0,022 –0,117 0,072 0,027 

ИХ 0,005 –0,028 0,039 0,858 –0,044 

ФВ –0,025 0,005 0,845 0,024 –0,113 

ФУ –0,028 0,072 0,743 0,062 –0,052 

Таблица 2  

Факторная структура на базе нейронной сети («варимакс» критерий) 

Показатели F1 F2 F3 F4 F5 

Вес 0,483 –0,116 –0,024 0,127 0,846 

ИМТ 0,409 –0,062 –0,165 0,132 0,888 

ЧД –0,27 –0,442 –0,071 0,852 –0,019 

С 0,02 0,876 0,18 0,393 –0,269 

Л –0,08 –0,786 –0,276 –0,503 0,214 

КСР 0,759 –0,155 –0,575 0,217 –0,169 
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Окончание табл. 2 

Показатели F1 F2 F3 F4 F5 

КСО 0,805 –0,137 –0,525 0,187 –0,193 

КДР 0,864 –0,296 –0,145 0,098 –0,237 

КДО 0,899 –0,288 –0,176 0,157 –0,234 

УО 0,838 –0,402 0,251 0,077 –0,261 

МОС 0,835 –0,331 0,242 0,061 –0,352 

ОПСС –0,697 0,441 –0,401 –0,197 0,44 

ИХ 0,287 0,35 –0,015 –0,596 –0,061 

ФВ –0,192 –0,22 0,955 –0,08 –0,056 

ФУ –0,152 –0,175 0,973 –0,212 –0,076 

Таблица 3  

Факторная структура на базе нейронной сети 
(критерий интерпретируемости) 

Показатели F1 F2 F3 F4 F5 

Вес –0,01 0 –0,017 0,006 0,996 

ИМТ 0,002 –0,011 0,015 –0,002 0,989 

ЧД –0,001 0,035 0,012 –0,996 0,016 

С –0,013 –0,997 0,016 0,006 0,004 

Л 0,001 1,000 –0,006 –0,005 0,001 

КСР 0,869 0,002 0,49 –0,009 0,015 

КСО 0,864 –0,02 0,502 –0,037 0,009 

КДР 0,99 0,005 0,004 0,009 0,004 

КДО 0,994 0,002 0,081 0,005 –0,002 

УО 0,964 0,004 –0,253 0,024 –0,02 

МОС 0,974 0,003 –0,211 –0,016 –0,01 

ОПСС –0,985 0,008 0,267 0,035 0,113 

ИХ 0,036 0,024 –0,001 0,817 –0,023 

ФВ 0,001 –0,018 –0,994 –0,026 0,002 

ФУ –0,01 0,009 –0,99 0,034 0,02 

 
Специальный критерий интерпретируемости оказался более эф-

фективным, чем «варимакс» критерий. Разделение исходных пере-
менных на факторы более мощное: незначимые факторные нагрузки 
близки к нулю, тогда как значимые близки к единице. Незначимые 
факторные нагрузки отдают свою долю дисперсии переменных (при-
ходятся на факторы) значимым факторным нагрузкам, тем самым по-
вышая эффективность разбиения исходных параметров на факторы. 
На конечном этапе факторного моделирования осуществляется ин-
терпретация наполнения факторов переменными и более эффектив-
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ное разбиение исходных переменных на факторы, соответствующее 
целям классического факторного вращения. Это является плюсом 
факторного моделирования на базе нейронной сети со специальным 
критерием интерпретируемости. Расхождение величин незначимых 
факторных нагрузок матриц факторного отображения до и после 
факторного вращения является обычным эффектом. Его целью явля-
ется повышение эффективности интерпретационного разделения ис-
ходных переменных на факторы. 

Матрица корреляций факторов немного отличается от ортого-
нальной, что соответствует общему косоугольному факторному ана-
лизу (табл. 4). 

Таблица 4  

Корреляции факторов, полученных на базе нейронной сети 
с использованием критерия интерпретируемости 

Факторы F1 F2 F3 F4 F5 

F1 1,000 0,089 0,146 –0,108 0,217 

F2 0,089 1,000 –0,057 –0,065 0,157 

F3 0,146 –0,057 1,000 –0,149 0,217 

F4 –0,108 –0,065 –0,149 1,000 –0,143 

F5 0,217 0,157 0,217 –0,143 1,000 

 
Факторное моделирование позволяет выделить группы взаимо-

связанных параметров, формирующих факторы заболевания артери-
альной гипертензии. Факторы проинтерпретированы в ранних рабо-
тах [13, 14]. Рассмотрим некоторые из них. 

Гемодинамический фактор включает параметры, описывающие 
центральную и периферическую гемодинамику, и его можно назвать 
главным. Переменные УО, МОС, ОПСС определяют уровень артери-
ального давления. В норме изменениям минутного объема циркуля-
ции должна соответствовать адекватная по величине и направлению 
реакция прекапиллярного русла, которая бы нивелировала эти изме-
нения и сохраняла среднее давление на нормальном уровне. Напри-
мер, если МОС снижен, то артериолы должны сузиться. Если МОС 
увеличен, то артериолы должны расшириться. Нарушения взаимосвя-
зи этих показателей лежат в основе изменений уровня артериального 
давления. Вместе с тем изменение уровня артериального давления 
взаимосвязано с модуляцией сердца, за которую отвечают параметры 
КСР, КСО, КДР, КДО. 

Фактор, составленный из параметров «фракция выброса левого 
желудочка» и «фракция укорочения левого желудочка». Его можно 
считать важным для непосредственной оценки контрактильной (со-
кратительной, нагнетательной) функции левого желудочка. Этот 
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фактор определяет объемную ресурсоемкость левого желудочка. Он 
показывает, насколько использованы объемные резервы самого серд-
ца для поддержания уровня артериального давления. 

Кроме того, были выделены фактор, отвечающий за соответ-
ствие массы и роста, и фактор, характеризующий уровень слажен-
ности работы сердца и легких (он определяется через частоту дыха-
ния и индекс Хильдебранта). 

Также был рассмотрен иммунологический фактор, который мо-
жет отражать психосоматическое состояние индивида, поскольку 
этот фактор активируется в стрессовых состояниях. Основной вклад 
в формирование этого фактора вносят сегментоядерные нейтрофилы 
и лимфоциты. 

Выделенные факторы являются различными аспектами заболева-
ния. Например, такой фактор риска, как ожирение, соответствует 
нарушению фактора, отвечающего за соответствие массы и роста. 
Иммунологический и фактор, характеризующий уровень слаженно-
сти работы сердца и легких, могут быть объединены в один общий 
фактор, соответствующий стрессовой восприимчивости. Все выде-
ленные факторы подтверждены независимыми медицинскими иссле-
дованиями. 

В ранней работе [13] даны рекомендации по нормализации выде-
ленных факторов. Эти пять факторов позволяют указать  группу па-
раметров, на которую нужно воздействовать, чтобы получить макси-
мальный эффект от лечения. Например, для стабилизации уровня 
артериального давления следует воздействовать на всю группу при-
знаков, описывающих гемодинамический фактор. При этом следует 
учитывать ремоделирование сердца (структурно-геометрическое со-
стояние) при формировании патофизиологических взаимоотношений 
в системе кровообращения у пациентов с гипертонической болезнью. 
Поскольку ожирение является одним из факторов риска, то снижение 
веса позволит нормализовать фактор, отвечающий за соответствие 
массы и роста. Исключение стрессовых ситуаций пациентом позво-
лит улучшить показатели, формирующие иммунологический фактор, 
а также нормализовать фактор, характеризующий уровень слаженно-
сти работы сердца и легких. 

Заключение. Рассмотрен известный альтернативный метод по-
строения факторной модели на основе нейронной сети и алгоритма 
обратного распространения ошибки. Данный метод был усовершен-
ствован для проведения факторного вращения и получения интерпре-
тируемого решения. Преимущество данного метода заключается 
в том, что он объединяет в себе все этапы классического факторного 
анализа: поиск факторного отображения, факторное вращение и вы-
числение значений факторов. Этот метод осуществляет косоуголь-
ный факторный анализ, тем самым имеет максимальную степень 
общности для линейной модели. 
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На базе нейронной сети с нелинейной передаточной функцией 
получен вариант нелинейного факторного анализа. Факторная струк-
тура артериальной гипертензии, полученная с помощью нейронной 
сети и критериев интерпретируемости, незначительно отличается от 
факторной структуры, полученной методом главных компонент с по-
следующим «варимакс» вращением, и имеет тот же интерпретацион-
ный характер. 

Представляется актуальным улучшить алгоритм факторного 
вращения на базе нейронной сети с помощью методов распараллели-
вания [15]. 
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The paper deals with the factorial modeling of the initial stage arterial hypertension. The 
modeling was carried out by the factorization method based on the neural network and 
the back propagation of error algorithm. This factorization method is an alternative to 
the classical factor analysis. We implemented an algorithm for constructing the factorial 
structure based on the neural network  in software. This method has been improved for 
the factor rotation and obtaining an interpretable solution. The hypertension factorial 
structure obtained by this factorization method is in accordance with the results of the 
factorial modeling by other methods. 
 
Keywords: arterial hypertension, factor analysis, neural networks, back propagation of 
error. 

REFERENCES 

[1] Iberla K. Faktornyy analiz [Factor analysis]. Transl. from German by  
V.M. Ivanova; Preface A.M. Dubrov. Moscow, Statistika Publ., 1980. 

[2] Gavrilkevich M. Vvedenie v neiromatematiku [Introduction to neuro mathema-
tics]. Obozrenie prikladnoy i promyshlennoy matematiki. Review of applied 
and industrial mathematics, vol. 1, iss. 3. 

[3] Hornik K., Stinchcombe M., White H. Neural Networks, 1989, vol. 2, no. 5, 
pp. 359–366. 

[4] Cybenko G. Mathematics of Control, Signals and Systems, 1989, vol. 2, 
pp. 303–314. 

[5] Funahashi K. Neural Networks, 1989, vol. 2, no. 3, iss. 4. 
[6] Gorban A.N. Sibirskiy zhurnal vychislitelnoy matematiki — Siberian Journal of 

Numerical Mathematics, 1998, vol. 1, no. 1, pp. 11–24. 
[7] Haykin S. Neironnye seti: Polnyy kurs [Neural networks: A Comprehensive 

Foundation]. 2nd ed., corr. Moscow, Vilyams Publ., 2008, 1103 p. 
[8] Osovskiy S. Neironnye seti dlya obrabotki informatsii [Neural networks for in-

formation processing]. Moscow, Finansy i statistika Publ., 2002, 344 p. 



Факторное моделирование с помощью нейронной сети 

103 

[9] Gorban A., Kegl B., Wunsch D., Zinovyev A., Principal Manifolds for Data 
Visualisation and Dimension Reduction. Berlin, Heidelberg, New York, 
Springer, 2007. 

[10] Kruger U., Antory D., Hahn J., Irwin G.W., McCullough G. Computers & 
Chemical Engineering, 2005, no. 29 (11), pp. 2355–2362. 

[11] Jain A.K., Mao J., Mohiuddin K.M. Computer, 1996, vol. 29, no. 3, pp. 31–44. 
[12] Shovin V.A., Goltyapin V.V. Matematicheskie struktury i modelirovanie — 

Mathematical Structures and Modeling, 2015, no. 2, pp. 75–84. 
[13] Goltyapin V.V., Shovin V.A. Vestnik Omskogo universiteta — Herald of Omsk 

University, 2010, no. 4, pp. 120–128. 
[14] Shovin V.A. Kompyuternye issledovaniya i modelirovanie — Computer Re-

search and Modeling, 2012, vol. 4, no. 4, pp. 885–894. 
[15] Martynenko S.I. Matematicheskoe modelirovanie i chislennye metody — Math-

ematical Modeling and Computational Methods, 2015, no. 2 (6), pp. 105–120. 
 
Shovin V.A., Research Scientist of Sobolev Institute of Mathematics, Omsk branch, 
Siberian Branch of the Russian Academy of Sciences. e-mail: v.shovin@mail.ru 
 
Goltyapin V.V., Cand. Sci. (Phys. & Math.), Assoc. Professor, Senior Research Scientist 
of Sobolev Institute of Mathematics, Omsk branch, Siberian Branch of the Russian Acad-
emy of Sciences. e-mail: goltyapin@mail.ru 

 
 
 


