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Рассмотрены основные направления развития параллельных классических много-
сеточных алгоритмов и их характерные недостатки. На примере универсальной 
многосеточной технологии показана возможность эффективного распараллели-
вания сглаживающих итераций на уровнях с грубыми сетками; многосеточная 
структура использована для построения гибридного многосеточного метода. 
Приведены оценки  ускорения и эффективности различных параллельных многосе-
точных алгоритмов, а также результаты вычислительных экспериментов.  
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Введение. Краевые задачи для дифференциальных уравнений  

в частных производных являются составной частью многих математи-
ческих моделей, поэтому проблема создания высокоэффективных ме-
тодов численного решения краевых задач еще долго будет актуальна, 
несмотря на гигантский прогресс вычислительной техники [1, 2].  

Многосеточные методы, берущие начало с работ выдающихся 
отечественных математиков Р.П. Федоренко и Н.С. Бахвалова, в на-
стоящее время стали доминирующими алгоритмами для численного 
решения краевых задач и используются в подавляющем большинстве 
современных программных продуктов. Однако у классических мно-
госеточных методов (КММ) есть определенные недостатки, связан-
ные с необходимостью оптимального выбора отдельных компонент 
для конкретного приложения. Кроме того, до сих пор не удавалось 
построить высокоэффективный параллельный многосеточный алго-
ритм [3].  

Инженерная практика зачастую связана с необходимостью рас-
смотрения различных вариантов конструкции или схем организации 
рабочего процесса. Для решения подобных задач была разработана 
универсальная многосеточная технология (УМТ) — вариант геомет-
рических многосеточных методов с минимальным количеством про-
блемно-зависимых компонент [4−8]. Одной из особенностей УМТ 
является используемая иерархия сеток — так называемая многосе-
точная структура. Несмотря на то что УМТ несколько уступает КММ 
в вычислительной эффективности, общие затраты на адаптацию ал-
горитма к решаемой задаче и решение сеточных уравнений у УМТ 
оказываются ниже для отдельных приложений, в то время как КММ 
остаются лучшими методами решения крупных серий однотипных 
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задач. Поэтому УМТ и КММ, скорее, дополняют друг друга, нежели 
являются конкурентами.  

В различных проблемных областях существует ряд задач, решение 
которых требует чрезмерного времени даже с привлечением самых со-
вершенных процессоров и численных методов, поэтому неуклонно 
возрастает интерес к параллельным алгоритмам. Практически сразу 
были отмечены характерные трудности построения параллельного ва-
рианта КММ, связанные со снижением эффективности параллелизма 
на грубых сетках из-за уменьшения отношения объема вычислитель-
ной работы к объему пересылаемых данных. Выработано четыре на-
правления повышения эффективности параллельных КММ, однако 
преодолеть «барьер грубых сеток» не удалось. Основная проблема со-
стоит в равномерном распределении вычислительной работы между 
процессорами параллельного компьютера и минимизации числа обме-
нов данными.  

Совершенно иначе с точки зрения параллельных вычислений вы-
глядит УМТ. Если внимательно присмотреться, то УМТ является од-
носеточным алгоритмом, который позволяет использовать основопо-
лагающую идею Р.П. Федоренко для ускорения сходимости отдельных 
итерационных методов (сглаживателей). Фактически УМТ позволяет 
уменьшить объем вычислительной работы, требуемой для решения 
широкого класса линейных (нелинейных) краевых задач методом Зей-
деля с блочным упорядочиванием неизвестных, до 0 0( ln )O N N  ариф-
метических операций, где 0N  количество узлов сетки. Причем столь 
радикальное уменьшение вычислений по сравнению с традиционным 
односеточным вариантом метода Зейделя не требует применения ка-
ких-либо проблемно-зависимых компонент в конструкции УМТ [8]. 
Естественно, что отсутствие грубых сеток в УМТ сразу сняло пробле-
му снижения эффективности параллелизма. Данное обстоятельство 
было отмечено в работе [9], а соответствующие оценки ускорения и 
эффективности параллельной УМТ приведены в [10, 11].  

Целью данной работы является получение оценок уменьшения 
времени решения краевых задач в сравнении не только с последова-
тельной УМТ, как в [9−11], но и с последовательным V-циклом. Кро-
ме того, предложен комбинированный подход к построению парал-
лельных КММ, основанный на использовании многосеточной 
структуры для сглаживания на грубых сетках. 

Для вычислительных экспериментов применена система с сим-
метричной мультипроцессорной обработкой, или SMP-система 
(Symmetric MultiProcessors). В этой архитектуре все процессоры 
имеют равноправный доступ ко всему пространству оперативной па-
мяти и ввода-вывода, поэтому SMP-архитектура называется симмет-
ричной. Ее интерфейсы доступа к пространству ввода-вывода и опе-
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ративной памяти, система управления кэш-памятью, системное про-
граммное обеспечение и т. п. построены таким образом, чтобы обес-
печить согласованный доступ к разделяемым ресурсам. Память обес-
печивает передачу сообщений между процессорами, при этом все 
вычислительные устройства при обращении к ней имеют равные 
права и одну и ту же адресацию для всех ячеек памяти. Последнее 
обстоятельство позволяет очень эффективно обмениваться данными 
с другими вычислительными устройствами [12−14]. 

Параллельные классические многосеточные алгоритмы. Тра-
диционно попытки построить параллельный многосеточный алго-
ритм основаны на распараллеливании отдельных компонент (опера-
торы переходов и сглаживающая процедура). Положим, что в ка- 
честве сглаживающей процедуры выбран метод Якоби с блочным 
упорядочиванием неизвестных. Для реализации метода Якоби исход-
ную сетку декомпозируют с «перехлестом» на блоки, с каждым бло-
ком сетки ассоциирован блок неизвестных. Далее с помощью неко-
торого (внутреннего) итерационного метода независимо вычисляют 
новые значения неизвестных, образующих блок. Как правило, сетку 
декомпозируют на блоки приблизительно одинаковой величины, 
чтобы добиться сбалансированной загрузки процессоров, после чего 
осуществляют обмен данными между процессорами, т. е. обмен зна-
чениями искомых сеточных функций в узлах на границах блоков. 
Принципиальным и неустранимым недостатком данного подхода яв-
ляется уменьшение отношения объема вычислительной работы, вы-
полненной каждым процессором, к объему пересылаемых данных 
при уменьшении количества узлов сетки. Более того, возможен слу-
чай, когда количество узлов самых грубых сеток будет меньше коли-
чества процессоров, т. е. часть процессоров будет простаивать при 
выполнении сглаживающих итераций.  

Сначала рассмотрим влияние потерь, связанных с обменом дан-
ными и возможным простоем процессоров, на эффективность парал-
лельного многосеточного алгоритма. Введем следующие количест-
венные характеристики параллельных алгоритмов [15]. 

Определение 1. Ускорением S  и эффективностью   параллель-
ного алгоритма называют величину 

(1) ,
( )

TS p
T p

= =                                        (1) 

где (1)T  — время выполнения алгоритма на одном процессоре;  
( )T p  — время выполнения параллельного алгоритма на системе из 

p  процессоров. 
Определение 2. Ускорением S  и эффективностью   параллель-

ного алгоритма по отношению к наилучшему последовательному ал-
горитму называют величину 
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(1) ,
( )

TS p
T p

= =                                           (2) 

где (1)T  — время выполнения быстрейшего последовательного ал-
горитма на одном процессоре; ( )T p  — время выполнения параллель-
ного алгоритма на системе из p  процессоров.  

Определение 3. Ускорением lS  и эффективностью l  параллель-
ного сглаживания на сетках уровня l  по отношению к последова-
тельному сглаживанию на тех же сетках называют величину 

(1) ,
( )

= = l
l l

l

TS p
T p

                                       (3) 

где (1)lT  — время выполнения последовательного сглаживания  
(и оператора перехода) на одном процессоре; ( )lT p  — время выпол-
нения параллельного сглаживания (и оператора перехода) на системе 
из p  процессоров. 

Ускорение S  и эффективность   (1) представляют теоретиче-
ский интерес и характеризуют параллелизм конкретного алгоритма. 
Например, метод Якоби обладает почти полным параллелизмом, т. е. 
ожидается, что S p→  и 1→  [15].  

Ускорение S  и эффективность   (2) представляют практический 
интерес и характеризуют уменьшение времени решения задачи по 
сравнению со временем расчета с использованием наиболее быстрого 
последовательного алгоритма. Например, метод Якоби обладает 
очень медленной скоростью сходимости, поэтому ожидается, что в 
сравнении с V-циклом 0S →  и 0→  при использовании достаточно 
мелких сеток. Подобные методы распараллеливать не имеет смысла, 
поскольку они даже в параллельном исполнении уступают наилуч-
шим последовательным алгоритмам. 

Ускорение lS  и эффективность l  (3) представляют интерес для 
оценки параллелизма многосеточных алгоритмов. Выполняя серию 
вычислительных экспериментов, нетрудно для каждого сглаживателя 
эмпирически установить зависимость lS  и l  от числа узлов сетки 

lN  и используемых процессоров p . Тогда ускорение и эффектив-
ность параллельного многосеточного алгоритма однозначно опреде-
ляются значениями ( , )l

lS N p  и ( , )l
l N p .  

Предположим, что начиная с уровня *l  резко возрастают потери, 
связанные с обменами данных между процессорами. Простейший 
выход состоит в последовательном выполнении сглаживающих ите-
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раций на грубых сетках уровней *l l> . Получим оценки ускорения и 
эффективности параллельных многосеточных итераций V-цикла при 
условии, что на сетках уровней *l l<  вычисления проводят на p  
процессорах, на сетках *l l≥  – только на одном, а остальные 1p −  
процессоров простаивают. 

Оценки ускорения и эффективности параллельных классических 
многосеточных алгоритмов получены при следующих предположениях: 

1) число узлов самой мелкой сетки задано в виде  

2( +1)
0 2d LN

+
= , 

где 2, 3d =  — размерность задачи; 2L+  — номер уровня с самыми 
грубыми сетками, построенными посредством удвоения шага. Тогда 
количество узлов сеток уровня l  

0 22 , 0,1, ,l dlN N l L− += =  ; 
2) поскольку вычисления проводят по одним и тем же формулам, 

то время выполнения сглаживающих итераций считаем пропорцио-
нальным числу узлов сетки: 

0(1) (1) (1)2l dl
l lT CN T T −= ⇒ = , 

где C  — некоторая константа, зависящая от сглаживателя. Здесь 
предполагается, что на всех сетках выполнено одинаковое количест-
во сглаживающих итераций, а объем вычислений, необходимый для 
операторов переходов, включен в вычислительную работу сглажи-
вающей итерации; 

3) обмен данными между процессорами приведет к тому, что 

1l lS S +>  и 1l l+>   так как 1l lN N +> , 0,1, , 1l L+= − , где L+  —  
номер уровня с самыми грубыми сетками. Время выполнения после-
довательной многосеточной итерации V-цикла 

2 2
0

0
0 0

(1)(1) (1) (1) 2
1 2

L L
dl

l d
l l

TT T T
+ +

−
−

= =
= = ≈

−
∑ ∑ . 

Время выполнения параллельной многосеточной итерации  
V-цикла 

* 2

*

1

0
( ) ( ) (1)

Ll

l l
l l l

T p T p T
+

−

= =

= +∑ ∑ , 

где первая сумма есть время выполнения параллельных сглаживаю-
щих итераций на p  процессорах, а вторая сумма — время выполнения 
последовательных сглаживающих итераций на уровнях *

2l l L+≤ ≤ . Из 
определения 3 (3) следует, что 
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0
(1)1 1 2( ) (1)

dl
l

l
l l

TT p T
p p

−

= =
 

, 

тогда время выполнения параллельной многосеточной итерации 
можно оценить как  

** 1

0
0

1 2 2( ) (1)
1 2

dl dll

d
ll

T p T
p

− −−

−
=

 
 = +
 − 

∑ 
. 

Согласно (2), ускорение и эффективность параллельного V-цикла 

*
*1

0

(1) 1
( ) 1 2 2 2

d dll
dl

ll

TS p
T p

p

− −−
−

=

= = ≈
−

+∑
 



. 

Более грубая оценка может быть получена в предположении, что 
0l <  : 

*

0

1
1 2 dl

S p

p
−

= <
+

 



,                                    (4) 

откуда следует 
*

2dlS p= <   при p → +∞ , т. е. последовательное 
сглаживание на уровнях *

2l l L+≤ ≤  приводит к тому, что ускорение S  
перестает зависеть от количества процессоров при достаточно боль-
шом p . Хотя объем вычислительной работы, необходимой для вы-
полнения сглаживающих итераций на уровнях с грубыми сетками, 
невелик по сравнению с аналогичным объемом на самой мелкой сет-
ке, последовательное сглаживание не позволит построить высокоэф-
фективные параллельные многосеточные алгоритмы.   

Иногда поступают следующим образом: сетку уровня * 1l −  счи-
тают самой грубой, хотя возможно построение более грубых сеток. 
На сетке уровня * 1l −  в качестве сглаживателя используют некото-
рый итерационный метод, обладающий достаточно высокой скоро-
стью сходимости на достаточно мелких сетках и высоким паралле-
лизмом. В работе [16] использованы явные чебышевские итерации 
для построения сглаживающей процедуры. Построение сглаживателя 
с указанными свойствами возможно лишь с привлечением дополни-
тельный информации о решаемой задаче, т. е. высокий параллелизм 
достигается за счет снижения универсальности. 

Таким образом, попытка построить параллельный многосеточ-
ный алгоритм только на основе распараллеливания компонент обре-
чена на неудачу из-за уменьшения отношения объема вычислитель-
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ной работы к объему пересылаемых данных и возможному простою 
процессоров на грубых сетках. Поэтому многосеточные итерации  
W-цикла, связанные с бóльшим объемом вычислений на грубых сет-
ках, будут менее эффективны в параллельном исполнении, чем мно-
госеточные итерации V-цикла. Очевидно, что необходим новый «ис-
точник параллелизма», не связанный со сглаживающей процедурой.  

Параллельная универсальная многосеточная технология.  
С точки зрения распараллеливания вычислений УМТ обладает сле-
дующими привлекательными свойствами: 

1) грубые сетки каждого уровня не имеют общих точек, т. е. 

3, , 1, 2, ,l l
n mG G n m l L+= ∅ ≠ =  , 

поэтому сглаживающие итерации на этих сетках можно проводить па-
раллельно, независимо от используемой сглаживающей процедуры; 

2) отсутствие общих узлов и граней уменьшает обмен данными 
между процессорами; 

3) фиксированное число сеток на каждом уровне позволяет зара-
нее предсказать необходимое число процессоров для распараллели-
вания УМТ;  

4) почти одинаковое число точек на каждой сетке уровня l  по-
зволяет добиться равномерной загрузки процессоров. 

Каждый уровень l  состоит из 3dl  сеток ( 32,3, 0,1, ,d l L+= =  ), 
поэтому число процессоров должно составить 3dp κ=  ( 31, , L+κ =  ) 
для их равномерной загрузки. В дальнейшем величину κ  будем на-
зывать глубиной распараллеливания УМТ. Значение 0κ =  ( 1p⇒ = ) 
соответствует последовательной УМТ.  

Рассмотрим простейший случай, когда 1= . Тогда число про-
цессоров p , необходимых для реализации параллельной УМТ, со-
ставит 3 , 2, 3.dp d= =  Распределение сеток уровней l  ( 1l ≥ ) между 
процессорами при 1κ =  показано на рис. 1. Вычисление поправки на 
каждой сетке первого уровня и ее подсетках осуществляется незави-
симо на отдельном процессоре. Нетрудно видеть, что УМТ на уров-
нях с грубыми сетками ( 1l ≥ ) обладает почти полным параллелизмом 
независимо от используемой сглаживающей процедуры. Сглажи-
вающие итерации на самой мелкой сетке ( 0l = ) распараллеливают 
традиционным образом.  

Предположим, что на всех уровнях выполнено одинаковое коли-
чество одних и тех же сглаживающих итераций. Поскольку общее 
число узлов на всех сетках одного уровня равно числу узлов на самой 
мелкой сетке, то время, необходимое для выполнения сглаживающих 
итераций, будет одинаковым: 

3(1) const, 0,1, ,lT l L+= =  . 
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Рис. 1. Распределение грубых сеток между процессорами при 1κ =  
 
 
На уровнях с грубыми сетками ( l ≥ κ ) возможно выполнение до-

полнительных многосеточных итераций *q , чтобы увеличить отно-
шение объема вычислительной работы к объему пересылаемых дан-
ных. Схема многосеточной итерации при * 2q =  показана на рис. 2.  

 

 

Рис. 2. Сглаживание на грубых сетках при 1κ =  и * 2q =  
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Время выполнения последовательной многосеточной итерации 
УМТ 
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С учетом определения 3 (3) получим 
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где *  — эффективность параллельного сглаживания на сетках уров-
ней l ≥ κ  по отношению к последовательному сглаживанию. Тогда 
выражение для ускорения и эффективности параллельной УМТ при-
мет вид 

*
3

*
3

0 *

1
1

q LS p p
q L

+

+
+

= =
+



 

.                                   (5) 

Поскольку УМТ на уровнях l ≥ κ  обладает почти полным парал-
лелизмом, то величина *  будет близка к единице. Полагая * 1,=   

с учетом 3dp =  получим следующую оценку: 

*
3

*
3

0

13 3 1
d d q LS

q L

+

+

+
= <

+




,                                  (6) 

т. е. эффективность параллелизма первой глубины критически зави-
сит от эффективности параллельного сглаживания на самой мелкой 
сетке 0 . При этом эффективность параллельной УМТ ожидается 
выше эффективности параллельных сглаживающих итераций на са-
мой мелкой сетке: 0>  . Кроме того, увеличение количества узлов 
самой мелкой сетки приводит к повышению эффективности паралле-
лизма: 3 1L+ → +∞ ⇒ → . 

Аналогично могут быть получены оценки ускорения S  и эффек-
тивности   параллельной УМТ по отношению к V-циклу: 
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*
3

0

3 1
11 2

d

dS p
q L

− +
= <

− +

 



.                               (7) 

Поскольку УМТ в отличие от КММ не обладает оптимальной 
скоростью сходимости [8], то ускорение S  сравнительно невелико, 
причём 1 0lnS N−



  при достаточно больших значениях 3L+ . Следует 
заметить, что полученная оценка достаточно груба, поскольку полу-
чена в предположении, что выполнено одинаковое количество мно-
госеточных итераций V-цикла и УМТ. На самом деле для получения 
численного решения краевых задач при помощи УМТ требуется 
меньше многосеточных итераций, чем классических, особенно при 

* 1q > . 
Согласно оценкам (6) и (7), запишем максимальные значения ус-

корения и эффективности параллелизма в виде  
*

3
max max

*
3

0

13 3 1
d d q LS

q L

+

+

+
= =

+
 



  и  max max
*

3
0

3 13 11 2

d
d

dS
q L

− +
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− +

 



. 

Зависимость максимального ускорения и эффективности парал-
лелизма от количества сеточных уровней показана на рис. 3.  

 

Рис. 3. Зависимость максимального ускорения и эффективности параллелизма  
от количества сеточных уровней: 

 0 = 0,8, q* = 1;  0  = 0,8, q* = 2;  0  = 0,9, q* = 1;  0  = 0,9, q* = 2;  

 0  = 0,8, q* = 1;  0  = 0,8, q* = 2;  0  = 0,9, q* = 1;  0  = 0,9, q* = 2 
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Для вычислительного эксперимента воспользуемся первой крае-
вой задачей для трехмерного уравнения Пуассона  

2 2 2

2 2 2 ( , , )u u u f x y z
x y z

∂ ∂ ∂
+ + = −

∂ ∂ ∂
 

в единичном кубе, которая имеет точное решение exp ( )x y z+ + . Точ-
ное решение однозначно определяет правую часть и граничные усло-
вия. Вычислительная сетка состоит из 2453 = 14 706 125 узлов ( 3 4L+ = ). 
Распараллеливание многосеточных итераций УМТ осуществлено  
с помощью технологии OpenMP при использовании 27 процессоров  
( 1κ = , 2, 3d = , d3 27p κ= = ) [17]. На каждой сетке выполнено четы-
ре сглаживающие итерации, на сетках уровней l  ( 3l L+κ ≤ ≤ ) — две 

многосеточные итерации: * 2q = . Согласно результатам вычисли-
тельного эксперимента, эффективность распараллеливания сглажи-
вающей процедуры на самой мелкой сетке и на сетках уровней l   
( 3l L+κ ≤ ≤ ) — 0 0,89=  и * 0,95=  соответственно. Эффективность 
параллельной УМТ составила 0,92, в то время как, согласно оценке 
(6), 26,6S =  и 3 0,98.dS −= ⋅ =  Если сравнивать с последователь-
ным V-циклом при одинаковом количестве многосеточных итераций, 
то эффективность параллельной УМТ составит 0,112, в то время как, 
согласно оценке (7), 0,125.=  Таким образом, время решения мо-
дельной краевой задачи для уравнения Пуассона с помощью парал-
лельной УМТ при использовании 27 процессоров оказывается в 3 ра- 
за меньше, чем с помощью последовательного V-цикла. 

Оценки (4) и (5) показывают, что при достаточно большом числе 

процессоров p  ускорение параллельных КММ составит 
*

2dlS < ,  
а ускорение параллельной УМТ − S p

 , причем независимо от ис-
пользуемой сглаживающей процедуры. Поэтому именно многосеточ-
ная структура является тем новым источником параллелизма, кото-
рый должен быть задействован при распараллеливании сглаживающих 
итераций на грубых сетках.  

Параллельный комбинированный многосеточный алгоритм. 
Основная идея комбинированного подхода состоит в следующем: от 
самой мелкой сетки ( 0l = ) до сетки уровня * 1l −  основным источни-
ком параллелизма многосеточного алгоритма является сглаживаю-
щая процедура (как в КММ), а на уровнях *

*l L+≤  – многосеточная 
структура (как в УМТ). Используемая иерархия сеток и ее распреде-
ление по процессорам в одномерном случае ( 1d = ) приведены на 
рис. 4.  
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Рис. 4. Комбинированная иерархия сеток и распределе-
ние грубых сеток среди процессоров  

в одномерном случае 
 
Номер уровня с самыми грубыми сетками *L+  
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где квадратные скобки означают целую часть числа. Аналогично 
оценивая время решения задачи, нетрудно получить следующую 
оценку ускорения и эффективности параллелизма: 
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Число процессоров для достижения наилучшей балансировки на-

грузки следует выбирать как в УМТ, т. е. 3 dp κ= . Очевидно, что при 
* 1l =  (т. е. * 3L L+ += ) полученная оценка совпадает с (7). Для практи-

ческого применения оценки (8) необходимо предварительно эмпири-
чески определить эффективность параллельных сглаживающих ите-
раций l . 

Заключение. Традиционный способ построения параллельных 
многосеточных алгоритмов, основанный на распараллеливании сгла-
живающей процедуры и операторов переходов, не позволяет достичь 

116 



О построении параллельных многосеточных алгоритмов 

высокой эффективности параллелизма из-за уменьшения отношения 
объема вычислительной работы к объему пересылаемых данных и 
возможного простоя процессоров на уровнях с грубыми сетками.  

Многосеточная структура позволяет выполнять сглаживание на 
уровнях с грубыми сетками параллельно, причем независимо от вы-
бора сглаживающей процедуры.  

Высокоэффективный параллельный многосеточный алгоритм 
может быть построен только с использованием искусственного па-
раллелизма его компонент и естественного параллелизма многосе-
точной структуры.  

Полученные оценки ускорения и эффективности параллелизма 
(7) и (8) являются достаточно грубыми, поскольку в последователь-
ных и параллельных многосеточных алгоритмах используют много-
сеточные циклы, которые различаются по количеству многосеточных 
итераций, необходимых для достижения критерия останова. Тем не 
менее применение многосеточной структуры для сглаживающих ите-
раций на грубых сетках позволяет получить линейную зависимость 
ускорения от числа используемых процессоров независимо от вида 
сглаживателя.  

 
Работа выполнена при финансовой поддержке РФФИ (проект № 12-01-

00109).  
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