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В  работе представлен алгоритм синтеза для стабилизации неустойчивого предельно-
го цикла  релейной хаотической системы. В алгоритме используется одномерное дис-
кретное отображение Пуанкаре для нахождения неподвижных точек периода  (пре-
дельных циклов исходной непрерывной системы). Показано, что классический метод 
OGY синтеза апериодического регулятора не решает поставленной задачи, так как  
учитывает только скорость выходной координаты, что  недостаточно для стабили-
зации. Предложенный алгоритм  основан на поиске необходимого коэффициента ре-
гулятора путем решения обратной задачи: сначала задается некоторый коэффици-
ент, а затем  осуществляется двухэтапная процедура (с коррекцией) перехода 
системы в следующую точку переключения. Задача коррекции осуществляется в пол-
ной окрестности (положения и скорости выходной координаты) и обеспечивает ста-
билизацию предельного цикла корректирующими импульсами малой амплитуды в вы-
бранной области начальных условий (области стабилизации),  о чем свидетельствуют 
приведенные результаты моделирования. 
 
Ключевые слова: хаос, отображение Пуанкаре, предельный  цикл, стабилизация, 
релейная система, синтез регулятора, метод OGY. 
 

Введение. Известно, что в пространстве состояний хаотические 
колебания в непрерывной нелинейной системе могут возникать толь-
ко в системах третьего и более высокого порядка. Самый известный 
пример такой системы – классический хаотический аттрактор Лорен-
ца [1].  В  системах второго порядка ограниченные устойчивые дви-
жения происходят только в виде  состояния равновесия или предель-
ного цикла (теорема Пуанкаре — Бендиксона) [2].  Рассматриваемая 
автором простая система с обратной связью представляет собой линей-
ную неустойчивую колебательную систему второго порядка  с гистере-
зисным реле в контуре (рис. 1), предложенную П. Куком [3]. Она  при 
определенных значениях  коэффициента 0 kp< ξ < ξ  может  генериро-
вать  хаотические траектории, которые формируют хаотический ат-
трактор (рис. 2) с ограниченной областью притяжения. Причина та-
кого  отклонения от теоремы Пуанкаре — Бендиксона — 
неединственность  вход-выходного  соотношения ( )u f y= , вводи-
мого гистерезисом. 
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Рис. 1. Линейная система с реле в контуре:  

00, 05; 1; 1U aξ = = =  
 

 
 

Рис. 2. Хаотический аттрактор релейной системы 
 
Аттрактор имеет ограниченную область притяжения и характери-

зуется бесконечным числом неустойчивых предельных циклов. Если 
в хаотической системе присутствует неустойчивый предельный цикл 
с подходящими параметрами, его в принципе можно стабилизировать  
очень малыми корректирующими сигналами (управлениями), при-
кладываемыми в небольшой окрестности неподвижной точки ото-
бражения Пуанкаре.  Этот факт принципиально отличает задачу ста-
билизации для хаотической системы от традиционной, т. е. системы с 
регулярным движением.  

В настоящей  работе  для  исследования хаотического движения и 
определения границы области притяжения  аналитически определено 
точечное отображение Пуанкаре  в параметрической форме. Для ста-
билизации неустойчивого предельного цикла (неподвижной точки  пе-
риода 1 отображения Пуанкаре)  в начале рассмотрен синтез регулятора 
с использованием метода OGY [4], уже ставшего классическим. Метод 
основан на линеаризации отображения Пуанкаре в небольшой окрест-
ности неподвижной  точки, где осуществляется коррекция траектории 
малыми импульсами. Теоретические исследования по  стабилизации 
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неустойчивого предельного цикла данной системы методом OGY пред-
ставлены в статьях  [5, 6]. Однако в этих работах не были представлены 
результаты численного моделирования и значения коэффициента регу-
лятора для стабилизации предельного цикла, корректирующие управ-
ляющие воздействия малой (или, возможно, не малой) амплитуды.  
Проведенное моделирование показало, что в результате линеаризации 
(с использованием численного дифференцирования, как в работе [6])  
отображения Пуанкаре  был найден коэффициент апериодического ре-
гулятора, который  не позволил получать желаемый результат стаби-
лизации.  

Кроме классического метода OGY, разработаны другие методы 
синтеза регуляторов для стабилизации неустойчивых предельных 
циклов хаотических систем, в первую очередь, метод Пирагаса  [7], 
или метод управления хаосом с использованием обратной связи с за-
держкой (Delayed Feedback Control), который появился практически 
одновременно с методом OGY. Его главное достоинство: простота и 
возможность управлять хаосом по выходной координате. Недостаток: 
невозможность стабилизировать некоторые неустойчивые предель-
ные циклы из-за негативного влияния введенной задержки  [8, 9], в 
том числе из-за существенной зависимости времени задержки от пе-
риода стабилизируемого предельного цикла. При этом управление 
проводится непрерывно, как в классической системе управления, и 
малыми управлениями (что выгодно отличает управление хаосом по 
методу OGY) здесь не обойтись.  

Для управления хаосом можно также использовать  методы робаст-
ного управления. Хорошо известный метод линейного H∞ -управления 
[10] является некоторым мостом между обычным методом управления 
и методом OGY. Управление также ведется в окрестности стабилизи-
руемой орбиты с использованием γ -субоптимального  управления, но 
основная трудность здесь  —  поиск необходимых матриц для форми-
рования обобщенного объекта, обоснование аддитивного возмущения 
для компенсации нелинейной динамики объекта управления.  

Несмотря на то что имеется положительный опыт использования 
алгоритмов и методов  адаптивного управления [2, 11] и скользящих 
режимов [12] при решении задач стабилизации хаотических систем, в 
настоящей  работе они не рассматриваются. Во-первых, в связи с тем, 
что необходимо сформировать эталонную модель для адаптивного 
управления, а это в поставленной задаче сделать достаточно сложно. 
Во-вторых, вследствие так называемого  дребезжания (chattering ef-
fect) управления при движении по поверхности скольжения, что мо-
жет привести к потере устойчивости.  

В представленной статье разработан простой алгоритм стабили-
зации неустойчивого предельного цикла релейной системы  с ис-
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Рис. 3. Секущая Пуанкаре ре-
лейной системы 

пользованием отображения Пуанкаре и малых корректирующих им-
пульсов.  Коррекция проведена  в окрестности y yU U×



, т. е. учитыва-
ется  локальная окрестность стабилизируемого предельного цикла 
(неподвижной точки отображения Пуанкаре) по всем координатам 
системы.  Для нахождения коэффициента  регулятора  решена об-
ратная задача: задан коэффициент регулятора и определен результат 
его локальной работы при переходе системы из точки переключения 

т( , )a p в точку т( , )a q− , где a  — положение, а ,p q  — скорость сис-
темы в соответствующей точке переключения.  При этом размер ок-
рестности выхода yU  точки переключения т( , )a p  играет существен-
ную роль. 

Предлагаемая методика нахождения коэффициента одномерного 
регулятора и алгоритма коррекции позволяет не только решить  зада-
чу стабилизации неустойчивого предельного цикла, но и объяснить 
причину неудачных результатов моделирования при синтезе  регуля-
тора по методу  OGY. 

Аналитическое определение отображения Пуанкаре. Как извест-
но, точечное отображение Пуанкаре дает возможность преобразовать 
исходную непрерывную систему в дискретную с размерностью на еди-
ницу меньше. При этом исследование периодических, нерегулярных, в 
том числе хаотических, движений намного упрощается. Неподвижные 
точки отображения Пуанкаре определяют предельные циклы (устойчи-
вые или неустойчивые) непрерывной системы. 

Представим исходную релейную систему в пространстве состояний  

1 2

2 1 2

1

;
2 1;

.

x x
x x x
y x

=
= − + ξ +

=



                                     (1) 

Для построения точечного отображения Пуанкаре зададим параметры 
реле: 0 1;  1U a= = . В качестве секущей Пу-
анкаре (поверхность, которая трансвер-
сально пересекается траекторией с соответ-
ствующей регистрацией точки сечения 
Пуанкаре) используем  линию (одномер-
ную поверхность) 1 1x a= = , на которой 
будем фиксировать текущее значение ско-
рости 2 0x p= ≥  при переключении с –1 на 
+1. Следующая точка переключения для 
линии 1 1x a= = −  и скорости 

2 ,   0x q q= − ≥  определяется для момента 
переключения с +1 на –1 (рис. 3).  
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Отображение Пуанкаре определяет дискретное отображение 
( )q p= φ  между последовательными точками пересечения траектори-

ей линий 1 21,  0x x p= = ≥  и 1 21,  ,  0x x q q= − = − ≥  соответственно 
при произвольных, но допустимых значениях скорости 0,  0.p q≥ ≥  
Эти точки формируют так называемое сечение Пуанкаре. Построим 
отображение для нахождения только неподвижных  точек периода 1, 
т. е. неустойчивые предельные циклы будут иметь одинаковые, сим-
метричные точки * *( ) ( )p k q k= ,  где  

c 1k k= +                                                    (2) 

—  число пересечений (раскручивающейся спиральной) траектории с 
секущей Пуанкаре до следующего переключения (далее — число пе-
ресечений),  равное числу пересечений  без переключения  ck  (эти 
пересечения не формируют точки сечения Пуанкаре) плюс единица 
(учитывается первое пересечение при переключении), с линиями 

1 21,  0x x p= = ≥  и 1 21,  ,  0x x q q= − = − ≥ ,  при вращении вокруг то-
чек т т(1 0) ,  ( 1 0)−  соответственно. На секущей Пуанкаре это бу-
дет одна точка. Очевидно, что при одном пересечении c1,  0,k k= =  

переход из точки ( )т*1 (1)p в точку ( )т*1 (1)q− −  происходит менее 

чем за один оборот. 
Процедура построения отображения Пуанкаре. Начнем дви-

жение с точки т(1 0) .p ≥  На вход линейной системы (1) до оче-
редного переключения поступает сигнал 1.u = +  Найдем ее решение 
для начальных условий т(0) (1 ) .p=x  Имеем 

( )

1

2

( ) 1 exp( )sin ;

( ) exp( ) sin cos ,

px t t t

px t t t t

= + ξ ω
ω

= ξ ξ ω + ω ω
ω

 

где 21ω = − ξ — угловая скорость раскручивания спирали. Пусть в 
момент времени  0t = τ >  траектория достигает точки переключения 

т( ) ( 1 )qτ = − −x , т. е. 

( )

1 1 exp( )sin ;

exp( ) sin cos .

p t

pq t

− = + ξ ωτ
ω

− = ξ ξ ωτ + ω ωτ
ω

                            (3) 

91 



В.И. Краснощеченко 

Из уравнений (3) получим 

       
2 exp( ) ,

sin
2 exp( )cos .

tp

q p t

ω ξ
= −

ωτ
= ξ − ξ ωτ

                                    (4) 

Строго говоря, из уравнений (4) можно в параметрической форме 
(параметр τ ) определить некоторую зависимость ( ).q q p=  Однако в 
этом случае невозможно  выполнить требование неотрицательности  

0,  0p q≥ ≥  и, соответственно, получить отображение Пуанкаре. Учи-
тывая, что в соотношениях (4) присутствуют периодические функции, 
для обеспечения условия 0p ≥  перейдем к угловому аргументу :θ  

 (2 1) ,  1, 2,...;  0k kωτ = − π + θ = < θ < π ,                      (5) 

где k  — число пересечений траектории с линией   1 21,  0x x p= = ≥ до 
переключения (см. формулу (2)). Определяя из соотношения (5) пе-
ременную τ   

( )1 (2 1)kτ = − π + θ
ω

                                     (6) 

и подставляя выражение  (6) в уравнение (4), получаем 

 ( )
( )2 exp (2 1)

, , ;
sin

k
p p k

ξ ω − − π + θ ω = ξ θ =
θ

                   (7) 

( , ) 2( ctg ).q q= ξ θ = ξ + ω θ                                (8) 

Согласно формуле (8), точка q  не зависит от числа пересечений 
k  траектории  с линией 1 21,  0x x p= = ≥  до переключения: важен 
сам факт переключения, а как двигалась  траектория до точки пере-
ключения, определяется формулой  (7).  Ясно, в что интервале 
0 < θ < π  выполняется условие 0p ≥ , но для обеспечения требования 

0q ≥  необходимо уточнить верхнюю границу max .θ  Из уравнения   

    max max( ) 2( ctg ) 0q θ = ξ + ω θ =                          (9) 

найдем 
max

max 2max

cosctg
sin 1

θ ξ −ξ −ξ
θ = = − = =

θ ω ω − ξ
.  

Из выражения (9) (с учетом того, что maxsin 0θ > ) определим 
максимальный угол 

max arcsinθ = π − ω . 
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Обе параметрические функции ( ),  ( )p qθ θ  являются убывающими. 

Производная ( ctg ) 0.dp p
d

= − ξ + ω θ <
θ ω

 Производная 2
2 0

sin
dq
d

ω
= − <

θ θ
 

также определяет убывающую функцию и при максимальном угле 
maxθ = θ  траектория попадает в критическую точку  неустойчивого со-

стояния max max( ) 2( ctg ) 0.q θ = ξ + ω θ =  Пусть  в начальный  момент 
система стартует из точки A  — точки переключения реле на уровень 

1+  (рис. 4) при максимальном угле max .θ = θ  В этом случае малейшее 
отклонение от точки переключения т

0( 1 0)−− (точка B  на рис. 4)  
приводит к дополнительному обороту (точка C  на рис. 4). При этом  
система приходит в точку переключения с одним и тем же значением 
скорости ( q = ν ), так как этот виток определяется одинаковыми на-
чальными условиями последнего витка (точка B, см. рис. 4) и его ко-
нечная точка  не зависит от того, сколько до этого система сделала 
витков с пересечениями с переключения ( 2).k ≥   

 

 
 

Рис. 4. Траектории релейной системы при прохождении  
критической точки (переход от 1k =  к 2,k = 0,05ξ = ) 

 
 
На рис. 5 представлено одномерное отображение Пуанкаре для 

различных значений  k  при 0,05.ξ =  Очевидно, что равенство  

    max( , , ) ( , 1, )p k p k νξ θ = ξ + θ                             (10) 

определяет начальное значение νθ  для нахождения зависимости 
( )q p= φ при числе  пересечений 2k ≥  (напомним, что функция 
( )q p= φ  — убывающая). Подставляя соответствующие  выражения  

в равенство (10), получаем уравнение для нахождения начального уг-
ла νθ : 
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   ( )exp arcsin sinν ν
ξ π + ω + θ θ = ω ω 

.                           (11) 

При этом уровень ν  определяется выражением (8). 
Для коэффициента 0,05ξ =  угол 0,860,νθ =  уровень 1,821ν =   
(см. рис. 5). 
  

 
 

Рис. 5. Отображения Пуанкаре для релейной системы  
(аналитическое решение) при 0,05ξ =  

 
 
И наконец, найдем предельно допустимый уровень начальной 

скорости max ( ,1, ) ,p µξ θ = µ  определяющий границу области притяже-
ния. Ясно, что ,µ ≥ ν  и, следовательно, имеем следующие варианты 
расположения аттрактора и области притяжения:  

в случае строгого неравенства µ > ν  аттрактор находится внутри 
области притяжения; 

при µ = ν  граница аттрактора совпадает с границей области при-
тяжения;  

при µ < ν  процесс расходится, аттрактора и области притяжения 
нет.  

Граничная точка max ( ,1, )p µξ θ = µ  определяет неустойчивый пре-
дельный цикл периода 1 для числа пересечений  1k = (неподвижная 
точка отображения Пуанкаре), т. е. 

( , ) 2( ctg )q µ µξ θ = µ = ξ + ω θ . 
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Необходимый угол µθ  позволяет найти граничную (начальную) 
точку max ( ,1, )p µξ θ = µ  для траектории с одним пересечением 1,k =  
которая обеспечивает сходимость к аттрактору. Раскрывая левую 
часть уравнения  

max ( ,1, ) 2( ctg )p µ µξ θ = µ = ξ + ω θ  

с использованием выражения (7), получаем уравнение для определе-
ния угла :µθ  

   sin cos exp ( )µ µ µ
ξ ξ θ + ω θ = ω − π + θ ω 

.                           (12) 

Для рассматриваемого коэффициента 0,05ξ =  угол 0,649,µθ =  
уровень 2,736.µ =  

Критическое значение коэффициента kpξ  определяется  гранич-
ным условием формирования аттрактора: µ = ν  или , .ν µ ν µθ = θ = θ  
Из выражений (1), (2) составим систему уравнений: 

( ), ,exp arcsin sin ;kp
ν µ ν µ

ξ 
π + ω + θ θ = ω ω 

 

( ), , ,sin cos exp ,kp
kp ν µ ν µ ν µ

ξ 
ξ θ + ω θ = ω − π + θ ω 

 

решая которую, находим:  ,0,0674; 0,765;  2, 216.kp ν µξ = θ = µ = ν =  
Полученное  отображение Пуанкаре используем  для синтеза регу-

лятора, стабилизирующего выбранный неустойчивый предельный цикл.  
Метод OGY синтеза регулятора. Рассмотрим  классический ме-

тод синтеза регулятора, так называемый метод OGY (от первых букв 
фамилий авторов [4]).  Для синтеза линейного регулятора и стабили-
зации неподвижной неустойчивой точки периода 1 *

0( , )p U  отобра-
жения Пуанкаре линеаризуем это отображение в окрестности данной 
точки и получим 

00 **

* *
0 0

( , ) ( , )( , ) ( , ) ( )              
U UU U
p pp p

p U p Up U p U p p U U
p U ==

==

∂φ ∂φ
φ = φ + − + − =

∂ ∂

* *
0 0( , ) ( ) ( ),p U A p p B U U= φ + − + −  

где для определения коэффициентов линейного разложения  ,  A B  
используем численное дифференцирование [6]:   
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0
*

2 0 1 0

2 1

( , ) ( , ) ( , )
U U
p p

p U p U p UA
p p p=

=

∂φ φ − φ
= ≈

∂ −
, 

0
*

* *
2 1

2 1

( , ) ( , ) ( , )
U U
p p

p U p u p uB
U u u=

=

∂φ φ − φ
= ≈

∂ −
, 

* *
2 1;  ;

2 2
p pp p p p

ε ε
= + = −  2 0 1 0;  .

2 2
u uu U u Uε ε

= + = −  

Синтезируем линейный регулятор, действующий в окрестности 

{ }*: :y yU y p R p p= = ∈ − ≤ ε
 

  
*

0 ( ) : yU U u K p p p U− = ∆ = − ∈


. 
В этом случае  линеаризация одномерного отображения Пуанкаре 

имеет вид 
* * * *

0 0 0( , ) ( , ) ( ) ( ) ( , ) ( )( ).p U p U A p p B U U p U A BK p pφ = φ + − + − = φ + + −  

Используем апериодический регулятор, т. е. потребуем, чтобы в 
точке переключения выполнялось равенство 

*
0( , ) ( , )q p U p U− = φ = φ . 

Для этого решим уравнение  

0A BK+ = , 

из которого определим  необходимый коэффициент апериодического 
регулятора  

OGY
AK
B

= − .                                         (13) 

Коэффициент OGYK  при различных вариациях скорости pε  и 
управления uε  в момент переключения рассчитан по формуле (13) 
(таблица). 

Из анализа полученных значений коэффициента апериодического 
регулятора следует, что размер окрестности слабо влияет на значение 
коэффициента OGY.K  При моделировании принято, что 0,05y pε = ε =



 
и OGY 2,78K = −  (в таблице эти значения выделены серым фоном). 
Результаты моделирования для параметров 0,05;  100 c;y Tε = =



 
т(0) (1,001;  1,38)=x  изображены на рис. 6. Ясно, что предельный 

цикл не стабилизирован. 
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Значения коэффициента апериодического регулятора  OGYK−   
линеаризованного отображения Пуанкаре при различных  

вариациях параметров ,p uε ε  

( ) 2 10

*
2

*
1

,

/ 2,

/ 2

p y

p

p

p p

p p

p p

ε = ε = −

= + ε

= − ε



 
2 1

2 0

1 0

,
/ 2,
/ 2

u

u

u

u u
u U
u U

ε = −
= + ε
= − ε

 
 
OGYK−  

0,1 0,1 2,786 
0,1 0,05 2,785 
0,05 0,05 2,777 
0,2 0,2 2,824 
0,05  0,1 2,778 
0,3 0,3 2,895 

 

 
 

Рис. 6. Фазовая траектория: решение задачи стабилизации  
неустойчивого предельного цикла по методу OGY: 

т0,05;  100 c;  (0) (1,001;  1,38)y Tε = = =x


  

 
Исследуем причину отсутствия стабилизации предельного цикла  

методом OGY. В соответствии с теорией, апериодический регулятор 
должен за один шаг до очередного переключения обеспечить переход 
из точки т(1, ) , ,p p p p− + ∈    в точку * *( 1, ), 1, 4226.q q− − − =   

Сформулируем основное условие стабилизации неустойчивого 
предельного цикла: при заданной области коррекции процесс стаби-
лизации обеспечивается, если ,  q p q p− − + +− < − < . При моделирова-
нии с коэффициентом OGY 2,78K = −  и  окрестностью коррекции 

0,05y pε = ε =


 получены следующие результаты: 
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( )
*

0 OGY 0

( )
( ) Tт т(1, )   1, 496;1,3726   ( 1; 1,391)

s yt
u U K y p u U

p q

=τ ε
= + − =

− −→ → − − =





; 

*
0 OGY 0

( )
( )

т т т(1, )   (1,645;  1,3726)   ( 1;  1,510)

s yt
u U K y p u U

p q

=τ ε
= + − =

+ +→ → − − =





, 

где q−−  — терминальная  точка (переключения реле с +1 на –1) для 
начальной точки 1,38p− =   нижней границы области притяжения 
предельного цикла; q+−  — терминальная  точка (переключения реле 
с +1 на –1) для начальной точки 1,47p+ =  верхней границы области 
притяжения предельного цикла; ( )s yτ ε



 — момент окончания коррек-
ции (выход на границу yU



).  

Следовательно, поскольку q p− −− > , ,q p+ +− >  процесс стабили-
зации отсутствует, т. е. не выполнено основное условие стабилизации 
предельного цикла. 

Предлагаемый метод синтеза регулятора. Для нахождения ко-
эффициента  регулятора  решена обратная задача: задан коэффици-
ент регулятора и определен результат его локальной работы при пе-
реходе системы из точки переключения т(1, )p в точку т( 1, )q− , где 

,  p q  — скорость системы в соответствующей точке переключения. 
Коррекция траектории с помощью регулятора ( 0u U u= + ∆ , 

*( )u K y p∆ = − ) проведена в окрестностях точек переключения: 
т т

1 2( , ) ( , ) y yy y x x U U= ∈ ×


 , где { }*:y yU y R y p= ∈ − ≤ ε
 

  — окрест-

ность переменной 2y x=  при переключении; * * 1,4226p q= − = ; 2k =  — 
неподвижная точка цикла периода 1 отображения Пуанкаре стабили-
зируемого предельного цикла; принято 0,05yε =



; 

{ }: 1y yU y R y= ∈ − ≤ ε – окрестность выходной переменной 1y x=  в 
точке переключения. 

Алгоритм расчета необходимого коэффициента регулятора. 
1. Итерационно с некоторым шагом задан коэффициент регуля-

тора. 
2. Для двух начальных значений т т(1, ) , (1, )p p− + на интервале 

коррекции  т т
1 2( , ) ( , ) y yy y x x U U= ∈ ×



 , [ ]0, st ∈ τ  рассчитаны управ-

ление *
0 ( )u U K y p= + −  и траектория  

98 



Стабилизация неустойчивого предельного цикла релейной хаотической системы 

2 2
10 10

1

sh ( 2 ) ch ( )
2 2( ) ( )

at att te x ab c e x b
y t x t b

β β   + + −   
   = = + +

β β
;      (14) 

2 2
10 10

2

sh ( 2 ) ch ( 2 )
2 2( ) ( )

2 2

at att te x a ab c e x a ab c
y t x t

β β   + + + +   
   = = + +

β
  

2 2
10 10sh ( ) ch ( )

2 2 ,
2 2

at att te x b e a x bβ β   β − −   
   + +

                 

(15)

 где 2 4;aβ = − 2 ;a K= ξ + *
0;b Kp U= − +  20 10 ;c x ax p a±= − = − 0,05;ξ =

10 1.x =  
По окончании коррекции на интервале ( ]1,st t−∈ τ  ( 1t−  — момент 

переключения выхода реле на 1− ) по формулам (14), (15) найдена 
траектория с  коэффициентом регулятора 0.K =  Зафиксирован ре-
зультат перехода от одного переключения до другого. 

На рис. 7 представлены результаты расчета двухэтапного перехо-
да траектории  из начальной точки т( 1,  )p+ , _ ,  p p p+ ∈    в конечную 

т( 1,  )q− −  при различных размерах области yU .  На первом этапе в 

окрестности точки переключения, т т
1 2( , ) ( , ) y yy y x x U U= ∈ ×



 ,  ис-
пользовали линейный регулятор, формирующий корректирующие 
импульсы. После выхода траектории из этой  окрестности  на вход 
объекта подается только сигнал выхода реле 0 1u U= = , т. е.  коррек-
ция (управление неустойчивым предельным циклом, проводится в 
локальной окрестности неподвижной точки отображения Пуанкаре), 
как в  методе OGY. 

Из данных, приведенных на рис. 7, следует, что для области кор-
рекции  y yU U×



 со значением 0,3yε =  минимальный коэффициент 
регулятора minK− , который обеспечит стабилизацию предельного 
цикла, должен быть не менее 7, т. е. min ( 0,3) 7.yK− ε = >  

Только в этом случае граничная точка 1,38p p−= =  приближается 
с течением времени к циклу периода 1 (предельному циклу) для ото-
бражения Пуанкаре ( * *q p− = ). На рис. 7 выделена область  выбора ко-
эффициентов регулятора, обеспечивающих стабилизацию неустойчиво-
го предельного цикла для 0,05;  0,3.y yε = ε =



 На рис. 8, а, б 
представлены фазовые траектории для коэффициентов  5K− =  (вне 
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выделенной зоны, стабилизация отсутствует) и 8K− = (внутри облас-
ти, стабилизация осуществляется) соответственно.   

 

 
 

Рис. 7.  Зависимость для определения коэффициента регулятора 
при различных размерах области коррекции по положению  yε  

 

 
 

Рис. 8. Фазовые траектории при коэффициенте регулятора ( 0,05;  0,3):y yε = ε =


 
–K = 5 (а); –K = 8 (б) 

 
Отметим, что для окрестности 0,2yε =  необходимо обеспечить 

минимальный коэффициент min ( 0,2) 13,yK− ε = >  а для окрестности 
0,1yε =   регулятор для стабилизации рассматриваемого предельного 

цикла  при [ ]1,22K− ∈  отсутствует. 
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Согласно рис. 7, при коэффициенте регулятора 20K− =  и разме-
рах области коррекции 0,3yε =  имеем небольшое отклонение от же-

лаемого терминального значения * 1,4226q− = , как для верхней 
p p+= , так и для нижней p p−=  границ скорости :p  

( ) ( )* *max , max 1,413 1,4226 , 1,416 1,4226 0,0096.q q q q− +− + − + = − − =  

Это дает возможность  на каждом интервале коррекции (кроме 
первого, компенсирующего начальное рассогласование)  использо-
вать очень малые дополнительные управления (корректирующие им-
пульсы) для стабилизации неустойчивого предельного цикла.  При-
нимаем * 20.K− =  В этом случае после второго переключения 
корректирующие добавки управления u∆  не превысят следующих 
значений: 

[ ]* *( 1,416)20,  ( 1, 416)20 0,132 , 0,132 .u p p ∆ ∈ − − − = −   

На рис. 9, 10 представлены результаты моделирования при 
* 20;K− =  1(0) (0) 1,38;  (0) (0) 1,001y p p y x−= = = = = , 300 c.T =  На 

рис. 9, а изображен фрагмент входного сигнала объекта, где буквой 
A  отмечен один из корректирующих импульсов,  на рис. 9, б этот 
фрагмент представлен в увеличенном виде.  Отметим, что уровень 
корректирующих импульсов весьма мал. На рис. 10, а, б показаны 
фазовая траектория и ее увеличенный фрагмент B  в окрестности 
точки *(1, ).p   Стабилизация обеспечивается в полной мере. 

 

 
 

Рис. 9.  Управление  (а) и увеличенный  фрагмент (б) его корректирующей 
добавки A   при  * 20K− = , 1(0) (0) 1,38;  (0) (0) 1,001y p p y x−= = = = = , 

300 c;T = 0,05;  0,3y yε = ε =

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Рис. 10.  Фазовая траектория (а)  и  ее увеличенный  начальный фрагмент B (б) 
 для  * 20K− = ; 1(0) (0) 1,38;  (0) (0) 1,001y p p y x−= = = = = ; 300 c;T =

0,05;  0,3y yε = ε =


 

 
Заключение.  В настоящей работе предложен алгоритм стабили-

зации неустойчивого предельного цикла релейной хаотической сис-
темы. Показано, что классический метод OGY не обеспечивает  не-
обходимую коррекцию данной системы. Основная причина: 
коррекция траектории апериодическим регулятором с использовани-
ем одномерного отображения Пуанкаре по скорости  является недос-
таточной. Кроме того, необходимо учитывать и состояние (положе-
ние) системы. Этот факт отражен в полной мере в предлагаемом 
алгоритме и обеспечивает требуемое качество стабилизации локаль-
ными импульсами малой амплитуды, что подтверждено моделирова-
нием. 
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Stabilization of an unstable limit cycle  
of relay chaotic system 
© V.I. Krasnoschechenko  

Bauman Moscow State Technical University, Kaluga Branch, Kaluga,  
248000, Russia 

 
The article presents an algorithm of synthesis for stabilization of an unstable limit cycle 
of relay chaotic system. One-dimensional discrete Poincare map is used in algorithm for 
finding fixed points of the period one (limit cycles of initial continuous system). It is 
shown, that classical OGY method of dead beat regulator synthesis does not solve the 
problem as it takes into account only speed of the target coordinate what is not sufficient 
for stabilizing. The proposed algorithm is based on search of the necessary regulator fac-
tor by solving an inverse problem: at first some factor is assigned and then two-step pro-
cedure of system transition to the following switching point (with correction) is carried 
out. The task of correction is performed in a complete neighborhood of target coordinate 
position and speed, and it provides stabilization of a limit cycle by adjusting small ampli-
tude pulses in the chosen area of entry conditions (area of stabilization) as evidenced by 
the simulation results.  
 
Keywords: chaos, Poincare map, limit cycle, stabilization, relay system, regulator syn-
thesis, OGY method. 
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