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УДК 51-71:74 

Длиннопериодические колебания летательных  
аппаратов при гиперзвуковых скоростях 

© Н.И. Сидняев, П.А. Глушков 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

Дан теоретический анализ длиннопериодических (фугоидных) колебаний лета-

тельного аппарата, обладающего подъемной силой и совершающего полет с ги-

перзвуковой скоростью в произвольной атмосфере. Причиной колебаний является 

взаимный переход кинетической энергии в потенциальную при полете по траекто-

рии, имеющей колебательный характер и определяемой в первую очередь регули-

руемым продольным моментом, равным нулю при установившемся полете. Пока-

зано, что с приближением скорости к первой космической уменьшение силы тя-

жести с высотой преобладает над уменьшением плотности атмосферы так, что 

с ростом скорости период фугоидных колебаний асимптотически стремится к 

соответствующему периоду обращения летательного аппарата. Получены ана-

литические выражения для короткопериодических колебаний, или колебаний по 

углу атаки. Показано, что эти выражения и выражения для длиннопериодических 
колебаний хорошо согласуются с результатами численного решения. 

Ключевые слова: фугоидные колебания, период, стабилизация, декремент затуха-

ния, гиперзвуковая скорость, демпфирование, угол атаки, число Маха.  

Введение. На структуру обтекания летательного аппарата (ЛА) и 

расположение скачков уплотнения при больших скоростях, а следо-

вательно, и на его аэродинамические характеристики существенно 

влияют число Рейнольдса (Re), режим колебаний (число Струхаля 

(Sh)) и число Маха (М). При нестационарном обтекании аэродинами-

ческие характеристики ЛА зависят также от того, как он двигался в 

периоды, предшествующие измеренным мгновенным значениям га-

зодинамических параметров, т. е. от закона движения в целом. 

 Современные методы нестационарной аэродинамики позволяют 

определить аэродинамические характеристики тел при неустановив-

шихся движениях экспериментальным путем. Совокупности парамет-

ров определяют законы неустановившегося движения в целом, при этом 

представление коэффициентов аэродинамических сил и моментов воз-

можно в виде зависимости от коэффициентов вращательных производ-

ных первого порядка (т. е. от коэффициентов в линейном разложении 

аэродинамических сил и моментов по безразмерным кинематическим 

параметрам движения и их производным [1]).   

Динамические колебания летательного аппарата. Движение ЛА 

задается введением связанной с ним системы координат и проецирова-

нием на нее векторных газодинамических характеристик движения от-

носительно неподвижной системы координат (абсолютной скорости 
0u  

и абсолютной угловой скорости 
0).  Обозначая проекции 

0  на свя-
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занные оси через ,x ,y z  и представляя скорость 
0u  в виде 

0( )u t   

( ),u u t   где средняя скорость u не зависит от времени t, можно  

с помощью средней поступательной скорости u и безразмерных газоди-

намических параметров полностью определить движение, т. е. мгновен-

ные значения угла атаки  летательного аппарата. В этом случае газо-

динамические параметры определяются в виде 

;
u
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где u
 — скорость набегающего потока; L — характерный линейный 

размер ЛА; ,y z   — угловые скорости. 

Аэродинамические силы и моменты, действующие на ЛА в неус-

тановившемся движении, будут зависеть от мгновенных значений 

указанных параметров (их производных по времени):  

2
,

d u L
u

dt u
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а также от совокупности факторов, характеризующих установившее-

ся движение (сжимаемость, вязкость, плотность, число Маха). 

 Безразмерные коэффициенты сил и моментов в этом случае мо-

гут быть выражены через так называемые вращательные производ-

ные, которые показывают, сколь велико изменение силы или момента 

в зависимости от изменения (по времени) того или иного параметра 

1. Например, коэффициент подъемной силы  

 
0

Z Z

y y y y y z y zc c c c c c          

представляет собой, по существу, коэффициенты, учитывающие с 

достаточной для практики точностью основные факторы 1, 2, вы-

званные нестационарностью обтекания исследуемых тел. Параметры 

, z

y yc c  — это статические производные устойчивости, а , z

y yc c  — 

динамические производные устойчивости. 

Удобство введения вращательных производных состоит в том, 

что они позволяют исключать из рассмотрения время t, так как дви-

жение тела, имеющего шесть степеней свободы, вполне определяется 

значением указанных параметров и их производных по времени. При 

этом следует иметь в виду, что в наиболее важных для практики слу-

чаях задача нестационарного обтекания упрощается, так как многие 

параметры и их производные обращаются в нуль. 

Экспериментальное определение вращательных производных в 

большинстве случаев связано с изучением сил и моментов, дейст-

вующих на поверхность ЛА. При этом, чтобы определить коэффици-
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енты параметров , , , ,u u    необходимо измерить силы и моменты, 

действующие на поверхность тела при constu   и колебаниях ЛА.  

Особый интерес представляет движение тангажа, которое назы-

вают главным видом движения. Обычно при таком движении возни-

кают продольные колебания, которые хорошо описываются синусо-

идальными зависимостями для производных или :    

sin , sin ,zА t D t        

где A , D  — амплитуды колебаний;  ,   — частоты колебаний. 

 Эти зависимости определяют гармонический закон изменения 

производных и .   Можно рассмотреть три вида движения (рис. 1), 

каждый из которых описывается таким законом 1, 3–5. 

Рис. 1. Частные случаи движения ЛА 

 

Первый вид фугоидного движения (см. рис. 1, а) соответствует ус-

ловию 0  , sin .z D t    В этом виде движения ось тела, совпа-

дая с направлением полета ( 0),   совершает вдоль траектории коле-

бания в соответствии с гармоническим законом. Второй вид движения 

(см. рис. 1, б) характеризуется тем, что ось тела сохраняет свою ориен-

тировку вдоль траектории, так что 0.z   При этом однако меня-

ется угол атаки в соответствии с гармоническим законом изменения 

производной угла атаки . Третий вид движения (см. рис. 1, в) харак-

теризуется прямолинейной траекторией, вдоль которой ось аппарата 

изменяет свое положение по синусоидальному закону. В этом случае 
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углы и   равны и совпадают по фазе, так что .z     При та-

ком движении существенными производными являются коэффициен-

ты подъемной силы и момента демпфирования, соответственно 

и .z z

y y y yc c m m     

Состояние статического равновесия гиперзвукового летательного 

аппарата (ГЛА) определяется условиями полета, а именно силовым 

воздействием, при котором суммарный аэродинамический момент от-

носительно центра масс равен нулю ( 0)M   в случае отсутствия вра-

щения ( 0),   а также изменения углов атаки ( 0).   Такое равнове-

сие соответствует режиму установившегося прямолинейного движе-

ния ЛА, при котором параметры движения не зависят от времени.  

Очевидно, что для осесимметричных конфигураций, обтекаемых в 

продольном направлении, равенство 0M   достигается при нулевых 

углах атаки. Таким образом, в этом случае равновесие, называемое  

балансировкой аппарата, возникает при балансировочных углах атаки 

и скольжения, равных нулю бал( 0).   Для того чтобы сбалансиро-

вать полет при других углах атаки 
бал( ),    требуются дополнитель-

ные управляющие усилия.  

Характер равновесия ЛА определяется его статической устойчи-

востью или неустойчивостью. Для выявления сущности статической 

устойчивости можно рассмотреть обтекание потоком воздуха в аэро-

динамической трубе летательного аппарата, закрепленного в центре 

масс (ц. м.) и имеющего возможность поворачиваться вокруг него 

(рис. 2). Возможная зависимость между и zM  показана на рис. 2, 

где положениям равновесия соответствуют точки 1, 2, 3, определя-

ющие балансировочные углы 
1бал 2 бал 3бал, , ,    при которых дости-

гается равенство нулю аэродинамического момента. 

Рис. 2. Зависимость аэродинамического момента от угла  

  

Рассмотрим равновесие в точке 1. Если отклонить ГЛА на угол, 

меньший или больший 
1бал , и предоставить аппарат самому себе, то 

возникший соответственно положительный или отрицательный мо-

мент вызовет увеличение (уменьшение) этого угла до прежнего зна-
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чения 
1бал ,  т. е. эти моменты окажутся стабилизирующими. Таким 

образом, положение равновесия в точке 1 у с т о й ч и в о  (ГЛА ста-

тически устойчив). Аналогично можно показать, что такое положе-

ние устойчивого равновесия будет соответствовать точке 3. В первом 

случае вращение ГЛА будет продолжаться до тех пор, пока он не 

займет положение равновесия в точке 1, а во втором случае — в точ-

ке 3. Что же касается точки 2 
2 бал( ),  то в ней положение равновесия 

будет  н е у с т о й ч и в о. Действительно, как видно из рис. 2, при зна-

чениях ,  больших или меньших балансировочных углов, возникает 

соответственно положительный или отрицательный момент, который 

стремится увеличить (или уменьшить)

 

.  Таким образом, эти момен-

ты являются дестабилизирующими и ГЛА будет статически неус-

тойчивым.  

Аналитические выражения для длиннопериодических (фугоид-

ных) и короткопериодических (по углу атаки) колебаний невращаю-

щегося ЛА получены в собственной плоскости симметрии. По фуго-

идным колебаниям проведены классические исследования для 

относительно медленного движения ЛА по тангажу при постоянном 

угле атаки и нулевом продольном моменте [6–10]. При рассмотрении 

таких длиннопериодических колебаний предполагалось, что сила  

тяги равна силе сопротивления, так что фугоидные колебания харак-

теризуют взаимный обмен между кинетической и потенциальной 

энергиями при постоянном коэффициенте подъемной силы и незна-

чительном демпфировании. С другой стороны, короткопериодиче-

ские колебания обычно представляют собой колебания по углу атаки 

относительно высокой частоты, затухающие так быстро, что скорость 

полета (или кинетическая энергия) не успевает измениться, в то  

время как высота (или потенциальная энергия) изменяется незначи-

тельно. 

В работе [2] показано, что при полете с гиперзвуковыми скоро-

стями период так называемых короткопериодических колебаний мо-

жет превышать период фугоидных колебаний, если высота полета 

столь велика, что восстанавливающий аэродинамический момент 

становится незначительным. Таким образом, короткопериодические 

колебания — это колебания по углу атаки в противоположность фу-

гоидным колебаниям, которые совершаются при почти постоянном 

значении угла атаки.  

В работе [1] при условиях, что разность сил тяги и лобового со-

противления близка к нулю, коэффициент подъемной силы постоя-

нен, момент инерции относительно поперечной оси незначителен и 

плотность атмосферы постоянна, получено выражение для периода 

незатухающих фугоидных колебаний вида 
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2

.
u

T
g

    (1) 

Выражение (1) справедливо для любого ЛА, обладающего подъемной 

силой и совершающего полет с нулевым продольным моментом на 

постоянной высоте или с постоянной горизонтальной скоростью u 

при малых демпфирующих силах или моментах. 

В работе [6] показано, что изменение плотности воздуха с высо-

той, имеющее место в действительности, приводит к уменьшению 

периода фугоидных колебаний, особенно в том случае, когда ско-

рость возрастает. В работах [1] и [3] при определенных допущениях 

получено выражение для периода незатухающих фугоидных колеба-

ний в стратосфере  

  

1/2
22

1 ,
2

u u
T

g g



  
     

  
  (2) 

где   — плотность атмосферы; 
r


 


 — производная плотности 

атмосферы. 

Для земной атмосферы 

  3 11
6,71 10 м .

r

  
   

  
  (3) 

Период фугоидных колебаний при достижении трансзвуковых 

скоростей уменьшается приблизительно на 30 %, а при сверхзвуко-

вых скоростях становится еще меньше. 

В работах [9–15] отмечено, что необходимо учитывать эффект 

сжимаемости. В этих работах получены линеаризованные уравнения 

движения для возмущенного горизонтального полета над Землей и 

выведены уравнения пятого порядка для собственных значений ком-

бинированных уравнений движения, в которых выражения для аэро-

динамических сил и моментов учитывали эффект сжимаемости. Эти 

уравнения и их приближенные решения, полученные в работе [4], 

дают возможность определить все необходимые аэродинамические 

характеристики сверхзвукового ЛА. В работе [4] получено выраже-

ние для затухающих длиннопериодических колебаний при сверхзву-

ковых скоростях: 
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где а — скорость звука; '
a

a
r





 — производная скорости звука; 
LC  — 

коэффициенты подъемной силы. 

В работе [2] с помощью численного анализа показано, что при 

гиперзвуковых скоростях необходимо также учитывать центробеж-

ную силу, обусловленную кривизной траектории полета на постоян-

ной высоте над Землей. Кроме того, с приближением к первой кос-

мической скорости на ЛА начинает влиять изменение силы тяжести с 

высотой, т. е. все аэродинамические коэффициенты перестают зави-

сеть от числа Маха. При этих условиях показано, что период фугоид-

ных колебаний при постоянном малом угле атаки и нулевой разности 

сил тяги и лобового сопротивления определяется выражением 

  

1/2
2 2

22 2
1 (1 ) ,

2

u u F
T F

g g R



   
       

  
  (5) 

2 2 6( ) 1, 6,4 10 м,F u gR R     

где R  — расстояние от центра Земли до траектории установившегося 

полета на постоянной высоте.  

Как показывает рис. 3, влиянием кривизны траектории нельзя 

пренебрегать, если 0,4,F  или 3230u   м/с. 

Период фугоидных колебаний при отсутствии лобового со-

противления и демпфирования. Если предположить, что коэффи-

циент подъемной силы постоянен, сила тяги равна суммарной силе 

лобового сопротивления и угловое ускорение по тангажу равно ну-

лю, то в таком случае удобно воспользоваться системой осей, одна из 

которых все время совпадает с касательной к траектории, как показа-

но на рис. 4.  При этом  

  

 

2 2

2 2
2

2

2

2

sin ,

1
cos ,

2

1
0,

2

L

Y m

dV R R
m mg mg

dt r r

d R V
mV V SC m g

dt r r

d
I V SLC

dt

   
        

   

   
      

   

   
  

 (6) 

где m, L — масса и длина летательного аппарата; V — результиру-

ющая скорость; S  — площадь миделевого сечения; 
mC , 

LC  — коэф-

фициенты момента тангажа и подъемной силы; 
YI  — момент инер-

ции относительно оси Y. 
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Тогда для случая медленных колебаний, соответствующего поле-

ту с фугоидными колебаниями по траектории, эквидистантной по-

верхности Земли, уравнения (6) можно линеаризовать посредством 

выражений: 

 
1

sin ,
dr

V dt
      

2

2 2

1 1
,

d d r dr dV

dt V dt V dt dt


     ( ) 1 ( ) ,r t R e t   

  ( ) 1 ( ) ,V t u t    ( ) ( ) 1 ( / ) ( ) ,r R e t R       

 ,
d gR de

u
dt u dt


   2

2
( ),

gR
e o e

u
    

 
2 2 2

2 2 2

( ) 2
0,

2 ( )

Ld e R u SC gR u
R e

dt mR R u R

   
      

  
  

где ( )e t  — логарифмический декремент затухания. 

Период фугоидных колебаний при этом определяется формулой 

  

1/2

0

2 2

2 2
1 ,

R L gR gR
T R

u mg u u



    
      

   
  (7) 

Рис. 3. Зависимость периода фуго-   
 идных колебаний от параметра F:  

1 — 
2

;
u

T
g

   2
 

— уравнение (2);  

3 —  уравнение (5); 4 — уравнение (13) 

 

Рис. 4. Система осей, одна из кото- 
    рых касательная к траектории  
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которая может быть сведена к уравнению (5), поскольку 

  
2 2

20 1 1 ,
2

Lu SC L u
F

mg mg gR


       (8) 

где 
0L  — подъемная сила в установившемся полете.  

Из уравнения (7) и рис. 3 следует, что при 1F   период фугоид-

ных колебаний асимптотически стремится к периоду обращения по 

круговой орбите. 

Период и декремент затухания фугоидных колебаний при ги-

перзвуковых скоростях. При сравнительно медленных фугоидных 

колебаниях угол атаки и коэффициент подъемной силы можно счи-

тать малыми и постоянными, а угловое ускорение — пренебрежимо 

малым. При этих условиях уравнения [2] для Земли сводятся к сле-

дующим: 

  0 0

2

02

,

2 ,

, ( ) ( ) , ,

u r

u r

d u
X u X r mg m

dt

r d u r
Z u Z r mg mq u mu q

R dt R R

d r R d u r
u g r g R q q

dt r dt R R


     

    
          

 

   
     

 (9) 

где оси координат связаны с ЛА, как показано на рис. 5. 

Рис. 5. Система связанных осей: 

1 — возмущенная траектория полета; 2 — средняя линия траектории полета  
 

 

В матричной форме уравнения (9) запишутся в виде 
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0 0

2
0.

0

u r

u r

d
m X mg X

dt u
mu d mg mu

Z mq mu Z q
R dt R R

r
d

u
dt

 
  

  
          
  
    

  
 

(10) 

 Необходимо отметить, что произведение проекций сил на соот-

ветствующие оси 
r u u rX Z X Z , а 

0 / .q u R   Тогда корни   характе-

ристического уравнения этой матрицы определяются уравнением  

 
2 2

3 2

2 2

2 2
0,u r u u rX Z g Z u X g u X u

m m u m R m R R m R

     
               

    
 (11) 

где последние члены, не содержащие  , характеризуют изменение 

силы сопротивления.  

Поскольку изменение силы сопротивления может сказаться на 

периоде фугоидных колебаний лишь по истечении многих циклов  

[2, 4] , то период колебаний можно определить из уравнения (11) как 

мнимую часть величины .  В упрощенном уравнении 

  
2

2

2
0,u r uX Z g Z u

m m u m R
 

 
       

 
  (12) 

так что 

   

1/2
22 2

22 2 1
1 1 ,

2 2

u u F Q
T F

g g R mg



      
         

      

 (13) 

   2 2 ,F u gR  21
.

2
DQ u SC     

На рис. 3 представлены изменения периода фугоидных колеба-

ний при совместном влиянии факторов, учтенных в уравнении (13),  

в то время как рис. 6 показывает, насколько хорошо уравнение (13) 

согласуется с численным решением для периода фугоидных колеба-

ний, полученным в работе [2]. 

 Производные параметров аэродинамических характеристик для 

продольных колебаний на гиперзвуковых скоростях при постоянной 

тяге и 0   получены из следующих соотношений: 

 2 20,5 0,5 cos sin ,C D LX V SC V S C C        
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1 ,
2 ju D D

u dr
X uSC uSC

du

 
      

 
  0,5 ,D LX uS C C

     

 
0,5 ,

/

D
q

C
X uSL

Lq u


  


  20,5 / ,r DX u SC       

 2 20,5 0,5 cos sin ,N L DZ V SC V S C C      

1 ,
2 ju L L

u dr
Z uSC uSC

du

 
      

 
 

 0,5 ,L DZ uS C C
     

 
0,5 ,

/

L
q

C
Z uSL

Lq u


  


 

 20,5 / ,r LZ u SC       

20,5 ,mM V SLC   0,u rM M   0,M   

0,5 ,mC
M uSL


 

   
20,5 .

/

m
q

C
M uSL

Lq u


 


 

Если сила тяги равна силе со-

противления, то соответствующий 

0DC   и уравнение (13) сводится 

к уравнению (5). В то же время 

затухание фугоидных колебаний 

отсутствует, если не выполняется 

условие 0.DC   Если сила сопро-

тивления конечна, то коэффициент 

демпфирования можно определить 

из действительной части    в урав-

нении (11). Так как численный 

анализ работы [2] показал, что за-

тухание фугоидных колебаний не-

значительно, можно предполо-

жить, что  

                       ,            (14) 

где     —  малая действитель-

ная величина; 
  — комплексный 

корень уравнения (12). Тогда, под-

ставляя уравнение (14) в (11),  

отбрасывая члены порядка 2  и 

оставляя только главные члены, 

 

Рис. 6. Зависимость периода ко-
лебаний от высоты: 

1 — численное решение; 2 — фуго-
идные колебания (13); 3  — период 
обращения; 4 — короткопериоди- 
              ческие колебания (25) 
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получаем следующее приближение первого порядка при 2 :D LC C  

  
         

      

2 2

2 2 2 2

2 2
.

2 (2 ) 2

u r

L

X m g R u R X m u R

u R u SC m g u

       
          

  (15) 

Действительная часть   дает декремент затухания в виде  

     
     

     2

2
exp ,

2 2 2

D D

LL

u g u u RuSC C
t

m CR F m SRC

       
    

         

 (16) 

или с учетом уравнения (8) 

  
     

     2 2

00

2
exp .

2

u g u u Rg Q Q
t

u mg LR F mgF L

       
    

        

  (17) 

Колебания по углу атаки. Высокочастотные колебания по углу 

атаки при constV u   обычно являются быстрозатухающими и 

имеют малый период на высотах ниже 60 км [2]. При гиперзвуковых 

скоростях они могут быть описаны следующими уравнениями [3] в 

связанной системе координат (см. рис. 5):  

  
2

2
0,

d d
b c

dt dt

 
      (18) 

  
  1

,
gN m

u du
b C C

L u dt
       (19) 

 
2

gm m N N

u u d
c C C C C

L L dt  

 
       

 
 

  
2 2

2

1 1
,

gN m

du du d u
C C

L dt u dt dt u

  
    

 
 (20) 

где 

 310 ,
2

SL

m


    

2

6,
mL

b
    ,N L DC C C

 
   

 
.

/g

m
m

C
C

Lq u





  

Известно, что члены уравнения, содержащие ускорения, играют 

важную роль лишь в задачах входа в атмосферу с гиперзвуковыми 

скоростями, для которого характерны большие значения отрицатель-

ного ускорения. Поэтому в случае установившегося гиперзвукового 

полета по траектории, параллельной земной поверхности 
0( 0),   

уравнения (19) и (20) можно свести к следующим: 
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    ,
gL D m

u
b C C C

L 

 
    

 
 (21) 

   
2

,m

u
c C

L 

 
    

 
  (22) 

так как 

   .
gm m L DC C C C

 
    

Тогда период колебаний аппарата по углу атаки на гиперзвуковых 

скоростях  

   
1/2

2 ,m

L
T C

u 

 
   

 
  (23) 

а декремент затухания определится выражением  

   exp .
2 gL D m

u
C C C t

L 

   
     
   

  (24) 

 Выражение для члена, учитывающего влияние высоты, получено 

в работе [2] и имеет вид 

 

22

2 2

1,41 1,41 1,41
,

0,5

mC mgL gL L

V SR Ru R

  
     

     
   

где 

 

2

2

2

3
3

.
0,5

Y

m

u
I

C LR

u SR R

 
       

    
  

Отсюда следует, что выражение 

(23) можно заменить выражением вида 

  
1/2

2

2 3 .m

L L
T C

u R



  
      

   

 (25) 

Графики на рис. 7, где n — число 

циклов, за которое амплитуда колеба-

ний уменьшается вдвое, демонстри-

руют удовлетворительное совпадение 

аналитической зависимости (17) с 

численным результатом работы [2] 

для затухания фугоидных колебаний 

при постоянной тяге и гиперзвуковых 

скоростях полета.  

Рис. 7. Кривые демпфирования: 

 1 — численное решение; 2 — ко-
роткопериодические колебания (24);  
   3 — фугоидные колебания (17) 
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Зависимость (17) показывает, что демпфирование, обусловленное 

наличием градиента плотности атмосферы, становится преобладаю-

щим при полете с большими скоростями и на больших высотах. 

Заключение. Сравнение аналитических решений с численным 

решением работы [2] показывает, что зависимость (24) дает удовле-

творительное приближение для декремента затухания колебаний по 

углу атаки при гиперзвуковых скоростях, а уравнение (23) для пе-

риода этих колебаний дает удовлетворительные результаты для вы-

сот, меньших 120 км. Однако на больших высотах аэродинамические 

силы и моменты практически не учитываются, поэтому в таких слу-

чаях следует учитывать влияние незначительного градиента поля тя-

готения на распределение масс в пределах самого ЛА. Необходимо 

отметить, что уравнение (25) можно рассматривать как частный слу-

чай уравнения (18) и что оно дает результаты, согласующиеся для 

всех высот с результатами численного анализа. Полученные в на-

стоящей работе выражения для периода и декремента затухания ко-

лебаний показывают, что при всех скоростях, близких к скорости 

звука или превышающих ее, большую роль играет градиент плотно-

сти атмосферы, уменьшающий период и увеличивающий декремент 

затухания длиннопериодических колебаний. 
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Long-period oscillations of aircraft at hypersonic speeds 

© N.I. Sidnyaev, P.A. Glushkov  
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The article presents the theoretical analysis of the long-period (phugoid) aircraft oscilla-

tions, which has a lifting force and performs a flight at hypersonic speeds in any atmos-

phere. Oscillations are caused by mutual transition of kinetic energy into potential ener-

gy during the flight along the path having an oscillatory character and being determined 

primarily by controlled longitudinal zero momentum in steady flight. The study shows 

that with the speed approximating to the first cosmic speed, the decrease in gravity at 

height dominates the decrease in density of the atmosphere, so that with increasing speed 

the period of phugoid oscillations tends asymptotically to the corresponding period of the 

satellite. During the research there were obtained analytical expressions for the short-

period oscillations or vibrations at the angle of attack. The study demonstrates that these 

expressions, as well as the expressions for the long-period oscillations are in good 

agreement with numerical solutions. 

Keywords: phugoid oscillations, period, stabilization, damping rate, hypersonic speed, 

damping, angle of attack, Mach number. 
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