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регуляторов паровой энергетической турбины  

с использованием аппарата матричных операторов 
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Калужский филиал МГТУ им. Н.Э. Баумана, Калуга, 248000, Россия 

Предложен алгоритм идентификации параметров — постоянных времени турби-
ны с использованием градиентного метода с настраиваемой моделью. Настраи-
ваемая математическая модель имеет такую же структуру, как и объект иден-
тификации. Критерий идентификации формируется на основе функции потерь, 
которая представляет собой невязку между левой и правой частями уравнения, 
описывающего настраиваемую модель. Тем самым удается избежать необходи-
мости нахождения в явном виде решения нелинейного уравнения для настраивае-
мой модели. Вместо выходного сигнала  в модели используется сигнал, наблюдае-
мый на выходе идентифицируемого объекта. Поскольку математические модели 
являются нелинейными, для решения задачи применены линеаризация Ньютона – 
Канторовича и аппарат матричных операторов. Рассмотрены особенности вы-
числения вектора градиента, алгоритм идентификации и его организация. Приве-
дены результаты идентификации двух постоянных времени для математической 
модели турбины ПТ-12/15-35/10М. 

 Ключевые слова: идентификация, турбина, градиентный оператор, критерий, 
параметры, постоянные времени. 

Введение. Эффективность функционирования любой системы 
определяется тем, как работают ее управляющие устройства. Их про-
ектирование предполагает наличие достаточно полной информации о 
математических моделях объектов управления. Без знания математи-
ческой модели объекта нельзя синтезировать оптимальные для дан-
ной системы регуляторы. В связи с этим одной из определяющих за-
дач при проектировании любой системы управления является 
идентификация ее математической модели. Наиболее часто это пара-
мет-рическая идентификация. Результаты решения задачи идентифи-
кации служат основой для проектирования систем управления, не 
располагая которыми часто нельзя осуществить ни оптимизацию, ни 
синтез регуляторов, ни анализ систем управления. Для одних объек-
тов управления идентификацию можно выполнять с помощью тесто-
вых исследований с последующей обработкой выходных сигналов на 
заданные испытательные сигналы и построением математической 
модели. Для других объектов тестовые испытания недопустимы и 
идентификацию можно провести только в режиме их нормальной 
эксплуатации. К таким объектам управления относятся энергетиче-
ские паровые турбины. 
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Особенность энергетических турбин состоит в том, что параметры 
их систем регулирования не являются постоянными в течение всего 
времени эксплуатации. В зависимости от нагрузки изменяется эффек-
тивная мощность турбины и, соответственно, — давление, температура, 
расход пара на турбину, силы, действующие на клапаны, и т. д. Подоб-
ного рода отклонения носят, как правило, случайный характер. В задан-
ной по структуре математической модели изменяются коэффициенты 
передачи и постоянные времени отдельных звеньев. Поэтому при про-
ектировании совершенных регуляторов необходимо более точно знать 
истинные значения параметров объекта управления. 

В работе предложен алгоритм, позволяющий проводить иденти-
фикацию в режиме нормальной эксплуатации объекта. 

Отметим также, что рассматриваемый подход применим не только к 
конкретному  объекту — турбине ПТ-12/15-35/10М, но и к другим тур-
бинам и турбоагрегатам, например К-8-0,65ПА, К-800-130/3000 [1–3], 
поскольку они имеют близкие по структуре математические модели. 

Постановка задачи. Полагаем, что математическая модель объ-
екта идентификации — турбины — и ее системы регулирования по 
частоте вращения ротора описывается следующей системой диффе-
ренциальных уравнений [4]: 

( ) ( )1 / ,
,

T d dt
T d dt

ϕ

ξ

ϕ = − θ ξ − λ δ − θϕ

ξ = µ − ξ
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0
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T d dt z

z z z z z
µ


≤ ∆µ = ∆

 − ∆ > ∆

                       (1) 

.z
dzT z
dt

ϕ = − + − − µ  δ
 

Здесь ϕ  — относительное изменение частоты вращения ротора тур-
бины; ξ  — относительное изменение расхода пара; µ  — относи-
тельное отклонение поршня сервомотора; z  — относительное откло-
нение поршня золотника; δ  — степень неравномерности системы 
регулирования; , , , zT T T Tϕ ξ µ  — соответствующие постоянные вре-
мени; λ  — относительное отклонение электрической нагрузки гене-
ратора; 0z∆  — относительная высота треугольного профиля кромок 
поршня отсечного золотника сервомотора. 

Структурная схема системы регулирования турбины по угловой 
скорости изображена на рис. 1. 
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Рис. 1. Структурная схема системы регулирования турбины 

 
Требуется определить постоянные времени сервомотора Tµ  и от-

сечного золотника .zT  
Решение задачи. В основу положена известная концепция иден-

тификации с настраиваемой моделью [5]. Алгоритм идентификации 
можно пояснить схемой, представленной на рис. 2. 

 
Рис. 2. Схема алгоритма идентификации 

 
Полагаем, что настраиваемая модель имеет такую же структуру, 

как и объект идентификации. Идентификации подлежат только пара-
метры объекта [ ]1 2p p=P , 1 2, .zp T p Tµ= =  Соответственно на-
страиваемая модель описывается системой уравнений вида 
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4
2 1 3 4

1 .dxp x x x
dt

= − − −
δ

                    (2) 

 
Под выходами объекта идентификации и настраиваемой модели 

будем понимать соответствующие их математическим моделям век-
торы фазовых координат: [ ]т( ) ( ) ( ) ( ) ( )R t t t t z t= ϕ ξ µX  — вектор фазо-

вых координат объекта, [ ]т
1 2 3 4( ) ( ) ( ) ( ) ( )M t x t x t x t x t=X  — вектор фа-

зовых координат модели. Поскольку вектор ( )M tX  косвенно зависит 
от вектора настраиваемых параметров P , можно записать: ( ,  ).M tX P  
Необходимо также отметить, что все элементы вектора ( )R tX  — из-
меряемые величины. 

В ненормированной нормальной форме Коши уравнения можно 
записать следующим образом: 
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Очевидным является тот факт, что выходной сигнал настраивае-
мой модели зависит от вектора P  настраиваемых параметров. Со-
гласно алгоритму идентификации (см. рис. 2), разность выходных 
сигналов объекта и настраиваемой модели образует невязку: 

( , ) ( ) ( , )R Mt t t= −E P X X P . 

Для оценки соответствия настраиваемой модели идентифицируе-
мому объекту используем следующий критерий качества идентифи-
кации: 

( )( ) ( , )J F t=P E P .                        (4) 
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Здесь ( )( , )F tE P  — функция потерь:  

( ) ( ) ( )
1

т( , ) ( ) ( , ) ( ) ( , )
i

i

t

R M R M
t

F t t t t t dt
+

= − −∫E P X X P X X P , 

( )1,  i it t t +∆ =  — интервал времени, на котором выполняется один шаг 
итерационного процесса идентификации. 

Таким образом, критерий качества идентификации принимает вид 

( )( ) ( ), ( , )R MJ F t t=P X X P .                           (5) 

Чем меньше значение функции потерь, тем выше качество иденти-
фикации. Однако данная функция потерь требует нахождения в яв-
ном виде вектора ( , )M tX P  фазовых координат модели.  

Более эффективной с точки зрения реализации градиентного ме-
тода идентификации является функция потерь, формируемая как не-
вязка между левой и правой частями уравнения (3). В данном случае 
необходимо вместо выходного сигнала ( )M tX  модели использовать 
сигнал ( )R tX , наблюдаемый на выходе идентифицируемого объекта. 
Тогда функцию потерь можно представить в виде 

( )
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( ), ( , ) .
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∫
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



P X F X B
X X P

P X F X B

  (6) 

Критерий качества идентификации по-прежнему имеет форму (5). 
Полагаем, что критерий качества идентификации, представляю-

щий собой функцию от идентифицируемых параметров, дважды 
дифференцируем по своим аргументам. Тогда условия оптимально-
сти искомых параметров P  можно записать следующим образом: 

т

1 2

( ) ( )( ) 0J JJ
p p

 ∂ ∂
∇ = = ∂ ∂ 

P PP ,       (7) 

22
T

, 1

( )( ) 0
i j i j

JJ
p p

=

 ∂ ∇∇ = > ∂ ∂  

PP .             (8) 

Полагаем также, что достаточное условие оптимальности (8) вы-
полнено. Тогда можно построить следующий простейший градиент-
ный алгоритм идентификации: 

1 ( )i i i iJ+ = − ρ ∇P P P ,         (9) 
где iρ  — коэффициент, изменяющий скорость движения по градиенту. 
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Ясно, что задача сводится через искомые параметры настраивае-
мой модели к выражению для вектора градиента ( )J∇ P . 

Вычисление вектора градиента ( )J∇ P . Недостаток рассмот-
ренной функции потерь (6) заключается в том, что в подынтеграль-

ное выражение входит производная ( )R tX


 измеряемого сигнала. Вы-
ходной сигнал объекта, как правило, измеряется с использованием 
цифровых датчиков, поэтому при вычислении его производных воз-
можны большие погрешности, которые вносят ошибки в результаты 
идентификации. Эффект усиливается, поскольку вектор измеряемых 
фазовых координат содержит четыре элемента. 

Избежать операции дифференцирования сигнала ( )R tX  можно, 
если преобразовать функцию потерь (6). Для этого необходимо вос-
пользоваться линеаризацией Ньютона – Канторовича и методом мат-
ричных операторов.  

Согласно методу линеаризации Ньютона – Канторовича, нели-
нейные зависимости в математической модели имеют аналитический 
вид. Наличие нелинейной зависимости в реальной системе обуслов-
лено конструкцией поршня золотника сервомотора. Нелинейная ха-
рактеристика отсечного золотника является нечетно симметричной. 
При малых значениях сигнала нелинейная характеристика изменяет-
ся в соответствии с квадратичным законом, при больших — по ли-
нейному закону. Несмотря на то что характеристика нелинейного 
элемента содержит точки разрыва, она хорошо аппроксимируется 
аналитической полиномиальной зависимостью с нечетной высшей 
степенью аргумента вида 

0
( )

l
i

i
i

F z c z
=

= ∑ .              (10) 

Для рассматриваемой нелинейности с параметром 0  = 0,3z∆  при 5l =  
коэффициенты ic  имеют следующие значения: 0 0,0;c = 1 0,475;c =  

2 0,0;c =   3 1, 295;c =  4 0,0;c =  5 0,832c = − . 
Полагаем, что в настраиваемой модели нелинейная характери-

стика является аналитической (10). Тогда настраиваемая модель опи-
сывается системой уравнений (3) с правой частью: 

( )

1 2

2 3
5

4
0

1 3 4
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M i
i
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x x

x x
t

c x

x x x

=
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 − − −
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∑
F X P . 
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Линеаризация Ньютона – Канторовича достаточно подробно рас-
смотрена в работе [6]. С использованием данной процедуры можно 
перейти от уравнения (3) к последовательности уравнений: 

11

1 0

( ) ( ) ( ) ( ) ( ),
( ) , 0,  1,  2,  ...,

k k
M M kk

M k i

t t t t t
t k

++

+

⋅ = + λ +

= =



P X A X B Z
X X

        (11) 

где ( )( ) ( )k
M kt t′= XA F X ; 

( )( ) ( ) ( ) ( )k k
M k M kt t t t= − +Z A X F X ,     ( )

4

, 1

( ) i
M k k

j i j

ft
x

=

 ∂ ′ =  
∂  

XF X . 

Уравнения (11) являются линейными на каждом шаге итерационного 
процесса по отношению к искомому решению ( )M k tX . 

Для настраиваемой модели матрица ( )k tA  и вектор ( )k tZ  имеют 
вид: 

1
4

1

(1 ) 0 0

0 1 1 0
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0 0 0 ( )

1 0 1 1

k l
i

i k
i

t
ic x t−

=

− θ −θ δ 
− 
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 
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т

4
0

( ) 0 0 (1 ) ( ) 0
l

k i
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i
t i c x t

=

 
= − 

 
∑Z . 

С учетом уравнений (11) критерий качества идентификации мож-
но записать следующим образом: 

1

т

( ) ( ) ( ) ( ) ( )
( ) .

( ) ( ) ( )( ) ( ) ( )

i

i

k k
R Rt

t k k
R R

t t t t t
J dt

t t t t t t

+

  
 ⋅ − − λ − × 
  =  

  
× ⋅ − − λ −  

  

∫









P X A X B Z
P

P X A X B Z

   (12) 

Уравнения (11), а также критерий (12) можно параметризовать и 
тем самым избежать процедуры дифференцирования сигнала, на-
блюдаемого на выходе идентифицируемого объекта. Для этого вос-
пользуемся аппаратом матричных операторов [7]. 
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Сигналы ( )R tX , ( )tλ , функцию ( )k tZ  и начальные условия 
( )R itX  разложим по заданному ортонормированному базису 

[ ]{ }1( ) : 1, , ,j i iФ t j t t t += ϕ = ∞ ∈ : 



4
ˆ( ) ( )R t t= XX FT C , 

1
ˆ( ) ( )t t λλ = FT C , 

4
ˆ( ) ( )k t t= ZZ FT C ,   0

4
ˆ( ) ( )i it t= XX FT C . 

Здесь  ( )1 2 3 4
4 ( ) diag ( ) ( ) ( ) ( )t FT t FT t FT t FT t=FT ;    1

1( ) ( )t FT t=FT , 

[ ]1 4
1 2( ) ( ) ( ) ( ) ( )NFT t FT t t t t= = = ϕ ϕ ϕ  . 

Спектральные характеристики ĈX , ˆ ZC , Ĉλ  представим в сле-
дующем виде: 

1 2 3 4
Tˆ x x x x =  

XC C C C C ,   1 2 3 4
тˆ z z z z =  

ZC C C C C , 

где 
T

1 2
i i i ix x x x

NC C C =  C , 
т

1 2
i i ii z z zz

NC C C =  C  ,
т

1 2
ˆ

NC C Cλ λ λ λ =  C  , 
1

( ) ( ) , 1, , 1, 4
i

k

i

t
x

k jj
t

C x t t dt j N k
+

= ϕ = =∫ ;   
1

ˆ ( ) ( ) , 1,
i

i

t

j j
t

t t dt j N
+

λ = λ ϕ =∫C , 

1

( ) ( ) , 1, , 1, 4
i

k

i

t
z

k jj
t

C z t t dt j N k
+

= ϕ = =∫ . 

В этом случае уравнение (11) и критерий (12) запишем как  

( )0ˆ ˆ ˆ ˆ ˆˆ A Zλ λ⋅ − = + +X X X ZP C C K C K C K C ,     (13) 

( )0
тˆ ˆ ˆ ˆ ˆˆ( ) ( ) A ZJ λ λ= ⋅ − − − − ×X X X ZP P C C K C K C K C     

( )0ˆ ˆ ˆ ˆ ˆˆ ( ) ,A Zλ λ× ⋅ − − − −X X X ZP C C K C K C K C            (14) 

где ˆ

ϕ

ξ

 
 
 =
 
 
 









1

2

T 0 0 0
0 T 0 0

P
0 0 p 0
0 0 0 p

,  { }4
, 10 i j==0 ; ( )diag T T T Tϕ ϕ ϕ ϕ ϕ=T ,     

( )diag T T T Tξ ξ ξ ξ ξ=T , ( )1 1 1 1diag p p p p=1p ,  

( )2 2 2 2diag p p p p=2p . 

Начальные условия определяют исходный запас энергии, имею-
щийся у объекта. Поскольку в процессе функционирования объекта 
энергия диссипирует,  можно положить начальные условия нулевыми и 
немного упростить критерий (14): 
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( )тˆ ˆ ˆ ˆˆ( ) A ZJ λ λ= ⋅ − − − ×X X ZP P C K C K C K C  

( )ˆ ˆ ˆ ˆˆ .A Zλ λ× ⋅ − − −X X ZP C K C K C K C                  (15) 

В выражения (13) и (15) входят матрицы AK , λK , ZK , представ-
ляющие собой спектральные характеристики ядер 

{ }4

, 1
( , ) ( , ) 1( , ) ( )X k

X ij ij i j
t K t t a

=
τ = τ = τ τK , { }4

1
( , ) ( , ) 1( )i i i
t K t t bλ

λ
=

τ = τ = − τK , 

{ }4

1
( , ) ( , ) 1( , )Z

Z i i
t K t t

=
τ = τ = τK  

интегрального уравнения Фредгольма второго рода 

( )1 1

т т т

1
0 0 0

( ) (0)

( , ) ( ) ( , ) ( ) ( , ) ( ) ,

M k M k

k
X M k Z

t

t d t d t d

+ +

+ λ

⋅ − =

= τ τ τ + τ λ τ τ + τ τ τ∫ ∫ ∫

P X X

K X K K Z
 

следующего из дифференциального уравнения (11) при его интегри-
ровании. Соответственно матрицы AK , λK , ZK  имеют вид: 

{ }4

, 1
A x

ij i j=
= K A ,   { }4

1i i
λ λ

=
= K B ,   { }4

1
Z

i i=
= K Z , 

{ }
, 1

Nx ij
ij sp s p

a
=

=A ,   { }
, 1

Ni
i sp s p

bλ

=
=B ,   { }

, 1

Ni
i sp s p

z
=

=Z . 

Элементы матриц x
ij
A , i

λ
B  и i

Z  определяются следующими фор-
мулами: 

0 0

( , ) ( ) ( )
T T

ij X
sp ij s p

t t

a K t t d dt= τ ϕ ϕ τ τ∫ ∫ ,   ( )
0 0

, ( ) ( )
T T

i
sp i s p

t t

b K t t d dtλ= τ ϕ ϕ τ τ∫ ∫ , 

( )
0 0

, ( ) ( )
T T

i Z
sp i s p

t t

z K t t d dt= τ ϕ ϕ τ τ∫ ∫ . 

Найденные спектральные характеристики однозначно определя-
ют критерий качества идентификации. Выполняя операцию вычисле-
ния вектора ( )J∇ P , имеем 

( )ˆ ˆ ˆ ˆ ˆˆ( ) .A ZJ λ λ∂
∇ = ⋅ − − −

∂
X X ZPP P C K C K C K C

P
 

Таким образом, все элементы, необходимые для выполнения 
идентификации, определены. 
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Особенности алгоритма идентификации и его организация. 
Назначение системы регулирования — стабилизация частоты враще-
ния ротора турбины. Если электрическая нагрузка генератора не бу-
дет изменяться, система регулирования через определенное время 
выполнит свою задачу, т. е. частота вращения ротора будет стабили-
зирована. Поэтому даже при «ненастроенных» параметрах модели 
может возникнуть такая ситуация, когда выходные сигналы объекта 
и модели будут не только постоянными, но и равными. В этом случае 
функция потерь принимает нулевое значение и возникает эффект дос-
тижения поставленной цели, хотя задача идентификации не решена. 
Следовательно, обязательное условие правильно решенной задачи со-
стоит в том, что электрическая нагрузка генератора в процессе иденти-
фикации должна изменяться. Реализацию алгоритма осуществляют сле-
дующим образом. Выбирают интервал времени, на котором 
выполняется один шаг итерационного процесса идентификации 

1( , )i it t t +∆ = . Величину t∆  можно выбирать экспериментально либо за-
давать соизмеримой или немного большей, чем максимальная иденти-
фицируемая постоянная времени. Это связано с тем, что в  заданный 
промежуток времени не должны произойти переходные процессы в 
случае установления постоянного значения электрической нагрузки. В 
течение заданного интервала времени t∆  вычисляются элементы гра-
диента по формуле (15) и выполняется один шаг итерационного гради-
ентного алгоритма идентификации, определяемого формулой (9). Далее 
процесс повторяется. Условием окончания итерационного процесса яв-
ляется достижение заданной точности. Кроме того, организовывать 
итерационный процесс, предписанный линеаризацией Ньютона – Кан-
торовича, нет необходимости, поскольку в выражение для критерия 
идентификации входит выходной сигнал объекта, а он всегда представ-
ляет собой точное решение системы уравнений (2). 

Пример. Приведем результаты идентификации указанных выше 
двух постоянных времени: Tµ  и .zT  В качестве базиса используются 
функции Уолша ( 32).N =  

Начальные значения постоянных времени: 0,04Tµ =  с и 0,01zT =  с. 
Известные параметры объекта — турбины ПТ-12/15-35/10М: 

0,12Tξ =  с, 6Tϕ =  с, 0,04δ = , 0 0,3,z∆ =   коэффициент самовырав-
нивания 0,05θ = . 

Интервал времени, на котором проводится идентификация, 
0,1c.t∆ =  Параметры итерационного процесса: 1 0,0085,ρ =  2 0,005ρ = . 
На рис. 3, 4 приведены зависимости идентифицируемых пара-

метров — постоянных времени — от числа итерN   итераций. 
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Рис. 3. Изменение постоянной време-
ни Tµ  в процессе итераций (1), точное 

значение (2) 

Рис. 4. Изменение постоянной времени 

zT в процессе итераций (1), точное 
значение (2) 

 
 
Выводы. Из рис. 3, 4 следует, что предложенный алгоритм обес-

печивает необходимое качество идентификации. Потребовалось 
лишь итер 20N =  итераций для получения заданной точности. Тради-
ционно используемые в системах регулирования данного класса тур-
бин постоянные времени имеют значения, близкие к следующим: 

0,1Tµ =  с, 0,03zT =  с. Ясно, что идентификация выполнена вполне 
адекватно текущей ситуации работы турбины. 
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Identification of parameters of regulator actuators for 
steam power turbines using matrix operator apparatus 

 Yu.P. Kornyushin, N.D. Egupov, P.Yu. Kornyushin 
 

Bauman Moscow State Technical University, Kaluga Branch, Kaluga, 248000, Russia 
 

In the paper we propose an algorithm of parameters (time constants of the turbine) iden-
tification using the gradient method with an adaptive model. The adaptive mathematical 
model has the same structure as the identification object. The identification criterion is 
based on the loss function, which is the misalignment between the left and right sides of 
the equation, which describes the adaptive model. Thus it is avoided the need of finding 
the solution of a nonlinear equation for the adaptive model in an explicit form. In the 
model the signal observed at the output of the identified object is used instead of the out-
put signal. Since mathematical models are nonlinear, the Newton – Kantorovich lineari-
zation and the matrix operator apparatus are applied to solve the problem. The features 
of gradient vector computation and features of the identification algorithm and its organ-
ization are considered. The results of the two time constants identification for the mathe-
matical model of the turbine PT-12/15-35/10M are presented. 
 
Keywords: identification, turbine, gradient operator, criterion, parameters, time constants. 
 
REFERENCES 
 

[1] Melnikov D.V., Fisher M.R. Vestnik MGTU im. N.E. Baumana. Seria 
Mashinostroenie – Herald of the Bauman Moscow State Technical University. 
Series: Mechanical Engineering, 2011, spetsialnyi vypusk “Energeticheskoe i 
transportnoe machinostroenie” [special issue “Power and transport mechanical 
engineering”], pp. 197–215. 

[2] Kornyushin Yu.P., Melnikov D.V., Egupov N.D., Kornyushin P.Yu. Vestnic MGTU 
im. N.E. Baumana. Seria Estestvennye nauki – Herald of the Bauman Moscow State 
Technical University. Series: Natural Sciences, 2014, no. 1, pp. 78–93. 

[3] Melnikov D.V., Egupov N.D. Izvestiya Tulskogo gosudarstvennogo universiteta. 
Tekhnicheskie nauki – Proceedings of the Tula State University. Engineering 
sciences, 2011, issue. 5, part 1, pp. 108–113. 

[4] Kalashnikov A.A. Dinamika regulirovaniya turbin [Turbine control dynamics]. 
Moscow, Energoatomizdat Publ., 1999, 328 p. 

[5] Tsypkin Ya.Z. Osnovy informatsionnoy teorii identificatsii [Basics of 
information theory of identification]. Moscow, Nauka Publ., 1984, 320 p. 

[6] Gayskiy V.A., Egupov N.D., Kornyushin Yu.P. Primenenie funktsiy Walsha v 
sistemakh avtomatizatsii nauchnykh issledovaniy [Application of the Walsh 
functions in research automation]. Kiev, Naukova Dumka Publ., 1993, 212 p. 

[7] Pupkov K.A., Egupov N.D., eds. Metody inzhenernogo sinteza slozhnykh system 
upravleniya: analiticheskiy apparat, algoritmy prilozheniya v tekhnike. Chast II. 
Vychislitelno-analiticheskiy eksperiment: apparat matrichnykh operatorov i 
vychislitelnye tekhnologii [Methods for the engineering synthesis of complex 
control systems: an analytical apparatus, algorithms of applications in 
engineering. Part II. Computational and analytical experiment: The matrix 
operators apparatus and the computational technology]. Moscow, BMSTU 
Publ., 2012, 416 p. 

85 



Ю.П. Корнюшин, Н.Д. Егупов, П.Ю. Корнюшин 

Kornyushin Yu.P., Dr. Sci. (Eng.), professor, head of the Automatic Control Systems 
Department at Bauman Moscow State Technical University, Kaluga Branch. The author 
of about 100 publications in the field of power engineering and electrical engineering, op-
timal systems, simulation of engineering systems. Research interests: nonlinear, optimal, 
robust control system. e-mail: theroland@yandex.ru 
 
Egupov N.D., Dr. Sci. (Eng.), professor of the Automatic Control Systems Department at 
Bauman Moscow State Technical University, Kaluga Branch.  The author of about 200 
publications in the field in the theory of matrix operators, power engineering, optimal 
systems. Research interests: theory of matrix operators, nonlinear, optimal, robust control 
system. e-mail: theroland@yandex.ru 
 
Kornyushin P.Yu., post-graduate of the Automatic Control Systems Department at 
Bauman Moscow State Technical University, Kaluga Branch.  The author of 23 publica-
tions in the field of power engineering and electrical engineering, simulation of engineer-
ing systems, control of engineering systems. Research interests: nonlinear, optimal, ro-
bust control system. e-mail: kornyushin.petr@gmail.com 

 
 

86 

mailto:theroland@yandex.ru
mailto:theroland@yandex.ru
mailto:kornyushin.petr@gmail.com

