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УДК 539.3 

Моделирование динамической устойчивости 
цилиндрической оболочки при действии 

осевой сжимающей нагрузки 
© В.М. Дубровин, Т.А. Бутина 

Предложен метод расчета динамической устойчивости цилиндрической оболочки 
при нагружении осевой сжимающей нагрузкой, изменяющейся во времени. В каче-
стве примера рассмотрен случай, когда нагрузка меняется по линейному закону. 
 
Ключевые слова: цилиндрическая оболочка, прогиб, равновесное положение, диа-
грамма, коэффициент динамичности. 

 
Исследуем динамическую устойчивость цилиндрической оболоч-

ки, находящейся под действием внешнего избыточного давления, из-
меняющегося во времени. Если при этом рассматривать прогибы, 
сравнимые с толщиной оболочки, то задачу следует решать в нели-
нейной постановке. Диаграмма «стрела прогиба – нагрузка» для обо-
лочки имеет вид, представленный на рис. 1 [1−5]. Исследуя равно-
весные формы при статическом нагружении, получаем на диаграмме 
линию с верхней и нижней критическими точками Рв и Рн. Если на-
грузка быстро возрастает во времени, то параметр внешних сил мо-
жет пробежать уровни как нижней, так и верхней критических нагру-
зок, (участок 0K), причем на начальном участке (Р > Рв) будут 
происходить колебания вокруг равновесных форм, характеризую-
щихся малыми прогибами. Затем происходит скачкообразное пере-

мещение оболочки к равновесным 
положениям с большими прогибами 
(участок KN). После этого начинают-
ся колебания вокруг этих новых рав-
новесных форм, имеющих ярко вы-
раженный нелинейный характер. В 
дальнейшем этот процесс «хлопка» 
оболочки при быстро возрастающей 
нагрузке будем называть динамиче-
ским выпучиванием, или динамиче-
ской потерей устойчивости, а нагруз-
ку, соответствующую моменту 
хлопка, — динамической критической 
нагрузкой .DP  Условно она определя-
ется как абсцисса точки перегиба M 
кривой Р(f), т. е. точки, соответст-
вующей наибольшей скорости выпу-
чивания оболочки.  

 

Рис. 1. Диаграмма «стрела прогиба − 
нагрузка»   для   цилиндрической  

оболочки: 
1 − статическое нагружение; 2 − 
динамическое нагружение (восхо-
дящая ветвь); 3 − динамическое на- 

гружение (нисходящая ветвь) 
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До сих пор предполагалось, что приложенная к оболочке нагруз-
ка возрастает во времени, а прощелкивание оболочки происходит на 
восходящей ветви нагружения. Если нагрузка возрастает до некото-
рой величины ( D DP P′ < ) и затем уменьшается по некоторому закону, 
то в зависимости от скорости падения нагрузки может быть либо воз-
вращение оболочки в исходное состояние, либо прощелкивание обо-
лочки на нисходящей ветви нагружения. При этом считается, что 
прощелкивание оболочки имеет место, если наибольший прогиб Df  
достиг ст ,f  под которым понимают статический прогиб, соответст-
вующий нагрузке .DP′  Такое сопоставление позволяет выяснить, воз-
никнут ли при динамическом нагружении, осуществляемом по слож-
ной программе, заметные остаточные деформации.  

Уравнения, выражающие компоненты деформаций срединной по-
верхности оболочки в соответствии со схемой внутренних сил и мо-
ментов, приведенной на рис. 2, могут быть представлены в виде [6−8] 
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где 1,ε 2ε  — деформации растяжения (сжатия) в осевом и кольцевом 
направлениях; γ  — деформация сдвига; 1χ , 2χ  — деформации изги-
ба соответственно в осевом и кольцевом направлениях; 3χ  — дефор-
мация кручения; , ,u v w  — компоненты деформации оболочки по 
осям X, Y, Z; 1 2,k k  — главные кривизны поверхности. 

Эти величины связаны уравнением совместности деформаций: 
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Рис. 2. Схема внутренних сил и моментов 
в произвольном сечении оболочки 

 
Соотношения Гука при этом имеют вид  
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где E, µ  — модуль упругости и коэффициент Пуассона материала 
оболочки; 1 2, ,σ σ τ  — нормальные и касательные напряжения в сре-
динной поверхности оболочки. 

Уравнения равновесия произвольного элемента оболочки можно 
записать следующим образом:  
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Здесь δ  — толщина оболочки; q — интенсивность действующей по-
перечной нагрузки. 

При решении задачи устойчивости в качестве q рассматривается 
суммарная проекция основных усилий , ,x yP P S  на направление норма-

ли к поверхности оболочки. Тогда 
2 2 2

2 2 2 .x y
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x yx y
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Положительными считаются усилия, под действием которых увеличи-
ваются параметры кривизны. В частности, xP и yP  считаются положи-
тельными, если они являются сжимающими усилиями. 

Введя в уравнение совместности деформаций (1) напряжения из 
соотношений теории упругости, будем иметь 
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Выразив в формулах (2) и (3) напряжения 1 2, ,σ σ τ  через функ-
цию напряжений Ф в виде 
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Для цилиндрической оболочки 1 2
10, .k k
R

= =  Тогда уравнения (4) 

можно привести к виду 
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Если оболочка до нагружения имеет начальные прогибы 0 ( , ),w x y  
то выражения для деформаций имеют следующий вид: 
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Здесь w  — полный прогиб оболочки. 
С учетом (6) уравнения (5) можно преобразовать следующим  

образом: 
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           (7) 

В случае подкрепленных оболочек можно считать, что ребра же-
сткости (продольные — стрингеры и поперечные — шпангоуты) рас-
положены достаточно часто — так, что конструкцию можно рассмат-
ривать как ортотропную с приведенными жесткостями в продольном 
и кольцевом направлениях. Тогда принимая, что главные направле-
ния жесткости совпадают с линиями главных кривизн оболочки,  
а жесткость на кручение подкрепляющих элементов мала, вместо 
уравнений (7) будем иметь 
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1
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 — приведенная жесткость оболочки в 
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кость оболочки в кольцевом направлении; ( )
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 
 — 

приведенная жесткость оболочки при кручении; c ш,F F  — площади по-
перечных сечений стрингера и шпангоута; c ш,J J  — моменты инерции 
сечений стрингера и шпангоута; c ш,b b  — шаг стрингеров и шпан- 
гоутов. 

При решении динамической устойчивости следует учитывать 
инерционные нагрузки, соответствующие нормальному прогибу обо-
лочки .w  Согласно [9−11], инерционные нагрузки, соответствующие 
перемещениям u  и v в срединной поверхности, можно не учитывать, 
не внося при этом существенных погрешностей в окончательный ре-
зультат. Тогда с учетом сил инерции, соответствующих перемеще-
нию ,w  справедливы следующие исходные уравнения нелинейной 
теории для оценки динамической устойчивости оболочек: 

для изотропной оболочки 
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для конструктивно-ортотропной оболочки 
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Здесь 1γ  — удельный вес материала оболочки. 
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Уравнения (8), (9) позволяют оценить устойчивость оболочки при 
динамическом нагружении, соответствующем различным расчетным 
случаям. 

Рассмотрим цилиндрическую оболочку под действием осевой 
сжимающей силы, приложенной к торцам оболочки. Приняв полный 
ω и начальный 𝜔0 прогибы оболочки в виде 
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q — средняя интенсивность сжимающей нагрузки, приложенной к 
торцам оболочки. 

Используя соотношения, выражающие деформацию через прогиб 
оболочки и функцию напряжений 
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и условие замкнутости оболочки в окружном направлении 
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 можно записать выражение для ϕ  в виде 
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Для определения параметров ψ и f справедливы соотношения, 
полученные с использованием метода Бубнова – Галеркина: 
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С учетом (10), (11) из (13) получается уравнение, связывающее 
параметры прогиба с изменяющейся во времени нагрузкой, 

( ) ( )

( )

2 2 2 2 20
0 1 0 2 0

2 22
0

3 0 4 52

1

1 ,

q c c c

dc c c
dt

 ξ 
= − + ξ − ξ + ξ − ξ ψ − ξ 

ξ − ξξ
− ξ − ξ ψ + − ψ

ξ ξ
               (14) 

где 

( ) ( )
( )

( ) ( )

222

0 22 2

4

1 2

2
2 2 22 2

;

11 ;
1 12 1

11 ;
16

1 1 ;
1 1 9

mm

mm

m

m

m

m m

qRq
E

c

c

c

=
δ

+ ξξ
= + η

ξ+ ξ η − µ

+ ξ
= η

ξ

 
 = ξ + η 

+ ξ + ξ  

 

53 



В.М. Дубровин, Т.А. Бутина 

( )

( )

4

3 2 22

2

4 2

2

5 22

41 1 ;
4 1

1 ;

;
1

.

m

m m

m

m

m

m
m

c

Rc
Eg

c

m R
l

 
ξ = + ξ + ξ  

γ
=

η ξ

ξ
=

+ ξ

απ
ξ = =

β

 

Если из уравнения (14) исключить инерционный член и положить
0 0,ξ =  получим статическое решение для идеальной оболочки: 
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Если положить q St=  и обозначить ,
b

StRt
E q

=
δ

 то 
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уравнение (14) сведется к уравнению 
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 ξ − ξ ξ + ξ
− − ξ − η ξ − ξξ − ξ ξ 

 
ξ η  − + ξ − ξξ ψ + + ξ + ξ  

 
ξ ξ + + ψ ξ − ξ ξ + ξ − ξ ψ = ξ + ξ + ξ  

   (15) 

Уравнение (15) может быть проинтегрировано численным мето-
дом, после чего определяют критические сжимающие усилия, соот-
ветствующие заданному воздействию, и сравнивают их  с критиче-
скими нагрузками при статическом нагружении. 
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Если воспользоваться понятием 
коэффициента динамичности критиче-
ской нагрузки ,Dk  равного отношению 
динамической критической нагрузки к 
верхнему статическому значению кри-
тической нагрузки, то для конкретной 
оболочки можно оценить влияние ха-
рактера нагружения на несущую спо-
собность оболочки. В качестве приме-
ра на рис. 3 представлен график 
зависимости Dk от скорости нагруже-
ния для оболочки из алюминиевого 
сплава при следующих геометриче-

ских параметрах: 180;R
=

δ
 2, 2;l

R
=  

0 0,001.ξ = Здесь же приведены экспе-
риментальные данные для указанной оболочки, полученные в [1]. 
Как следует из этой зависимости, скорость нагружения влияет опре-
деленным образом на величину критической динамической нагрузки. 
Однако сравнивая эти результаты с результатами, полученными в 
[12], можно отметить, что при нагружении осевой сжимающей на-
грузкой влияние скорости нагружения на устойчивость оболочки 
проявляется значительно слабее, чем при нагружении внешним из-
быточным давлением. Это связано с тем, что при осевом сжатии по-
теря устойчивости происходит с образованием мелких вмятин, зани-
мающих лишь часть поверхности оболочки, поэтому силы инерции в 
этом случае играют меньшую роль, чем при внешнем давлении, ко-
гда в движение приходит вся оболочка. 

Выводы. На основании общей теории пологих оболочек предло-
жен метод расчета динамической величины критической осевой силы 
для изотропной и ортотропной цилиндрических оболочек.  

Скорость нагружения влияет определенным образом на величину 
критической динамической нагрузки, увеличивая значение критиче-
ской нагрузки при кратковременном нагружении.  

Влияние скорости нагружения осевой силой на устойчивость обо-
лочки проявляется значительно слабее, чем при нагружении внешним 
избыточным давлением. 

В соответствии с принятым динамическом критерием оболочка 
должна проверяться на устойчивость как на участке нагружения, так 
и на участке разгрузки. 

 
 

 

Рис. 3. Зависимость коэффициента 
динамичности критической нагруз-
ки цилиндрической оболочки от 
скорости нагружения осевой сжи-
мающей силой (точками изображе-
ны экспериментальные данные) 
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Modeling of the dynamic stability of a cylindrical shell  
under the axial compressive load 

© V.M. Dubrovin, T.A. Butina 
The article describes a method for calculating the dynamic stability of cylindrical shell 
under axial compressive time-varying load. The case of linearly varying load was con-
sidered as an example. 
Keywords: cylindrical shell, sagging, equilibrium position, chart, dynamic factor. 
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