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Рассмотрен класс перспективных анизогридных конструкций, представляющих 
сетчатые оболочки из углепластика. Приведен краткий анализ существующих 
подходов к моделированию сетчатых конструкций. Для достоверного описания 
сложного поведения анизогридных конструкций при воздействии различных нагру-
зок предложены математическая и вычислительная модели. Высокая степень 
точности и устойчивости вычислительной модели, основанной на разложениях 
неизвестных функций по базису Фурье и базису, состоящему из полиномов Чебы-
шева, обусловлена отсутствием насыщения таких методов приближения. Эф-
фективность предложенных моделей и методов показана на примере решения 
тестовых краевых задач и задачи осевого сжатия анизогридной цилиндрической 
оболочки. 
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Введение. Прогресс в авиационной, ракетно-космической, судо- 

и машиностроительной отраслях промышленности в значительной 
степени связан с разработкой и применением новых композиционных 
материалов, обладающих повышенными физико-механическими ха-
рактеристиками. Одним из перспективных решений может стать 
применение гибридных и анизогридных углепластиковых сетчатых 
конструкций [1]. 

Для решения задач расчета напряженно-деформированного со-
стояния (НДС) сетчатых оболочек из углепластика, анализа потери 
их устойчивости и оптимизации параметров конструкций целесооб-
разно использовать современные методы и средства математического 
и численного моделирования. При этом важно учитывать специфиче-
ские особенности рассматриваемых конструкций: разносопротивляе-
мость и нелинейность деформирования полимерных композицион-
ных материалов при растяжении, сжатии и сдвиге [2], а также 
наличие малых геометрических и механических параметров и слож-
ные условия эксплуатации с различными видами закрепления и на-
гружения конструкции, воздействие высоких и низких температур, 
влагонасыщения, радиации. 

Для достоверного описания поведения анизогридных оболочек  
с учетом указанных факторов целесообразно исходить из уравнений 
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пространственной теории упругости. Численное решение краевых за-
дач для таких уравнений, описывающих НДС сетчатых оболочек, 
представляет существенную сложность и требует конструирования 
новых вычислительных алгоритмов, обладающих повышенной точ-
ностью и устойчивостью. 

В настоящей работе предложены математическая и вычислитель-
ная модели для расчета НДС анизогридной цилиндрической оболоч-
ки при осевом сжатии. В основу математической модели деформиро-
вания положены линейные уравнения механики деформируемого 
твердого тела и континуальный подход, позволяющий поставить за-
дачу в перемещениях для сплошного аналога сетчатой конструкции 
[2, 3]. В основе вычислительной модели лежат идеи нелокальных ап-
проксимаций, схем без насыщения и спектральных методов, позво-
ляющие достичь точности наилучших приближений для любых клас-
сов гладкости искомых решений [4–6]. 

О моделировании поведения сетчатых конструкций. Фор-
мально сетчатую упругую конструкцию можно рассматривать как 
единое упругое тело. С позиций механики сплошной среды поведе-
ние такого тела может быть описано системой алгебродифференци-
альных уравнений, включающей уравнения движения (равновесия) 
тела, кинематические и физические соотношения. Рассмотрение сет-
чатой конструкции как единого многосвязного тела представляется 
малоперспективным из-за наличия большого количества параметров. 
В связи с этим при моделировании сетчатых конструкций принято 
использовать один из двух основополагающих подходов: дискретный 
либо континуальный [3]. 

Дискретный подход. В рамках данного подхода конструкция 
представляется в виде совокупности стержневых, балочных или 
плоских элементов. Для описания взаимодействия этих элементов 
применяют классические метод сил, метод перемещений и смешанный 
метод строительной механики. 

Другие дискретные модели, ориентированные на конструкции 
регулярной структуры, используют метод «склейки» [7–9]. Суть 
данного метода состоит в разбиении конструкции на изолированные 
элементы, анализе поведения каждого элемента в отдельности  
и использовании геометрических условий сопряжения элементов  
в конструкции при действии внешних сил и заданных перемещений.  
В контексте метода «склейки» можно выделить идею микроподхода, 
когда конструкция разбивается на элементы минимальной протя- 
женности — ребра и узлы их стыковки, и идею макроподхода, при- 
менимую при наличии элементов, простирающихся на всю конст- 
рукцию. Метод непрерывной автоматической намотки, исполь- 
зуемый для изготовления анизогридных оболочек, предполагает, что 
конструкция будет состоять именно из таких макроэлементов, поэто- 
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му макроподход может оказаться весьма перспективным для моде- 
лирования рассматриваемых оболочек. 

Идеи дискретного подхода могут применяться для расчета сет- 
чатых структур на ЭВМ, в частности, с использованием метода 
конечных элементов (МКЭ) [10]. При этом в рамках каждого ребра 
конструкции делается независимое приближение искомых функций 
посредством многочленов малой степени и для поиска решения 
записывается система линейных алгебраических уравнений.  

Континуальный подход. Суть данного подхода состоит в замене 
реальной сетчатой конструкции эквивалентным сплошным анизо- 
тропным телом. Отметим, что данная замена является неоднозначной 
как с точки зрения выбора континуального эквивалента, так и с точки 
зрения задания способов перехода к нему. Причина неоднозначности 
кроется в более сложном механическом поведении сетчатой кон- 
струкции, нежели континуального тела в рамках классической 
теории упругости, в утрате тех или иных деформативных свойств 
конструкции. 

Методы математической континуализации основаны на анализе 
разрешающих уравнений, которые могут быть получены, например, в 
рамках дискретного подхода. Суть данных методов состоит в пере- 
ходе в разрешающих уравнениях от дискретных операций к непре- 
рывным (например, от конечных разностей к производным). 

Отметим две группы моделей, основанных на идее математи- 
ческой континуализации. К первой группе относят модели микро- 
полярных континуумов [11, 12], представляющие конструкцию в виде 
множества ячеек, для которых записываются уравнения механики. 
Эти уравнения связывают характеристики соседних ячеек и в сово- 
купности являются аналогами конечно-разностных соотношений, за- 
данных на всей конструкции. По ним восстанавливается 
дифференциальная задача с непрерывными характеристиками. Вто- 
рая группа включает модели осреднения периодических структур 
[13–17], основанные на разложении решений в ряды по малому 
параметру — размеру ячейки, многократно повторяющейся в струк- 
туре конструкции. Такие модели позволяют с помощью точных 
периодических решений выделять асимптотически усредненное по- 
ведение системы. Методы математической континуализации, несмот- 
ря на высокую строгость и обоснованность, редко удается применить 
для решения прикладных задач. Математический аппарат данных 
методов эффективен, как правило, только в случаях модельных задач, 
когда материал конструкции имеет простую структуру и свойства,  
а сама конструкция находится под действием обычного нагружения. 

Методы физической континуализации базируются на предполо- 
жении о характере связи дискретных деформаций и внутренних сил 
конструкции с соответствующими непрерывными распределениями 
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деформаций и сил в ее сплошном аналоге. По сути, задача физи-
ческой континуализации состоит в выводе физических соотношений 
для сплошного аналога сетчатой конструкции исходя из ее структуры 
и свойств материала, причем полученные соотношения должны 
обеспечивать максимальное соответствие поведения конструкции и 
ее аналога. Вывод физических соотношений можно осуществить  
с помощью энергетических принципов [18] или посредством усред- 
нения характеристик сетчатой структуры. В последнем случае речь 
идет о так называемой концепции «размазывания», когда каждое 
семейство однонаправленных ребер структуры заменяется упругим 
слоем со специфическими свойствами [2]. Физические соотношения 
задаются исходя из условия эквивалентности внутренних сил  
в семействе ребер и тождественном слое. Отметим, что идея усред- 
нения характеристик материала по объему прошла апробацию при 
построении структурных моделей механики композитов, учитываю- 
щих различные виды армирования [19, 20]. 

В данной работе рассматривается континуальная модель анизо-
гридной конструкции, основанная на концепции «размазывания». Та-
кой подход позволяет достаточно эффективно строить модели сетча-
тых конструкций и находить приближенные решения соответст-
вующих прикладных задач (некоторые приложения описаны в [21]). 

Континуальная модель анизогридной конструкции. Исполь-
зуем идею концепции «размазывания» для описания поведения ани-
зогридной оболочки в рамках пространственной теории упругости.  
В [2, 22] описан стандартный подход к записи физических соотноше-
ний на основе концепции «размазывания» для тонких слоистых  
и сетчатых пластин. Такой подход основан на предположении о ма-
лости главных компонент тензоров напряжений и деформаций по на-
правлению, ортогональному к плоскости пластины. При этом делают 
дополнительные предположения о том, что ребра работают только в 
продольном направлении (нитяная модель), и деформациями сдвига 
можно пренебречь. Данные предположения при анализе деформиро-
вания анизогридных оболочек представляются  недостаточно обос-
нованными по следующим причинам: 

1) в условиях сложного нагружения ребра сетчатой пластины 
будут работать не только на растяжение-сжатие, но также на изгиб, 
причем не только в плоскости пластины, но и в направлении нормали 
к ее поверхности. При изгибе в ребрах неизбежно возникнут дефор-
мации сдвига; 

2) распределение напряжений по толщине ребра из углепластика 
может существенно отразиться на картине деформирования. Угле-
пластик — композиционный материал на полимерной основе, обла-
дающий сложным нелинейным поведением, которое проявляется при 
растяжении, сжатии и сдвиге. 
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В статье предлагается использовать уточненные соотношения, 
полученные на основе концепции «размазывания» и позволяющие 
рассчитывать НДС сетчатых конструкций из углепластиков в про-
странственной постановке. Будем считать углепластик ортотропным 
квазиоднородным материалом с физическими соотношениями, запи-
санными в виде обобщенного закона Гука, связывающего деформа-
ции 1 2 3 12 13 23, , , , ,ε ε ε γ γ γ  с напряжениями 1 2, ,σ σ 3 12 13 23, , ,σ τ τ τ : 

3 31 2 2 1
1 2

3 1 2 12
3 12

13 23
13 23

; ;

; ;

; .

L T
T T T T

L T
T T

T

E E E E E E

E E E G

G G

σ σσ σ σ σ
ε = − ν − ν ε = − ν − ν

σ σ σ τ
ε = − ν − ν γ =

τ τ
γ = γ =

            (1) 

Здесь ,E G  — модули упругости и сдвига в направлении волокон; 
,T TE G  — модули упругости и сдвига в направлениях 2, 3; ν  харак-

теризует влияние напряжений, возникающих в направлениях 2, 3, на 
деформации в направлении 1; Tν  — влияние напряжений в направ-
лении 1 на деформации по осям 2, 3; Lν  — влияние напряжения в 
направлении 2 на деформацию по оси 3 и обратно. Соотношения (1) 
записаны в предположении, что свойства ребра в направлениях 2, 3 
тождественны и отличны от свойств ребра в направлении волокон 1 
(рис. 1, а). Далее используем выражения напряжений через деформа-
ции в виде 

3

12 12 13 13 23 23
1

, 1,...,3; ; ; .i ij j T
j

a i G G G
=

σ = ε = τ = γ τ = γ τ = γ∑         (2) 

 

Рис. 1. Ортотропное ребро из углепластика: 
a — в системе координат 1, 2, 3, связанной с ребром;  

б — в системе координат x, y, z, связанной с конструкцией 
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Здесь коэффициенты ija  выражаются из (1) по формулам 

11 12 13

21 31 22 33

23 32

(1 ) / ; / ;
(1 )/ ; ;

(1 )
( ) ; 1 2 0.

(1 )

T

T T
L T

T

T L T
L T

T

a E a a E
Ea a E a a

Ea a

= − ν µ = = ν µ

− νν
= = ν µ = =

µ + ν
ν + νν

= = µ = − νν − ν >
µ + ν

                 (3) 

Уравнения (2) записаны в системе координат 1, 2, 3, связанной  
с ребром (см. рис. 1, а). Для вывода физических соотношений для 
сплошного аналога сетчатой конструкции введем систему координат 
x, y, z, связанную с конструкцией (рис. 1, б), и перейдем от системы 
координат 1, 2, 3 к системе x, y, z с помощью операции поворота на 
угол ϕ . Пусть sin , coss c= ϕ = ϕ , тогда напряжения и деформации 
преобразуются по следующим формулам: 

2 2 2 2
1 2 12 1 2 12

2 2 2 2
1 2 12 3 1 2 12 3

2 2 2 2
1 2 12 1 2 12

13 23 13 23 13 23 13 23

2 ; ;

2 ; ; ; ;

( ) ( ); 2( ) ( );

; ; ; .

x x

y z y z

xy xy

xz yz xz yz

c s cs c s cs

s c cs s c cs

cs c s cs c s

c s s c c s s c

σ = σ + σ − τ ε = ε + ε − γ

σ = σ + σ + τ σ = σ ε = ε + ε + γ ε = ε

τ = − σ − σ + τ − γ = ε − ε + γ −

τ = τ − τ τ = τ + τ γ = γ − γ γ = γ + γ

(4) 

Используя (2)–(4), запишем физические уравнения для ребра в 
системе x, y, z: 

11 12 13 14 41 42 43 44

21 22 23 24 55 56

31 32 33 34 65 66

; ;

; ;

; .

x x y z xy xy x y z xy

y x y z xy xz xz yz

z x y z xy yz xz yz

A A A A A A A A

A A A A A A

A A A A A A

σ = ε + ε + ε + γ τ = ε + ε + ε + γ

σ = ε + ε + ε + γ τ = γ + γ

σ = ε + ε + ε + γ τ = γ + γ

 (5) 

Коэффициенты klA  имеют следующий вид: 

4 2 2 4 2 2
11 11 21 12 22

2 2 4 4 2 2
12 11 22 21 12

( ) 4 ;

( ) 4 ,

A a c a a s c a s G c s

A a a s c a s a c G c s

= + + + +

= + + + −
(1,2)                  (6) 

3 3 3 3 2 2
14 11 21 12 22

3 3 3 3 2 2
24 11 21 12 22

2 ( ) ;

2 ( ) ,

A a c s a cs a c s a cs G c s cs

A a cs a c s a cs a c s G c s cs

= + − − − −

= + − − + −
 

(12,21), (14,41), (24,42)                                  (7) 

2 2 2 2
13 13 23 23 13 23 43 13 23; ; ( ),

(13,31), (23,32), (43,34)
= + = + = −A a c a s A a s a c A cs a a

         (8) 
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2 2 2 2 2
33 33 44 11 21 12 22; ( ) ( ) ;A a A a a a a c s G c s= = − − + + −            (9) 

2 2
65 56 55( ) ; (13,23), (55,66), ( , ).T T TA A G G cs A G c G s G G= = − = +   (10) 

Здесь числа и обозначения в скобках обозначают циклические пере-
становки индексов, например: (1, 2) означает, что если в соответст-
вующих уравнениях заменить индексы 1 на 2, 2 на 1, то получатся 
верные равенства. 

Сетчатая конструкция состоит из семейств ребер, каждое из ко-
торых имеет номер j ( j = 1,…, N ) и определяется углом наклона jϕ  
оси 1 ребра к оси x (рис. 2), толщиной ребер jδ  и расстоянием ja  
между ними. В соответствии с концепцией «размазывания» [2, 3] заме-
ним каждое семейство ребер сплошной поверхностью с физическими 
соотношениями вида (5). Вместо коэффициентов klA  в  физических со-
отношениях слоя j-го семейства возьмем .j

klA  Для записи j
klA  обозна-

чим символами ,j
kla , , , , , , ,j j j j j j j

T L T TE E G Gν ν ν  sin , cosj j j js c= ϕ = ϕ  
соответствующие характеристики ребер j-го семейства. Соотношения  
(6)–(10) после введения индекса j не изменятся. Коэффициенты j

kla   
в них вычисляются по формулам, аналогичным (3), в которых харак-
теристики материала ребер усреднены по поверхности конструкции, 
т. е. имеют вид 

; ; ; ; ;

; ; .

j j j j j j j j j j j j j j j
T T T T L L

jj j j j j j j
T T

j

E k E E k E k k k

G k G G k G k
a

= = ν = ν ν = ν ν = ν
δ

= = =

 

  

 

 

 
Рис. 2. Замена ребер j-го семейства 
эквивалентным сплошным слоем 
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В таком случае равные массовые силы, действующие в семействе 
ребер и соответствующей сплошной поверхности, будут приводить к 
эквивалентным деформациям. В указанном смысле метод расчета ко-
эффициентов j

klA  корректен для каждого семейства ребер. Связь на-
пряжений , , , , ,x y z xy xz yzσ σ σ τ τ τ  и деформаций , , , , ,x y z xy xz yzε ε ε γ γ γ  
в континуальном эквиваленте анизогридной конструкции имеет вид 
(5), где 

1
.

N
j

kl kl
j

A A
=

= ∑                                            (11) 

Поскольку построенный континуальный аналог анизогридной 
конструкции имеет эквивалентные деформативные свойства, даль-
нейшие рассуждения будем проводить, отождествляя сетчатую кон-
струкцию и ее сплошной аналог.  

Вывод разрешающих уравнений и постановка задачи дефор-
мирования сетчатой цилиндрической оболочки. Для моделирова-
ния процесса деформирования цилиндрической конструкции вос-
пользуемся соотношениями пространственной теории упругости. 
При этом будем исходить из линейных кинематических и физических 
уравнений, вполне удовлетворительно описывающих поведение тела 
при малых нагрузках и перемещениях [21]. 

Осуществив переход в цилиндрическую систему координат 
( , , )r zϕ , где 0 ;z l< <  0 2 ;< ϕ < π  / 2 / 2;R h r R h− < < +  R — радиус 
срединной поверхности конструкции; l — ее высота (рис. 3), прихо-
дим к задаче в канонической области Ω . Запишем для конструкции 
уравнения равновесия  и кинематические соотношения: 

( ) ( ) 0;

( ) ( ) 0;

( ) ( ) 0;

r
r zr r

z r r

z
z rz z

r r F r
z z

r r F r
z r

r r F r
z r

ϕ
ϕ

ϕ
ϕ ϕ ϕ ϕ

ϕ

∂τ∂ ∂
σ − σ + + τ + =

∂ ∂ϕ ∂
∂σ ∂ ∂

+ τ + τ + τ + =
∂ϕ ∂ ∂

∂τ∂ ∂
σ + τ + + =

∂ ∂ ∂ϕ

                 (12) 

1; ; ;

1 1; ; ,

r z

r z rz

u v u w
r r r z

u v v w w ur
r r r z r r z

ϕ

ϕ ϕ

∂ ∂ ∂
ε ≈ ε ≈ + ε ≈

∂ ∂ϕ ∂

∂ ∂ ∂ ∂ ∂ ∂ γ ≈ + γ ≈ + γ ≈ + ∂ϕ ∂ ∂ ∂ϕ ∂ ∂ 

         (13) 

где ( , , ), ( , , ), ( , , )u r z v r z w r zϕ ϕ ϕ  — перемещения точек тела по на-
правлениям , ,r zϕ  соответственно; , , , , , , , ,r z r z rz rϕ ϕ ϕ ϕε ε ε γ γ γ σ σ  
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, , ,z r z rzϕ ϕσ τ τ τ  — деформации и напряжения в континуальном ана-
логе сетчатой конструкции; , ,r zF F Fϕ  — внутренние силы. 

 
Рис. 3. Замена цилиндрической сетчатой конструкции сплошным анизотропным 

телом и переход к канонической области Ω  
 
Физические соотношения (5) в системе координат , ,r zϕ  примут 

следующий вид: 

11 12 13 14 41 42 43 44

21 22 23 24 55 56

31 32 33 34 65 66

; ;

; ;

; .

z z r z z z r z

z r z zr zr r

r z r z r zr r

A A A A A A A A

A A A A A A

A A A A A A

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

σ = ε + ε + ε + γ τ = ε + ε + ε + γ

σ = ε + ε + ε + γ τ = γ + γ

σ = ε + ε + ε + γ τ = γ + γ

(14) 

Сделаем преобразование растяжения по осям r, z: 
( 0,5 ) / ;r r r R h h→ = π − +  / ;z z z l→ = π  0 , , r z< < π  и соответст-

вующие замены переменных в уравнениях (12), (13) (далее знак 
тильды над r и z опускаем). Подставляя (13) в (14), (14) в (12) и пола-
гая, что 0x y zF F F= = = , получаем уравнения для перемещений точек 
в области Ω : 

2 2 2 2 2 2

1 33 66 55 662 2 2 2 2 2 2

2 2

31 55 21 31 22 32

23 33 24 34

2

32

11

1 1( ) ( ) ( )

1( ) ( )

1

u u u uu A A A A
h r l z r

w w vA A A A A A u
hl r z r l z r

u v wA A A A
h r l z r

v uA
r h r h

π ∂ ∂ π ∂ ∂ ∆ = + + = − − ∂ ∂ϕ ∂ ∂ϕ 

  π ∂ π ∂ ∂
− + + − + − + +  ∂ ∂ ∂ ∂ϕ 

 π ∂ π ∂ ∂
+ − + − + − ∂ ∂ ∂ϕ 

π ∂ π ∂
− +

∂ϕ∂ ∂
1 1v u

r r r
 ∂

− − −  ∂ϕ 
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2 2 2

34 2

2 2 2

65 66

2 2 2

56

1 1

1 1 1

1 ;

v w wA
hl z r r rr

w u v vA A
r h r l z r h r r

u v vA r
r l z hl r z l z

 π ∂ ∂ ∂
− − + −  ∂ ∂ ∂ϕ ∂ϕ∂ 

   π ∂ π ∂ π ∂ ∂
− + − − −      ∂ϕ∂ ∂ϕ∂ ∂ϕ∂ ∂ϕ   

 π ∂ π ∂ π ∂
− + −  ∂ϕ∂ ∂ ∂ ∂ 

        (15) 

2 2 2 2 2 2

2 66 22 44 222 2 2 2 2 2 2

2 2 2 2 2

43 44 65 1 66 2 41 2 2

2 2 2 2

42 65 212

11

2 1

1

v v v vv A A A A
h r l z r

u w wA A A W A W A
hl z r lr z r r l z

v u w u wA A A
lr z z h h l z r r lr

π ∂ ∂ π ∂ ∂ ∆ = + + = − − ∂ ∂ϕ ∂ ∂ϕ 

π ∂ π ∂ π ∂ − − − + − − ∂ ∂ ∂ϕ∂ ∂ 
   π ∂ ∂ π π ∂ π ∂ π ∂

− + − + −      ∂ϕ∂ ∂ ∂ ∂ ∂∂   
2 2 2

22 23 24 66 32
1 1 1 ;

z

u u v wA A A A W
r h r l z r r


+ ∂ϕ

 ∂ π ∂ π ∂ ∂
+ + + + + −  ∂ϕ ∂ ∂ϕ ∂ ∂ϕ ∂ϕ  

    (16) 

[ ]

2 2 2 2 2 2

3 55 44 11 442 2 2 2 2 2 2

2 2 2 2 2

12 13 142 2

2 2 2 2

56 3 55 1 56 22 2

2

41

11

1 1

1

w w w ww A A A A
h r l z r

v u w v wA A A
lr z z hl l l zz z

u r vA W A W A W
hl r z r rh r

wA
r

π ∂ ∂ π ∂ ∂ ∆ = + + = − − ∂ ∂ϕ ∂ ∂ϕ 

   π ∂ ∂ π ∂ π π ∂ ∂
− + − − + −      ∂ϕ∂ ∂ ∂ϕ∂∂ ∂   

 π ∂ π ∂
− − + − + − ∂ ∂ ∂ 

∂
−

∂ϕ∂

2 2 2

42 43 442
1 .v u u vA A A

z r h r l z
  ∂ ∂ π ∂ π ∂

+ + + +   ∂ϕ ∂ ∂ϕ ∂ϕ∂∂ϕ   
    (17) 

Здесь 1 ;w uW
h r l z
π ∂ π ∂

= +
∂ ∂

 2 ;u vW v r
h r

∂ π ∂
= − +

∂ϕ ∂
 

2

3
u vW

h r h r
π ∂ π ∂

= − −
∂ ∂ϕ ∂

1 1 .u v
r r

∂
− +

∂ϕ
 

Будем искать решения системы уравнений (15)–(17) в классе дос-
таточно гладких 2π -периодических по координате ϕ  функций. Рас-
сматривая задачу об осевом сжатии цилиндрической конструкции 
под действием нагрузок p = (0, 0, pz), q = 0, выпишем граничные ус-
ловия при 0, :z = π  
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1312
0,

11

14

41 42
0,

44 44

43

44

56
0,

55

|

1 ;

1| 0

;

1| 0

z z z z

zr z

z z r

AAw l v up p u
z A r h r

v wA
l z r

A Av l w vp u
z A l z A r

A u w
A h r

Au l up
z A r

= π

= π ϕ

ϕ = π

   π∂ ∂ ∂
σ = => = − + − −  ∂ π ∂ϕ ∂ 

 π ∂ ∂
− +  ∂ ∂ϕ 

  ∂ π ∂ ∂
τ = = => = − + + +  ∂ π ∂ ∂ϕ 

π ∂ ∂
+ + ∂ ∂ϕ 

∂ ∂
τ = = => = −

∂ π
1 ,v wv

h r r h r
















   π ∂ π ∂
+ − +   ∂ϕ ∂ ∂  

 (18) 

и граничные условия при 0,r = π : 

0, 31 32
33

34

65
0,

66

56
0,

55

1| 0

1 ;

1 1| 0 ;

1 1| 0

r r r

r r

rz r z

u h w vq A A u
r A l z r

v wA
l z r

Av h w u uq v
r A h r l z r r

Aw h u vq v
r A r h r r

= π

ϕ = π ϕ

= π

  ∂ π ∂ ∂
σ = = => = − + + +  ∂ π ∂ ∂ϕ 

 π ∂ ∂
+ +  ∂ ∂ϕ 

 ∂ π ∂ π ∂ ∂ τ = = => = − + + −  ∂ π ∂ ∂ ∂ϕ  

∂ ∂ π ∂
τ = = => = − + −

∂ π ∂ϕ ∂
.u

l z











   π ∂

+    ∂  

 (19) 

Задачу (15)–(19) можно переписать в более компактном виде: 

1 1 2 2 3 3

1 2 3

4 5 6

( , , ); ( , , ); ( , , ); , [0, ],
[0, 2 ], , , 2 -периодические функции по ;

( , , ); ( , , ); ( , , ) при 0, ;

( , , ); ( , , ); ( , , ) при 0, .

∆ = ∆ = ∆ = ∈ π

ϕ∈ π − π ϕ
∂ ∂ ∂

= = = = π
∂ ∂ ∂
∂ ∂ ∂

= = = = π
∂ ∂ ∂

u f u v w v f u v w w f u v w r z
u v w

u v wg u v w g u v w g u v w z
z z z
u v wg u v w g u v w g u v w r
r r r











 (20) 

Здесь u, v, w — 2π-периодические функции по φ; 1 3 1 6,f f g g− −  — 
функции, включающие операторы первых и вторых производных, вид 
которых определяют равенства (15)–(19). 

Разработка численного метода на основе приближений без 
насыщения. Система уравнений в частных производных (20) содер-
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жит малые параметры: геометрические величины 2( / ) ,h π  /j jaδ  и 
механические характеристики жесткости углепластика /TE E , вхо-
дящие в коэффициенты системы. Кроме того, отметим, что гранич-
ные условия записаны в неявной форме с использованием функций 

1 6g g− . Поставленная задача имеет высокую вычислительную слож-
ность и требует создания оригинальных численных методов, позво-
ляющих строить устойчивые алгоритмы и находить решения , ,u v w  
с достаточной точностью за приемлемое время. 

Для построения таких алгоритмов воспользуемся идеями К.И. Ба- 
бенко о методах приближения без насыщения [4]. За основу возьмем 
алгоритм решения 2D-краевых задач для уравнения Пуассона и его 
развитие и обобщение для случая произвольной размерности [6, 23]. 
Данный алгоритм использует итерационный метод установления и 
набор нестационарных регуляризаций, что делает его весьма эффек-
тивным при решении как линейных, так и нелинейных жестких крае-
вых задач. В основе алгоритма лежат приближения неизвестных 
функций интерполяционными полиномами с узлами Чебышева, не 
имеющие насыщения: 

2
1

1

( ) 11( , ) ( 1) cos ( arccos );

(2 1)cos , 1, ..., .
2

M
m mm

M
mm

m

f x x
p x f M x

M x x
jx m M
M

−

=

−
= −

−

− π
= =

∑
        (21) 

Здесь f (x) — приближаемая неизвестная функция, [ 1,1]x ∈ − ; mx  — 
узлы интерполяции; M — их количество. При расчетах будем исполь-
зовать модификацию (21) для приближения решений по направлени-
ям , ,r z  позволяющую задать значения решения и его производных  
в граничных точках ( 1), '( 1):f f± ±  

,
1 1

1

1 1

1( , ) ( ) ( ) ( ) '(1) ( ) '( 1)

( ) (1) ( ) ( 1),

M
r z

m mM
m

p x f p x f x d x f d x f
M

v x f v x f

−
=

−

= + + − +

+ + −

∑        (22) 

где в соответствии с [4] 

22 2
1

2 2
1(1 )( ) ( 1) ( );

(1 )
mm

m M
mm

xxp x T x
x xx

− −−
= −

−−
 ( ) cos ( arccos );MT x M x=  

( ){ }
2

2
1

( )(1 )( ) 1 ( 1) 1 ;
4( 1)

M
M

T x xd x x M−
−

= + + −
−
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( ){ }
2

2
1

( )(1 )( ) 1 (1 ) 1 ;
4

MT x xd x x M+
= + − +  

2

1
( )(1 )(1 )( ) ;

4( 1)
M

M
T x x xv x−

− −
=

−
   

2

1
( )(1 )(1 )( ) ,

4
MT x x xv x − +

= −  

при этом к узлам ,mx  m = 1, …, M, добавляют точки −1, 1 и преобразу-
ют отрезок [−1, 1] в отрезок [0, π], так как в (20) , [0, ].r z ∈ π  Для при-
ближения неизвестных 2π-периодических функций по координате 
ϕ используют полином с ядром Дирихле, который может быть получен 
из ряда Фурье элементарными преобразованиями: 

2 2

1
=0

2( , ) = ( ) ( );
2 1

2= , = 0,1, ..., 2 2,
2 1

N

j N jN
j

j

p x f f x D x x
N

jx j N
N

−
ϕ

− −
−

π
−

−

∑
               (23) 

где 1
sin( 0,5)( ) =

2sin( / 2)N
N xD x

x−
−  — ядро Дирихле. Аппроксимации функ-

ций , ,u v w  представляют собой произведения двух полиномов (22)  
и полинома (23) MP , где M  — количество узлов интерполяции  
в трехмерной области Ω . Такие приближения на гладких функциях 
обладают асимптотикой  погрешности наилучших приближений [4]: 

,−α
α∞

− ≤f DCM MP  

где α  — степень гладкости f; D — константа, ограничивающая зна-
чения производных f; Cα  зависит только от степени гладкости f. 
Данные приближения существенно минимизируют погрешность рас-
четов и объем памяти, необходимый для работы программы, позво-
ляя справиться с проблемой малых параметров и получить достаточ-
но точное решение с минимальными временными затратами. 

Будем использовать для решения задачи (20) вычислительный ал-
горитм, разработанный в [6]. Он состоит в последовательном выпол-
нении следующих операций: 

1) введение дополнительной переменной t и запись регуляризо-
ванных уравнений (20). В случае использования параболической ре-
гуляризации данные уравнения включают дополнительные произ-
водные по t и имеют вид 

1 1 2 2 3 3( , , ); ( , , ); ( , , );t t tu u f u v w v v f u v w w w f u v w= ∆ − = ∆ − = ∆ −    (24) 

2) поиск решений исходной системы как предела решений (24) 
при t → ∞  с помощью метода установления. Обоснование сходимо-
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сти метода установления при использовании двух регуляризаций для 
некоторых линейных задач дано в [23]; 

3) аппроксимация производных по t разностными отношениями, 
производных по , ,r zϕ  — производными от полиномов (22), (23); 

4) запись задач линейной алгебры в виде аппроксимирующих 
уравнений, включающих трехмерные массивы, и решение этих задач 
с помощью спектрального разложения матриц, аппроксимирующих 
производные [6]; 

5) переход от предыдущей итерации метода установления к сле-
дующей. Такие переходы осуществляются до тех пор, пока решения 
не установятся, т. е. пока норма разности решений, полученных на 
следующей и предыдущей итерации, не станет достаточно близкой  
к нулю. 

Тестовые численные эксперименты. Для апробации предло-
женной вычислительной схемы и демонстрации ее высокой точности 
и устойчивости в задачах с малыми параметрами и граничными ус-
ловиями, записанными в неявном виде, рассмотрим две тестовые за-
дачи. В качестве первой  возьмем уравнение Пуассона для функции 

( , , )u x y z  

2 2 2
2 2 2 2

2 2 2 2( ) 2( ) ( )( ) ,

, , [0, ]

zu u uu x x y y x x y y e
x y z

x y z

∂ ∂ ∂  ∆ = + + = − π + − π + − π − π ∂ ∂ ∂
∈ π (25) 

с граничными условиями неявного вида при 0,z = π  

0 при , 0, ; при 0,zu x y u u z= = π = = π                (26) 

и известным точным решением 2 2( , , ) ( )( ) .z
exu x y z x x y y e= − π − π  

Найдем с помощью предложенного метода численное решение задачи 
(25), (26) ( , , ),ap i j ku x y z  1, ..., ;i N=  1, ..., ;j M=  1, ..., ,k K=  при раз-
личных количествах узлов интерполяции N, M, K и приведем график 
десятичного логарифма погрешности /ex ap exu u u

∞∞
ε = −  (рис. 4). 

Здесь полиномы вида (21) применялись для приближения функции 
по каждому направлению. 

Видно, что всего при десяти узлах сетки в каждом из направле-
ний получаем приближенное решение, отличающееся от точного 
только в десятом знаке.  

В качестве второго эксперимента рассмотрим задачу о расчете 
прогиба тонкой прямоугольной пластины, защемленной по всему 
контуру. В рамках классической теории пластин прогиб w(x, y) такой 
пластины описывается бигармоническим уравнением 
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Рис. 4. Результаты решения первой тестовой задачи: 
а — приближенное решение на сетке с узлами Чебышева; 

б — десятичный логарифм погрешности 
 

3 2( , ) / ; /12(1 ), [0, ], [0, ]w q x y D D Eh x a y b∆∆ = = − ν ∈ ∈         (27) 

с соответствующими граничными условиями 

0, 0 при 0, ; 0, 0 при 0, ,w ww x a w y b
x y

∂ ∂
= = = = = =

∂ ∂
        (28) 

где D — изгибная жесткость; ,E ν  — модуль Юнга и коэффициент 
Пуассона соответственно; q(x, y) — нагрузка, действующая на плос-
кость пластины [24]. Рассмотрим случай a = b = 1, q(x, y) = q = const. 
С помощью представления решения в виде тригонометрического ря-
да и удержания в нем первых четырех членов можно найти макси-
мальное значение прогиба пластинки с погрешностью не более 1 %:  

2 0,00126 / .Dw q D=  
Рассмотрим теперь соответствующую задачу в трехмерной по-

становке на основе соотношений теории упругости: 
2 2 2 2 2

2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2 2 2

2 2 2 2

1( 2 ) ( ) ;

1( 2 ) ( ) ;

( 2 ) ( ) .

u u u v w
x y h x zx y h z

v v v u v
x y h y zx y h z

w w w u v
h x z y zx y h z

 ∂ ∂ µ ∂ ∂ ∂
λ + µ + µ + = λ + µ +  ∂ ∂ ∂ ∂∂ ∂ ∂  

 ∂ ∂ µ ∂ ∂ ∂
µ + λ + µ + = λ + µ +  ∂ ∂ ∂ ∂∂ ∂ ∂  

 ∂ ∂ λ + µ ∂ λ + µ ∂ ∂
µ + µ + = +  ∂ ∂ ∂ ∂∂ ∂ ∂  

       (29) 

37 



С.К. Голушко, Б.В. Семисалов 

Здесь / ((1 )(1 2 )),Eλ = ν + ν − ν  / (2(1 ))Eµ = + ν  — параметры Ламе; 
( , , ),u x y z  ( , , ),v x y z  ( , , )w x y z  — перемещения точек пластинки, 

[0, ], [0, ], [ ,0].x a y b z h∈ ∈ ∈ −  Граничные условия защемления име-
ют вид 

, , 0 при 0, , 0, ;u v w x a y b= = =                            (30) 

на границах 0,z h= −  имеем 

/ / ; / / при 0, ;

при ;
( 2 )

( , ) при 0.
( 2 )

u z w x v z w y z h

w h u v z h
z x y

w h u vq x y z
z x y

∂ ∂ = −∂ ∂ ∂ ∂ = −∂ ∂ = −

 ∂ λ ∂ ∂
= − + = − ∂ λ + µ ∂ ∂ 

 ∂ λ ∂ ∂
= − + = ∂ λ + µ ∂ ∂ 

             (31) 

Отметим, что основные вычислительные сложности задачи (20) 
имеют место и в задаче (29)–(31). Пусть a = b = 1, 3( , ) 10q x y q −= = . 
На рис. 5, а приведена относительная разность 2Dw  и 3Dw . 

 

Рис. 5. Относительная разность 2Dw  и 3Dw (а) и распределение прогиба 

( , , )w x y h−  при h = 0,01 м в задаче (29)–(31) (б) 
 
Виден характер поведения этой разности при уменьшении h: 

вблизи нуля она принимает значения порядка 1 %. Данный факт сви-
детельствует о корректности постановок задач на основе пространст-
венной теории упругости, приведенных в настоящей работе, и эф-
фективности описанного алгоритма. На рис. 5, б приведено 
распределение прогиба при ,z h= −  найденное при решении задачи 
(29)–(31). На рис. 6, а изображено распределение производной от 
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прогиба w. Видно, что на границах x = y = 0, x = y = 1 производные по 
x и по y принимают нулевые значения (жирная линия), что является 
еще одним подтверждением соответствия постановок задач в дву-
мерном и трехмерном случае (см. (28)). Рис. 6, б демонстрирует рас-
пределение прогиба в сечении осью y = π/2. Видно, что деформация  
в направлении z близка к нулю. 

 

Рис. 6. Результаты решения задачи (29)–(31) при h = 0,01 м: 
а — производная w, принимающая нулевые значения на границах x = y = 0, x = y = 1;  

б — распределение w в сечении плоскостью y = π/2 
 
Решение задачи об осевом сжатии сетчатой цилиндрической 

конструкции. Приступим к решению задачи (20) при нагрузках, соот-
ветствующих осевому сжатию конструкции. Рассмотрим конструкцию, 
включающую одно семейство кольцевых ребер 1 0φ =  и два семейства 

спиральных ребер 2,3 26,6oφ = ±  с параметрами 1,2,3 140 ГПа,E =
1,2,3 11 ГПа,TE = 1,2,3 1,2,35,5 ГПа, 5,386 ГПа,TG G= =  1,2,3=0,27Lν , 1,2,3ν =  

1,2,3 0,0212.T= ν =  Определим сжимающие напряжения σсж, возникаю-
щие в спиральных ребрах, и осевую жесткость конструкции S при 

1м, 4 м,R l= =  2 МНzP p= = , 0Q = , h = 1,05 см и различных зна-
чениях ширины спиральных и кольцевых ребер ,h cδ δ  и расстояний 
между ними , ,h ca a a  (рис. 7). В таблице данные значения отмечены 
звездочкой. Они приведены в сравнении с величинами, полученными в 
[10] при использовании дискретной модели (индекс «д») и упрощенной 
двумерной континуальной модели (индекс «к») рассматриваемой сетча-
той оболочки при тех же R, l, P, Q. В поставленной задаче содержатся 
малые параметры порядка 710−  при старших производных , ,u v w  и ве-
личины порядка 510−  в граничных условиях уравнений (20), что обу-
словливает ее высокую вычислительную сложность. 
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Рис. 7. Основные параметры модели 

 
Полученные решения и результаты работы [10] 

Основные 
параметры модели 

Напряжения 
в спиральных ребрах 

Значения 
изгибной жесткости 

a, мм δh, мм δc, мм 
σсж.д, 

МПа [10] 
σсж.к, 

МПа [10] 
σсж, 

МПа* 
Sд, 

МН/мм [10] 
Sк,  

МН/мм [10] 
S, 

МН/мм* 

130,8 8,1 4,5 273,4 273 275,5 0,115 0,111 0,137 

104,7 6,5 3,6 272 273 274,8 0,114 0,111 0,138 

87,2 5,4 3,0 273,5 273 275,5 0,115 0,111 0,137 

78,5 4,86 2,7 273,5 273 275,6 0,116 0,111 0,137 

69,8 4,3 2,4 274 273 276,8 0,114 0,111 0,137 
 

При сопоставлении данных таблицы видно, что решения, полу-
ченные при использовании принципиально различных математиче-
ских и вычислительных моделей, достаточно близки. Это является 
косвенным подтверждением корректности полученного результата. 

Заключение. Предложенные математическая и вычислительная 
модели позволили рассчитать НДС анизогридной цилиндрической 
оболочки на основании уравнений пространственной теории упруго-
сти. В случае изотропного и ортотропного материалов с линейной 
связью напряжений и деформаций полученные результаты близки  
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к решениям классической теории пластин и дискретных, и контину-
альных моделей сетчатых оболочек.  

Возможность достижения высокой точности решений при не-
большом количестве узлов интерполяции является весьма перспектив-
ной для анализа устойчивости конструкций и оптимизации их пара-
метров, поскольку данные задачи зачастую сводятся к решению 
большого числа прямых задач определения НДС. Минимизируя коли-
чество узлов с сохранением высокой точности,  сводим к минимуму 
время решения каждой такой задачи, следовательно, получаем значи-
тельное преимущество в скорости при высокой точности расчетов. 

Работа выполнена при поддержке РФФИ (грант №13-01-12032 
офи_м_2013). 
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Numerical modeling of anisogrid structures deformation  
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The article describes a class of promising anisogrid structures representing mesh shell of 
unidirectional carbon. A brief analysis of existing approaches to modeling deformation 
of grid structures is presented. New mathematical and numerical models are proposed 
for reliable description of complex behavior of anisogrid structures under different kinds 
of loads. A high degree of accuracy and stability of the numerical model based on the ex-
pansions of unknown functions in Chebyshev polynomials and Fourier series is caused by 
the lack of saturation of such approximations. Efficiency of the proposed models and 
techniques is demonstrated on the example of solving test boundary-value problems and 
a problem of axial compression of anisogrid cylindrical shell. 
 
Keywords: anisogrid structure, cylindrical shell, carbon, continuum model, scheme with-
out saturation, Fourier series, Chebyshev polynomial 
 
REFFERENCES 

[1] Vasilyev V.V, Barynin V.A., Razin A.F. Petrokovskiy S.A., Halimanovich V.I. 
Kompozity i nanostruktury – Composites and nanostructures, 2009, no. 3, 
pp. 38–50. 

[2] Vasilyev V.V., Morozov E.V. Advanced Mechanics of Composite Materials. 
Elsevier, 2007, 491 p.     

[3] Obraztsov I.F., Rybakov L.S., Mishustin I.V. Mekhanika kompozitsionnykh 
materialov i konstruktsiy – Mechanics of Composite Materials and Structures, 
1996, vol. 2, no. 2, pp. 3–14. 

[4] Babenko K.I. Osnovy chislennogo analiza [Fundamentals of Numerical 
Analysis]. Moscow, Izhevsk, SRC Regular and chaotic dynamics Publ., 2002. 

[5] Boyd J. Chebyshev and Fourier Spectral Methods. Second edition, University 
of Michigan, 2000. 

[6] Semisalov B.V. Zhurnal vychislitelnoy matematiki i matematicheskoi fiziki 
RAN – Journal of Computational Mathematics and Mathematical Physics, 
2014, vol. 54, no. 7, pp. 1110–1135.  

[7] Levin A. Izvestiya vuzov. Stroitelstvo i arkhitektura – Proceedings of the 
universities. Construction and architecture, 1965, no. 9, pp. 41–48.   

[8] Rybakov L.S. Mekhanika tverdogo tela – Mechanics of Solids, 1995, no. 5, 
pp. 171–179. 

[9] Dean D.L., Ganga Rao H.V.S. Macro approach to discrete field analysis. 
J. Eng. Mech. Div., ASCE, 1970, vol. 96, no. EM4, pp. 377–394. 

43 



С.К. Голушко, Б.В. Семисалов 

[10] Azarov A.V. Mekhanika kompozitsionnykh materialov i konstruktsiy – 
Mechanics of Composite Materials and Structures, 2012, vol. 18, no. 1, 
pp. 121–130. 

[11] Bazant Z.P., Christensen M. Analogy between micropolar continuum and grid 
frameworks under initial stress. Int. J. Solids and St. 1972, vol. 8, no. 3, 
pp. 327–346. 

[12] Bunakov V.A., Protasov V.D. Mekhanika kompozitsionnykh materialov i 
konstruktsiy – Mechanics of Composite Materials and Structures, 1989,   no. 6, 
pp. 1046–1053. 

[13] Bakhvalov N.S., Panasenko G.P Osrednenie protsessov v peroidicheskikh 
sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov 
[Averaging Processes in Periodic Media. Mathematical Problems of the 
Mechanics of Composite Materials]. Moscow, Nauka Publ., 1984, 352 p.  

[14] Vlasov A.N. Mekhanika kompozitsionnykh materialov i konstruktsiy – 
Mechanics of Composite Materials and Structures, 2004, vol. 10, no. 3, 
pp. 424–441. 

[15] Dimitrienko Yu.I., Gubareva E.A., Sborsсhhikov S.V. Matematicheskoe 
modelirovanie i chislennye menody – Mathematical modeling and Numerical 
Methods, 2014, no. 1, pp. 36–57. 

[16] Dimitrienko Yu.I., Gubareva E.A., Sborschikov S.V. Matematicheskoe 
modelirovanie i chislennye menody – Mathematical modeling and Numerical 
Methods, 2014, no. 2, pp. 28–48. 

[17] Sheshenin S.V., Skoptsov K.A. Matematicheskoe modelirovanie i chislennye 
menody – Mathematical modeling and Numerical Methods, 2014, no. 2,  
pp. 49–61.   

[18] Altufov N.A., Popov B.G. Mekhanika tverdogo tela – Mechanics  of Solids, 
1994, no. 6, pp. 146–154. 

[19] Mityushov E.A. Mekhanika kompozitsionnykh materialov i konstruktsiy – Mechanics 
of Composite Materials and Structures, 2000, vol. 6, no. 2, pp. 151–161. 

[20] Svistkov A.L., Evlampieva S.E. Prikladnaya mekhanika i tekhnicheskaya 
fizika – Journal of Applied Mechanics and Technical Physics, 2003, vol. 44, 
no. 5, pp. 151–161. 

[21] Golushko. S.K., Idimeshev S.V., Semisalov B.V. Metody resheniya kraevykh 
zadach mekhaniki kompozitnykh plastin i obolochek: uchebnoe posobie po 
kursu “Pryamye i obratnye zadachi mekhaniki kompozitov” [Methods for 
Solving Boundary Value Problems of Mechanics of Composite Plates and 
Shells: Teaching Guide on the Curse «Direct and Inverse Problems of 
Composite Mechanics»]. ICT SB RAS Publ., Novosibirsk, 2014, 131 p. 
[electronic resource]. ISBN 978-5-9905791-0-1.  

[22] Vasilyev V.V. Mekhanika konstruktsiy iz kompozitsionnykh materialov 
[Mechanics of Composite Material Structures]. Moscow, Mashinostroenie 
Publ., 1988, 269 p.  

[23] Blokhin A.M., Ibragimova A.S., Semisalov B.V. Matematicheskoe 
modelirovanie – Mathrmatical modeling, 2009, vol. 21, no. 4, pp. 15–34.   

[24] Timoshenko S., Woinowsky-Krieger S. Theory of plates and shells. 2nd ed.  
N.Y.; Toronto; London: McGraw-Hill Book Company, Inc, 1959. 

 
Golushko S. K. (b. 1958) graduated from Mathematical Faculty of Novosibirsk State 
University in 1980. Dr. Sci. (Phys.-Math.), head of the  laboratory of Nonlinear Systems 
Analysis and Optimization at the Institute of Computational Technologies SB RAS, di-
rector of the Technological Design Institute of Computer Engineering SB RAS. He is an 
Expert of the Russian Foundation for Basic Research, Foundation for Assistance to Small 

44 



Численное моделирование деформирования анизогридных конструкций… 

Innovative Enterprises in Science and Technology, Russian Science Foundation. The au-
thor and coauthor of more than 170 scientific papers, including one book, 5 Russian and 
5 foreign patents. Research interests: composites, composite materials, composite struc-
tures, plates, shells, strength, fracture, mathematical modeling, computational mechanics, 
biomechanics, optimal design. e-mail: s.k.golushko@gmail.com.  
 
Semisalov B.V. (b. 1987) graduated from Mathematical Faculty of Novosibirsk State 
University in 2010. Candidate of Physico-Mathematical Sciences, researcher at the Tech-
nological Design Institute of Computer Engineering SB RAS.Winner of the All-Russian 
competition of the "UMNIK" program (2013). The author and coauthor of more than 40 
scientific papers, including 2 book, 3 chapters in monographs, 11 articles in journals from 
the list of Higher Attestation Commission, 8 publications indexed by WOS and Scopus. 
Research interests: mathematical modeling, numerical methods, nonlinear boundary-
value problems, algorithms without saturation, best approximations, semiconductor de-
vices, composites, hemodynamics. e-mail: vibis@ngs.ru. 

 
 
 

45 


