
ISSN 2309-3684 

Математическое 
моделирование
и численные методы

Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В.,
Базылева О. А., Луценко А. Н., Орешко Е. И. Моделирование
упругопластических характеристик монокристаллических
интерметаллидных сплавов на основе микроструктурного
численного анализа. Математическое моделирование и
численные методы, 2015, №2 (6), c. 3-22

Источник: https://mmcm.bmstu.ru/articles/45/

Параметры загрузки:

IP: 216.73.216.112

20.01.2026 23:09:35



Моделирование упругопластических характеристик… 

УДК 539.3 

Моделирование упругопластических характеристик 
монокристаллических интерметаллидных сплавов  
на основе микроструктурного численного анализа 

© Ю.И. Димитриенко1, Е.А. Губарева1, С.В. Сборщиков1, 
О.А. Базылева2, А.Н. Луценко2, Е.И. Орешко2 

1МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 
2ФГУП ВИАМ, Москва, 105005, Россия 

 
Предложена модель микроструктуры двухфазных монокристаллических интер-
металлидных сплавов в виде периодической структуры гексагонального типа,  
а также математическая модель упругопластического деформирования монокри-
сталлического сплава, основанная на методе асимптотической гомогенизации пе-
риодических структур. Для фаз используется деформационная теория пластично-
сти при активном нагружении с учетом эффекта их повреждаемости. Для 
численных расчетов по разработанной модели использован жаропрочный моно-
кристаллический сплав ВКНА-1В. Проведены конечно-элементные расчеты мик-
ромеханических процессов деформирования и разрушения монокристаллического 
сплава ВКНА-1В. Установлено, что при растяжении максимальные значения па-
раметра повреждаемости фаз, определяющего зону начала микроразрушения 
сплава, достигаются в зонах, прилегающих к поверхностям раздела фаз и в местах 
максимального искривления геометрической формы фаз. Проведены расчеты диа-
грамм деформирования жаропрочных сплавов в области пластичности, которые 
показали достаточно хорошее совпадение с экспериментальными данными.  
 
Ключевые слова: микроструктура, интерметаллиды, монокристаллические спла-
вы, численное моделирование, метод асимптотического осреднения, метод конеч-
ных элементов (МКЭ), пластичность, повреждаемость, диаграммы деформиро-
вания. 

 
Введение. Монокристаллические сплавы, такие, как жаропрочные 

интерметаллидные никелевые сплавы (ИНС), в настоящее время ак-
тивно применяют при создании газотурбинных двигателей [1−9]. Эти 
сплавы обладают ярко выраженной кристаллической дендритной мик-
роструктурой, имеющей, как правило, форму, близкую к гексагональ-
ной, которая образуется в процессе направленной кристаллизации [9], 
и состоящей из нескольких основных фаз: γ -фаза — матрица из нике-
левого твердого раствора и 'γ -фаза — включения интерметаллидов. 
Для расчета упругопластических характеристик таких сплавов может 
быть использован метод асимптотического осреднения композитов с 
периодической структурой [10−15]. Целью настоящей работы является 
применение данного метода для моделирования упругопластического 
деформирования и разрушения монокристаллических ИНС. 
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Метод асимптотического осреднения для упругопластических 
задач. Рассмотрим периодическую структуру — композит, которой  
в пространстве R3 соответствует область V c поверхностью Σ . Ком-
позит состоит из N фаз: фазы с индексами 1,..., 1Nα = −  представля-
ют собой включения, а фаза с индексом α =N образует матрицу ком-
позита. Обозначим , 1...V Nα α = , области в R3, соответствующие α -й 
фазе композита, а также: αΣ  — поверхности областей Vα ; NαΣ  — 
поверхности контакта матрицы и включений (полагаем, что включе-
ния не контактируют между собой); eαΣ  — часть поверхности Σ  
композита, занятая α -й фазой (причем N eα α αΣ = Σ ∪ Σ  для включе-

ний и 
1

1

N

N N Ne

−

α
α=

Σ = Σ ∪ Σ


 для матрицы). Включения и матрицу пола-

гаем изотропными упругопластическими, соответствующими дефор-
мационной теории пластичности [16] с учетом повреждаемости. 
Тогда в каждой области , 1, ..., ,V Nα α =  можно рассмотреть следую-
щую задачу малых упругопластических деформаций:  

( )
( )

( )

,

, ,

1 2

0 в ;

, в ;

1 в ;
2

, 0 на ;

на , на .
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α

α α α α
α α

α α α
α

α α
α

α α
α α

σ =

σ = ε ∪ Σ



ε = +

 = σ − σ = Σ

 = Σ σ = Σ

ij j

ij ij kl

ij i j j i

N N
i i ij ij j N

i ie e ij j ie e

V

z V

u u V

u u n

u u n S

F

               (1) 

Здесь , ,i ij ijuα α ασ ε  — перемещения, напряжения и деформации в α -й 
фазе; условия на поверхности ΣαN — это условия идеального контакта 
матрицы и включений, а на Σ1

αе и Σ2
αе — условия на внешних поверх-

ностях; zα  — параметры повреждаемости, зависящие от напряжений 
( )ijzα ασ ; ( ),α α αεij klzF  — определяющие соотношения упругопластич-

ности при активном нагружении. 
В силу наличия периодической структуры у композита можно 

выделить ячейку периодичности (ЯП) Vξ , которая состоит из N фаз: 
, 1,...,V Nαξ α = . Введем малый параметр / 1l Lκ = <<  как отношение 

характерного размера ЯП к характерному размеру всего композита,  
а также глобальные kx и локальные kξ координаты. Будем полагать, 
что матрица является связной областью. Обозначим также поверхно-

4 



Моделирование упругопластических характеристик… 

сти раздела матрицы и включений ЯП через N N Vξα α ξΣ = Σ ∩ . В этом 
случае для такой структуры может быть применен метод асимптоти-
ческого осреднения [17, 18], согласно которому решение задачи (1) 
для матрицы и включений строится в виде асимптотических разло-
жений 

(0) (1) 2

(0) (1) 2

(0) (1) 2

(0) (1) 2

( ) ( , ) ...;

( , ) ( , ) ...;

( , ) ( , ) ...;

( , ) ( , ) ...,

k k l
i i i

k l k l
ij ij ij

k l k l
ij ij ij

k l k l

u u x u x

x x

x x

z z x z x

α α

α α α

α α α

α α α

= + κ ξ + κ

ε = ε ξ + κε ξ + κ

σ = σ ξ + κσ ξ + κ

= ξ + κ ξ + κ

                     (2) 

причем по аргументу lξ  эти функции полагаются периодическими. 
Деформации и напряжения «нулевого уровня» имеют следующий вид: 

(0) (1) (1)
/ /

1 ( );
2ij ij i j j iu uα α αε = ε + +                                   (3) 

( )(0) (0)
, ,

1 ;
2ij i j j iu uε = +                                        (4) 

( )(0) (0) ( ),α α α ασ = ε o
ij ij klzF , если , 1, ..., .k V Nαξξ ∈ α =               (5) 

Здесь , / l
l x= ∂ ∂ и / / l

l = ∂ ∂ξ  — производные по двум типам коорди-
нат. При выводе формул (3)−(5) и далее используем правило диффе-
ренцирования асимптотических разложений [17,18].  

Подставляя разложения (2) в систему (1), применяя правило диф-
ференцирования и собирая члены при одинаковых степенях k, получа-
ем так называемую локальную задачу на ячейке периодичности: 
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σ =
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ε = ε + +

=  Σ
σ − σ = 

= =
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ij ij skl

ij ij i j j i
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i i
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n

u u 

 

 

F

                   (6) 

Здесь оператор осреднения 

1

N

i iV
u u dV

ξα

α α
ξ

α=
= ∑∫ .                                        (7) 
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Условие 0iuα = 

 

 

 в (6) — это условие периодичности функций на 

границе ячейки периодичности. В силу периодичности функций (1)
iuα  

имеет место следующее соотношение: 

( ) ( ) ( )( )0 0 0
, ,

1
2ij ij i j j iu uαε = ε = + .                                (8) 

Соотношения деформационной теории упругопластичности 
для сред с повреждаемостью. Материал фаз полагаем изотропным, 
подчиняющимся модифицированной деформационной теории малых 
упругопластических деформаций Ильюшина для активного нагруже-
ния [16]. В этом случае функция ( ),εij klzF  (индекс α опущен) имеет 

следующий вид:  

( ) 2, ( ( ) ( )(1 )) 2 ( )(1 ) ,
3

σ = ε = − − ω ε δ + − ω εij ij kl kk ij ijz K z G z G zF      (9) 

где 2( ( )) Yω ε  — функция пластичности Ильюшина, которую выбе-
рем в степенном виде [19]: 

2

2 1
2

2

0, ( ) ;
( ( ))

1 ( ) , ( ) ,
( )

p

p n
p

Y
Y

Y
Y

−

ε ≤ ε
ω ε = ε

− ε > ε ε

                      (10) 

где pε  — деформация начала текучести материала; n  — показатель 
упрочнения; 2 ( )Y ε  — второй инвариант (интенсивность) тензора де-
формации, 

2 2 2 2 2 2
2 11 22 22 33 33 11 12 13 23

1( ) = ( ) ( ) ( ) 6( );
3

Y ε ε − ε + ε − ε + ε − ε + ε + ε + ε  (11) 

( )K z  — модуль объемного сжатия материала и ( )G z  — модуль 
сдвига, зависящие от параметра повреждаемости z, 

0( ) ( );K z K a z=  0( ) ( ).G z G a z=                           (12) 

Здесь ( )a z  — функция, описывающая повреждаемость материала. 
Выбираем ее в степенном виде: 

( )1( ) 1 1 ,
2

z zm ma z z z= − + −                              (13) 

где zm  — константа; ( ) 1a z = , если 0z = , и ( ) 0a z = , если 1z ≥ . 
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Для параметра повреждаемости принимаем следующую зависи-
мость от инвариантов тензора напряжений: 

2
2

2 2 2
1

1 1 .
3 (1 ( )) 3

u

S T S
z

B V +
 σ

= + − σ  σ + σ σ σ 
                        (14) 

Здесь обозначены первый и второй инварианты тензора напряжений:  

11 22 33;σ = σ + σ + σ  

2 2 2
11 22 11 33 22 33

2 2 2 1/2
12 13 23

1 (( ) ( ) ( )
2

6( )) ;

uσ = σ − σ + σ − σ + σ − σ +

+ σ + σ + σ
           (15) 

1 ( );
2−σ = σ − σ  1 ( ),

2+σ = σ + σ  

а Tσ , Cσ , Sσ  — пределы прочности при растяжении, сжатии и сдвиге. 
Константу B вычисляем через пределы статической прочности 

при сжатии и сдвиге: 
2

2
11 .

3
C

S C
B

 σ
= −  σ σ 

                                       (16) 

В модели имеют место следующие соотношения между предела-
ми статической прочности:  

3 ;C Sσ > σ  0;Cσ >  0;Sσ >  3 .T Sσ < σ                      (17) 

В выражении (14) введена непрерывная положительная функция 
от первого инварианта ,σ  описывающая гладкий переход накопления 
повреждений в областях растяжения и сжатия: 

0, если 0;
( ) , если 0;

, если .
C

C C

V
σ >

σ = −σ − σ < σ <
σ σ < −σ

                            (18) 

Модель (14) накопления повреждений позволяет учесть различие 
в накоплении повреждений в областях растяжения и сжатия. Когда 
параметр повреждаемости достигает единицы, происходит локальное 
разрушение материала в некоторой точке. Из условий 

1z =                                                (19) 

и (14) получаем следующий критерий прочности материала фазы: 
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2
2

2 2 2
1

1 1 1,
3 (1 ( )) 3

u

S T SB V +
−

 σ
+ − σ =  σ + σ σ σ 

                       (20) 

согласно которому в области растяжения ( 0)σ >  поверхность проч-
ности имеет вид 

2
2

2 2 2
1 1 1;

3 3
u

S T S
+

 σ
+ − σ =  σ σ σ 

                                (21) 

в области сжатия ( 0)C−σ < σ <  происходит увеличение предела проч- 
ности; критерий прочности принимает вид 

2 23 (1 ),u S Bσ = σ + σ                                       (22) 

а в области сверхсжатия ( )Cσ < −σ  поверхность прочности совпадает 
с поверхностью прочности по критерию Мизеса: 

2 2 .u Cσ = σ                                              (23) 

Как и по критерию Мизеса, при всестороннем сжатии, когда вы-
полняется условие 0,uσ =  разрушения не происходит. 

При всестороннем растяжении ( 0,σ >  0)uσ =  критерий прочно-
сти сводится к следующему уравнению: 

1
2

2 2
1 1 .

3T S

−

+
 

σ = −  σ σ 
                                     (24) 

Вводя тензор четвертого ранга (тензор модулей упругости)  

2( , ) ( ( ) ( )(1 )) ( )(1 )( ),
3ijkl kl ij ik jl il jkС z K z G z G zω = − − ω δ δ + − ω δ δ + δ δ  (25) 

определяющее соотношение (9) записываем в следующем псевдо-
линейном виде: 

( , ) .ij ijkl klС zσ = ω ε                                       (26) 

Численный метод решения локальной задачи деформирова-
ния упругопластического материала. Для решения задачи теории 
пластичности (6) с соотношениями (26) применим один из вариантов 
метода упругих решений [16, 20], согласно которому определяющее 
соотношение (26) линеаризуем с помощью итерационного алгоритма 

{ } { 1} { 1} { }( , ) ,m m m m
ij ijkl klС zα α α − α − ασ = ω ε                        (27) 
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где { }m
ij
ασ и { }m

kl
αε  — значения напряжений (0)

ij
ασ  и деформаций (0)

ij
αε  на 

m-м шаге итерационного цикла, а { 1} { 1} { 1}( , )m m m
ijkl ijklC С zα − α α − α −= ω  — 

тензоры модулей упругости компонентов композита на m-м шаге 
итерации. Обозначим также через { }m

ijuα  значения перемещений (1)
ijuα  

на m-м шаге итерационного цикла. Тогда на m-м шаге итерации вме-
сто задачи (6) получаем следующую линеаризованную задачу: 

( )

( )

{ }
/

{ } { 1} { }

{ } { } { }
/ /

{ } { }

{ } { }

0 в ;

в ;

1 в ;
2

на .
0









m
ij j

m m m
ij ijkl s skl

m m m
ij ij i j j i

m N m
i i

Nm N m
ij ij j

V

C V

u u V

u u

n

α
ξ

α α − α
ξ

α α α
ξ

α

ξαα

σ =

 ′σ = ε ∪ Σ ∪ Σ

ε = ε + +

 =  Σ σ − σ = 

               (28) 

В качестве критерия выбора числа необходимых итераций выби-
раем условие достижения заданного значения ∆  — относительного 
отклонения напряжений:  

{ } { 1}

,
{ 1}

,

| ( ) ( ) |
max .

| ( ) |k

m m
k kij ij

i j
mx V kij

i j

x x

x

−

−∈

σ − σ

< ∆
σ

∑

∑
                       (29) 

Согласно предложенному в [5] варианту метода асимптотическо-
го осреднения, перемещения «первого уровня» и напряжения «нуле-
вого уровня» при каждом значении m можно представить в виде сле-
дующих сумм: 

3
{ } { }

( )
, 1

;m m
i i pq

p q
u uα α

=
= ∑  

3
{ } { }

( )
, 1

;m m
ij ij pq

p q

α α

=
ε = ε∑  

3
{ } { }

( )
, 1

,m m
ij ij pq

p q

α α

=
σ = σ∑  

если , 1, ..., ,k V Nαξξ ∈ α =                                 (30) 

причем для функций { }
( )

m
i pquα  для каждой комбинации индексов (pq) 

выделяется линейная часть по локальным координатам: 

( ){ } { }
( ) ( ) ( ),m q p m l

pq ip iqi pq i pqu Uα α= −ε δ ξ + δ ξ + ξ                      (31) 

где ipδ  — символ Кронекера, а ( ){ }
( )

m
ii pqU α ξ  — функции, называемые 

псевдоперемещениями, для которых при каждом фиксированном на-
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боре индексов (pq) получаем линеаризованную локальную задачу Lpq 
на 1/8 ячейки периодичности: 

( )

( )

{ }
( )/

{ } { 1} { }
( ) ( )

{ } { } { }
( ) ( )/ ( )/

{ } { }
( ) ( )

{ } { }
( ) ( )

0 в ;

в ;

1 в ;
2

на .
0









m
ij pq j

m m m
ijkl s sij pq ij pq

m m m
ij pq i pq j j pq i

m N m
i pq i pq

Nm N m
jij pq ij pq

V

C V

U U V

U U

n

α
ξ

α α − α
ξ

α α α
ξ

α

ξαα

σ =

 ′σ = ε ∪ Σ ∪ Σ

ε = +


 =  Σ σ − σ = 

                   (32) 

Кроме того, к системе (32) присоединяются условия на координат-
ных плоскостях { 0}s

sΣ = ξ =  и на торцевых поверхностях ЯП 
{ 1/ 2},s s′Σ = ξ =  s = 1, 2, 3, которые записываются следующим образом: 

'
( ) ( ) ( )при 1/ 2 ; 0; 0 на

;

α α α= = ε δ = = Σ

≠ ≠ ≠
i pq pq ip j pq k pq ip q U S S

i j k i
                (33) 

'
( ) ( ) ( )

( ) ( ) ( )

при (1/ 4) ; 0; 0 на , , { , };

0; 0; 0 на , ,
i pq ip ip j pq k pq j

i pq j pq k pq k

p q U S U i j p q

S S U i j k i

α α α

α α α

≠ = ε δ = = Σ =

′= = = Σ ≠ ≠ ≠
 

а также 

( ) ( ) ( )при 0; 0; 0 на , ;α α α= = = = Σ ≠ ≠ ≠i pq j pq k pq ip q U S S i j k i             (34) 

( ) ( ) ( )

( ) ( ) ( )

при 0; 0; 0 на , , { , };

0; 0; 0 на , .

α α α

α α α

≠ = = = Σ =

= = = Σ ≠ ≠ ≠

i pq j pq k pq j

i pq j pq k pq k

p q U S U i j p q

S S U i j k i
 

Здесь введены обозначения для векторов усилий: 
3 { }

( ) ( )1 .m
i pq lil pqlS nα

=
≡ σ∑                                    (35) 

Решение задачи (32)−(34) разыскивается в области Vξ
 , представ-

ляющей 1/8 ЯП: ( 0),iV Vξ ξ= ∩ ξ ≥  здесь также обозначена поверх-

ность контакта фаз внутри :Vξ
  .Vξαβ ξαβ ξΣ = Σ ∩  

Решение задачи Lpq методом конечных элементов. Для произ-
вольного конечного объема V Vξ⊂   вариационная формулировка за-
дачи Lpq (32) при фиксированных значениях p и q имеет вид 
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Моделирование упругопластических характеристик… 

.T T

V

dV U Sd
Σ

δε σ = δ Σ∫ ∫                                (36) 

Здесь обозначены координатные столбцы псевдоперемещений ,U  
напряжений σ,  деформаций ε  и поверхностных усилий :S  

U =
т{ } { } { }

1( ) 2( ) 3( ), , ;
 m m m

pq pq pqU U Uα α α 
   

т{ } { } { } { } { } { }
11( ) 22( ) 33( ) 13( ) 23( ) 12( )σ , σ , σ , σ / 2, σ / 2, σ / 2 ;

 m m m m m m
pq pq pq pq pq pqσα α α α α α =    

т{ } { } { } { } { } { }
11( ) 22( ) 33( ) 13( ) 23( ) 12( ), , , / 2, / 2, / 2 ;m m m m m m

pq pq pq pq pq pq
α α α α α α ε = ε ε ε ε ε ε  (37) 

т
1( ) 2( ) 3( ), , .

 
pq pq pqS S S Sα α α =    

Линеаризованные определяющие соотношения, следующие из 
второй группы уравнений в (28) с использованием координатных 
столбцов, записываются следующим образом: 

,σ = εС                                               (38) 

где С — матрица упругости размером [6×6], составленная из компо-
нентов тензора { }m

ijklСα  стандартным образом [21]. Соотношения Коши 
(третья группа уравнений в (28)) в матричном виде записываются 
следующим образом: 

,Uε = D                                               (39) 

где D — матрица операторов дифференцирования ( ( / ):l
l∂ = ∂ ∂ξ  

1

2

3

3 1

3 2

2 1

0 0
0 0
0 0

./ 8 0 / 8

0 / 8 / 8

/ 8 / 8 0

∂ 
 ∂ 
 ∂
 =
∂ ∂ 

 
∂ ∂ 

 ∂ ∂ 

D                           (40) 

С учетом определяющих отношений (37) и (39) вариационное 
уравнение (36) можно представить в виде 

т т( ) .
V

U UdV U Sd
Σ

δ = δ Σ∫ ∫D CD                          (41) 

Аппроксимируя псевдоперемещения U в КЭ линейными функ-
циями ,U q= Φ  где q  — координатный столбец псевдоперемещений 
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в узлах КЭ, а ( )iξΦ  — матрица функции формы, зависящая от типа 
КЭ, получаем итоговую разрешающую систему линейных алгебраи-
ческих уравнений 

,q f=K                                             (42) 

где 
т ;

V

dV= ∫K B CB тf Sd
Σ

= Σ∫Ф                             (43) 

— локальная матрица жесткости и столбец нагрузок, а .=B DФ  
Глобальная матрица жесткости задачи составляется из локальной 

матрицы жесткости стандартным образом, после ее формирования к 
системе линейных алгебраических уравнений (СЛАУ) применяются 
граничные условия (33) и (34). Граничные условия идеального кон-
такта (последняя группа соотношений в (28)) не требуют специально-
го учета, так как при данном варианте МКЭ они удовлетворяются ав-
томатически. 

Решая СЛАУ, находим перемещения q  в узлах, по которым вы-
числяем псевдоперемещения ,U q= Ф  деформации Bqε =  и напря-
жения CBqσ =  в КЭ. Для решения СЛАУ применяется метод сопря-
женных градиентов. В качестве КЭ выбран четырехузловой тетраэдр, 
обеспечивающий линейную аппроксимацию псевдоперемещений U  
и приводящий к постоянным напряжениям σ  в отдельном КЭ. Каж-
дая из указанных задач Lpq решается несколько раз: при заданных 
значениях деформаций pqε  осуществляется итерационный цикл 
решения соответствующей задачи до достижения условия сходимос- 
ти решения, выбираемого следующим образом: 

( )
( )

( )
( )

( )
( )

1
3 3

{ } { 1} { 1}

, 1 , 1
,m m m

pq pq pq

−
α α − α −

βγ βγ βγ
β γ= β γ=

 
σ − σ σ ≤ δ  

 
∑ ∑             (44) 

где δ = 0,001…0,01. Число итераций ,m M=  обеспечивающее 
выполнение данного условия, различно для каждой отдельной задачи 
Lpq и для разных значений pqε , но не превышает 10−15. Напряжения 
при максимальном значении номера итерации m M=  обозначены 
через ( )

( ){ }.M
pq

α
βγσ  

Расчет эффективных упругопластических характеристик 
композита. После решения серии задач Lpq (32)−(34) указанным ме-
тодом для всех p, q проинтегрируем полученные напряжения ( )

( ){ }M
pq

α
βγσ  

по областям, занятым включениями и матрицей,  
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( )
( )

( )3
{ } { }

, 1
,M M

ij ij ij pq
p q

α α

=
σ = σ = σ∑                             (45) 

в результате получим осредненные напряжения. Тогда эффективные 
упругопластические соотношения, связывающие осредненные на-
пряжения и деформации ijσ и ,pqε  можно записать в следующем 
символическом операторном виде: 

( ).σ = εij ij pqF                                         (46) 

Поскольку ранее рассмотрен алгоритм вычисления средних на-
пряжений ijσ  (формулы (45), в которых ( )

( ){ }M
pq

α
βγσ  вычисляются по 

приведенному ранее методу) по заданным значениям осредненных 
деформаций ,pqε  то фактически указан алгоритм определения 
значений символического оператора (46). 

Результаты численного моделирования микронапряжений и 
диаграммы деформирования монокристаллического никелевого 
интерметаллидного сплава ВКНА-1В. С помощью разработанной 
математической модели проведено моделирование микронапряжений 
и осуществлен расчет диаграмм упругопластического деформирования 
жаропрочного монокристаллического никелевого интерметаллидного 
сплава ВКНА-1В. Сплав имеет характерную ячеисто-дендритную 
микроструктуру (рис. 1), отдельные кристаллы с характерным разме-
ром в несколько микрометров обладают формой, близкой к гексаго-
нальной. В каждом кристалле достаточно четко выделены две основ-
ные фазы: никелевая γ -фаза и интерметаллидная 'γ -фаза на основе 
Ni3Al. Концентрация 'γ -фазы составляет около 81 %. 

 
 

Рис. 1. Фотография реальной микроструктуры и математическая модель микро-
структуры жаропрочного монокристаллического сплава  ВКНА-1В с кристалло- 

графической ориентацией <111> 
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Характеристики γ -фазы: E = 260 ГПа; ν = 0,28; / ;p p Eε = σ  

560 МПа;pσ =  1400 МПа;Tσ =  830 МПа;Sσ =  2000 МПа.Cσ =  

Характеристики 'γ -фазы: E = 210 ГПа; ν = 0,28; / ;p p Eε = σ  

1060 МПа;pσ = ; 1100 МПа;Tσ =  700 МПа;Sσ =  1600 МПа.Cσ =  
Результаты моделирования приведены на рис. 2−6. Установлены 

следующие особенности микромеханического напряженно-деформи- 
рованного состояния сплава: продольные 11

ασ  и поперечные нор-

мальные напряжения 33
ασ  в фазах при растяжении по направлению 

<100> достигают максимальных значений в зонах, прилегающих к 
поверхностям раздела фаз, и в местах максимального искривления 
геометрической формы фаз, в том числе на оси симметрии ячеек пе-
риодичности. Сдвиговые напряжения, кроме поверхностей раздела 
фаз, имеют максимумы также и внутри 'γ -фазы. Параметр повреж-
даемости фаз zα , определяющий зону начала микроразрушения 
сплава, достигает максимальных значений на поверхностях раздела 
фаз (см. рис. 5). 

 
 

 

Рис. 2. Распределение напряжения 33
ασ  в микроструктуре жаропрочного сплава 

ВКНА-1В при деформировании в направлении <100> в момент перед образованием  
макроразрушения: 

а — в 'γ -фазе; б — в γ -фазе 
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Рис. 3. Распределение напряжения 11
ασ  в мезоструктуре жаропрочного сплава 

ВКНА-1В при деформировании в направлении <100> в момент перед образованием  
макроразрушения: 

а — в 'γ -фазе; б — γ -фазе 
 
 

 

Рис. 4. Распределение коэффициента концентрации напряжений 1111Bα  в микро- 
структуре жаропрочного сплава ВКНА-1В: 

а — в 'γ -фазе; б — в γ -фазе 
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Рис. 5. Распределение параметра повреждаемости zα  в мезоструктуре жаропроч-
ного сплава ВКНА-1В перед началом макроразрушения: 

а — в 'γ -фазе; б — в γ -фазе 

 
Рис. 6. Диаграмма деформирования жаропрочного 
сплава ВКНА-1В с концентрацией 'γ - фазы 81 % при 
деформировании в направлении <100> (линия — рас- 

чет, точки — экспериментальные данные) 
 
Проведены расчеты упругопрочностных свойств жаропрочных 

сплавов с типовой микроструктурой, диаграмм деформирования жа-
ропрочных сплавов в области пластичности при действии различных 
видов напряженно-деформированного состояния (растяжения, сжа-
тия, сдвига). Тестовые расчеты показали, что увеличение содержания 

'γ -фазы в сплаве ВКНА-1В приводит к возрастанию прочностных 
характеристик сплава. Сопоставление тестовых результатов расчетов 
с экспериментальными данными по прочности сплава ВКНА-1В по-
казало достаточно хорошее совпадение (см. рис. 6). 
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Выводы. Предложена геометрическая модель микроструктуры 
жаропрочных монокристаллических интерметаллидных сплавов  
в виде периодической структуры гексагонального типа, содержащей 
две фазы с границей раздела между ними. Представлена математиче-
ская модель упругопластического деформирования монокристалли-
ческого сплава, основанная на методе асимптотической гомогениза-
ции периодических структур и использовании деформационной 
теории пластичности отдельных фаз при активном нагружении с уче-
том эффекта их повреждаемости. Для численных расчетов по разра-
ботанной модели использован жаропрочный монокристаллический 
сплав ВКНА-1В. Проведены конечно-элементные расчеты микроме-
ханических процессов деформирования и разрушения монокристал-
лического сплава ВКНА-1В с различной концентрацией 'γ -фазы. Ус-
тановлено, что продольные и поперечные нормальные напряжения  
в фазах при растяжении достигают максимальных значений в зонах, 
прилегающих к поверхностям раздела фаз, и в местах максимального 
искривления геометрической формы фаз, в этих же зонах достигает 
максимальных значений параметр повреждаемости фаз, определяю-
щий зону начала микроразрушения сплава. Проведены расчеты диа-
грамм деформирования жаропрочных сплавов в области пластичности, 
сопоставление тестовых результатов расчетов с экспериментальными 
данными по прочности сплава ВКНА-1В показало достаточно хоро-
шее совпадение. 

 
ЛИТЕРАТУРА 

[1] Каблов Е.Н. Инновационные разработки ФГУП ВИАМ ГНЦ РФ по 
реализации Стратегических направлений развития материалов и 
технологий их переработки на период до 2030 года. Авиационные 
материалы и технологии, 2015, № 1 (34), с. 3–33.  

[2] Герасимов В.В., Висик Е.М. Технологические аспекты литья деталей 
горячего тракта ГТД из интерметаллидных никелевых сплавов типа 
ВКНА с монокристаллической структурой. Литейщик России, 2012, № 2, 
с. 19–23. 

[3] Каблов Е.Н., Петрушин Н.В., Светлов И.Л., Демонис И.М. Никелевые 
литейные сплавы нового поколения. Авиационные материалы и 
технологии, 2012, № S, с. 36–52. 

[4] Каблов Е.Н., Бунтушкин В.П., Базылева О.А., Герасимов В.В., Тимофе- 
ева О.Б. Жаропрочные сплавы на основе интерметаллида Ni3Al. Сб. тр. 
Междунар. науч.-техн. конф. «Научные идеи С.Т. Кишкина и современное 
материаловедение». Москва, ВИАМ, 2006, с. 71–75.  

[5] Базылева О.А., Аргинбаева Э.Г., Туренко Е.Ю. Жаропрочные литейные 
интерметаллидные сплавы. Авиационные материалы и технологии, 2012, 
№ S, с. 57–60. 

[6] Каблов Е.Н., Петрушин Н.В. Компьютерный метод конструирования 
литейных жаропрочных никелевых сплавов. Литейные жаропрочные 
сплавы. Эффект С.Т. Кишкина. Москва, Наука, 2006, с. 56−78.  

17 



Ю.И. Димитриенко, Е.А. Губарева, С.В. Сборщиков, О.А. Базылева и др. 

[7] Kimura Y., Miura S., Suzuki T., Mishima Y. Microstructure and mechanical 
properties of two-phase alloys based on the B2-type intermetallic compound 
CoAl in the Co–Al–Ni ternary system. Materials Transactions, 1994, vol. 35, 
no. 11, pp. 800–807. 

[8] Kimura Y., Elmer H. Lee, Liu C.T. Microstructure, phase constitution and 
tensile properties of Co–Ni–Ti–Al base multi-phase alloys. Materials 
Transactions, 1995, vol. 36, no. 8, pp. 1031–1040. 

[9] Герасимов В.В., Висик Е.М., Колядов Е.В. Взаимосвязь формы фронта 
кристаллизации со структурой жаропрочных сплавов в процессе 
направленной кристаллизации. Тр. ВИАМ, 2014, № 6. URL: http://viam-
works.ru/ru/articles?art_id=668 

[10] Димитриенко Ю.И., Дроголюб А.Н., Губарева Е.А. Оптимизация 
многокомпонентных дисперсно-армированных композитов на основе 
сплайн-аппроксимации. Наука и образование: электронное научно-
техническое издание, 2015, № 2. doi: 10.7463/0215.0757079. URL: 
http://technomag.bmstu.ru/doc/757079.html 

[11] Димитриенко Ю.И., Яковлев Н.О., Ерасов В.С., Федонюк Н.Н., 
Сборщиков С.В., Губарева Е.А., Крылов В.Д., Григорьев М.М., 
Прозоровский А.А. Разработка многослойного полимерного компози- 
ционного материала с дискретным конструктивно-ортотропным запол- 
нителем. Композиты и наноструктуры, 2014, № 1, т. 6, с. 32–48. 

[12] Димитриенко Ю.И., Федонюк Н.Н., Губарева Е.А., Сборщиков С.В., 
Прозоровский А.А. Многомасштабное конечно-элементное моделиро- 
вание трехслойных сотовых композитных конструкций. Наука и обра- 
зование: электронное научно-техническое издание, 2014, № 10. doi: 
10.7463/1014.0730105. 

[13] Димитриенко Ю.И., Губарева Е.А., Сборщиков С.В. Асимптотическая 
теория конструктивно-ортотропных пластин с двухпериодической 
структурой. Математическое моделирование и численные методы, 2014, 
№ 1, с. 36–57. 

[14] Димитриенко Ю.И., Губарева Е.А., Сборщиков С.В. Конечно-элементное 
моделирование эффективных вязкоупругих свойств однонаправленных 
композиционных материалов. Математическое моделирование и 
численные методы, 2014, № 2, с. 28–48. 

[15] Димитриенко Ю.И., Губарева Е.А., Юрин Ю.В. Асимптотическая теория 
термоползучести многослойных тонких пластин. Математическое 
моделирование и численные методы, 2014, № 4, с. 18–36. 

[16] Ильюшин А.А. Механика сплошной среды. Изд. 4-е. Москва, УРСС, 2014, 
320 с.  

[17] Димитриенко Ю.И., Кашкаров А.И. Расчет эффективных характеристик 
композитов с периодической структурой методом конечного элемента. 
Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2002,  
с. 95−108. 

[18] Димитриенко Ю.И., Кашкаров А.И., Макашов А.А. Конечно-элементный 
расчет эффективных упругопластических характеристик композитов на 
основе метода асимптотического осреднения. Вестник МГТУ им. Н.Э. Бау-
мана. Сер. Естественные науки, 2007, № 1, с.102−116. 

[19] Димитриенко Ю.И. Механика сплошной среды. В 4 т. Т. 4. Основы 
механики твердого тела. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2013, 
624 с. 

[20] Биргер И.А., Мавлютов Р.Р. Сопротивление материалов: учеб. пособие. 
Москва, Наука, 1986, 560 с. 

18 



Моделирование упругопластических характеристик… 

[21] Димитриенко Ю.И. Механика сплошной среды. В 4 т. Т. 1. Тензорный 
анализ. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2011, 463 с. 

Статья поступила в редакцию 31.01.2015 
 

Ссылку на эту статью просим оформлять следующим образом: 
Димитриенко Ю.И., Губарева Е.А., Сборщиков С.В., Базылева О.А., 

Луценко А.Н., Орешко Е.И. Моделирование упругопластических характе-
ристик монокристаллических интерметаллидных сплавов на основе микро-
структурного численного анализа. Математическое моделирование и чис-
ленные методы, 2015, № 2(6), с. 3–22. 

 
Димитриенко Юрий Иванович родился в 1962 г., окончил МГУ им. М.В. Ломо-
носова в 1984 г. Д-р физ.-мат. наук, профессор, директор Научно-образовательного 
центра «Суперкомпьютерное инженерное моделирование и разработка программ-
ных комплексов» МГТУ им. Н.Э. Баумана; заведующий кафедрой «Вычислитель-
ная математика и математическая физика» МГТУ им. Н.Э. Баумана. Автор более 
300 научных работ в области механики сплошных сред, вычислительной механики, 
механики и термомеханики композитов, математического моделирования в науке о 
материалах, вычислительной газодинамики. e-mail: dimit.bmstu@gmail.com 
 
Губарева Елена Александровна родилась в 1982 г., окончила МГУ им. М.В. Ло-
моносова в 2004 г. Канд. физ.-мат. наук, доцент, заместитель заведующего кафед-
рой «Вычислительная математика и математическая физика» МГТУ им. Н.Э. Бау-
мана. Автор более 30 научных работ в области механики сплошных сред, механики 
контактного взаимодействия, математического моделирования, механики компози-
тов. e-mail: gubareva_ea@pochta.ru 
 
Сборщиков Сергей Васильевич родился в 1989 г., окончил МГТУ им. Н.Э. Бау-
мана в 2012 г. Аспирант кафедры «Вычислительная математика и математическая 
физика» МГТУ им. Н.Э. Баумана. Автор 12 научных работ в области вычислитель-
ной механики композитов. e-mail: servasbor@gmail.com 
 
Базылева Ольга Анатольевна родилась в 1955 г., окончила МАТИ им. К.Э. Циол-
ковского в 1977 г. Канд. техн. наук, старший научный сотрудник, заместитель на-
чальника по науке лаборатории «Жаропрочные сплавы на никелевой основе» 
ФГУП ВИАМ ГНЦ РФ. Автор более 100 статей в области создания литейных жа-
ропрочных сплавов на основе интерметаллида Ni3Al.  
e-mail: intermetallidbaz@gmail.ru 
 
Луценко Алексей Николаевич родился в 1975 г., окончил МАТИ им. К.Э. Циол-
ковского в 1998 г. Канд. техн. наук, начальник Испытательного центра ФГУП  
ВИАМ ГНЦ РФ. Автор более 70 научных работ в области материаловедения, ме-
таллофизики и физики прочности. 
 
Орешко Евгений Игоревич родился в 1986 г., окончил МАТИ им. К.Э. Циолков-
ского в 2009 г. Канд. техн. наук, ст. научный сотрудник лаборатории «Прочность и 
надежность материалов воздушного судна им. профессора С.И. Кишкиной» ФГУП 
ВИАМ ГНЦ РФ. Автор более 20 научных работ в области материаловедения, мате-
матического моделирования, механики материалов и физики прочности.  
e-mail:89639619741@mail.ru 

19 

mailto:gubareva_ea@pochta.ru


Ю.И. Димитриенко, Е.А. Губарева, С.В. Сборщиков, О.А. Базылева и др. 

Modeling the elastic-plastic characteristics  
of monocrystalline intermetallic alloys based  

on microstructural numerical analysis 
© Yu.I. Dimitrienko1, E.A. Gubareva1, S.V. Sborschikov1, 

O.A. Bazyleva2, A.N. Lutsenko 2, E.I. Oreshko2 

1Bauman Moscow State Technical University, Moscow, 105005, Russia 
2Federal State Unitary Enterprise “All-Russian Scientific Research Institute  
 of Aviation Materials”,  Moscow, 105005, Russia 

 
The article presents a model of microstructure of two-phase monocrystalline 
intermetallic alloys in the form of a periodic structure of the hexagonal type, as well as a 
mathematical model of elastic-plastic deformation of monocrystalline alloy, based on the 
method of asymptotic smoothing periodic structures. Deformation plasticity theory under 
loading is used for the phases with due regard for the effect of their damage level during 
loading. For numerical calculations of the developed model the heat-resistant 
monocrystalline alloy of the type VKNA-1V was used. Finite element calculations of 
deformation and fracture micromechanical processes in monocrystalline alloy of the type 
VKNA-1V were carried out. It was found that under tension maximum values of phase 
damagability, which determine the beginning of the alloy micro-fracture zone, are 
achieved in the areas adjacent to the phase interface and in areas of maximum curvature 
of the geometric shape of the phases. Calculations of heat-resistant alloy strain diagrams 
in plastic range are proved to be consistent with experimental data. 
 
Keywords: microstructure, intermetallic compound, monocrystalline alloys, numerical 
modeling, asymptotic smoothing method, finite element method, plasticity, damagability, 
deforming diagram. 
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