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Рассмотрена модель климата, включающая блоки океана, атмосферы и морского 
льда, взаимодействующие между собой. Модель описывает глубинную термохалин-
ную циркуляцию Мирового океана и основные характеристики остальных элементов 
климатической системы. В работе представлено функционирование модели в ре-
жиме сезонного хода солнечной радиации. Рассчитаны изменения температуры 
атмосферы в XXI в. для различных сценариев изменения концентрации СО2. 
 
Ключевые слова: климатическая модель, термохалинная циркуляция, солнечная 
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Введение. Глобальная модель климата включает блоки океана, 

атмосферы, морского льда и описывает термохалинную циркуляцию 
Мирового океана и основные характеристики остальных элементов 
климатической системы. В настоящей работе рассмотрено функцио-
нирование модели в режиме сезонного хода солнечной радиации. 

Модель океана. Система уравнений модели океана рассматрива-
ется в геострофическом приближении [1] с фрикционным членом  
в уравнениях импульса по горизонтали. Значения температуры T  
и солености S удовлетворяют адвекционно-диффузионным уравне-
ниям, что позволяет описать термохалинную циркуляцию океана. 
Учитывается также процедура конвективного приспособления. 

Таким образом, система основных уравнений в безразмерной 
форме, записанных в сферических координатах  , ,s z , где   — 

долгота; s = sin θ, θ — широта и z — высота, направленная вверх, 
имеет следующий вид [2]: 

уравнения импульса по горизонтали: 
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уравнение неразрывности 

  0;
u w

vc
c s z

          
                                 (4) 

уравнение состояния морской воды 

 , ;S T                                               (5) 

уравнение переноса и диффузии трассеров X (температуры и со-
лености) 

2 ,h v
d X

X X C
dt z z

          
                          (6) 

в которых u, v, w — компоненты вектора скорости; λ — переменный 
в пространстве фрикционный член, увеличивающийся к береговым 
границам и экватору; c = cos θ; T, S, p — температура, соленость, 

давление соответственно;  , s     — безразмерное напряжение 

трения ветра;   — плотность воды; v , h  — коэффициенты турбу-

лентной диффузии трассеров по вертикали и горизонтали соответст-
венно. 

Характерный масштаб для расстояния по горизонтали определя-
ется радиусом Земли 0r , по вертикали — максимальной глубиной 

океана D. Горизонтальные компоненты скорости (u, v) в направлени-
ях  , s  выражаются через характерную скорость 0U , а вертикаль-

ная компонента w — через 0 0 .U D r  Характерные масштабы для дав-

ления p и плотности ρ получаются соответственно из геострофических 
и гидростатического соотношений. Следовательно, градиент плотно-

сти G z    выражается через 2
0 0 0fU r gD , где f — удвоенная уг-

ловая скорость суточного вращения Земли; 0  — характерное значе-

ние плотности воды. Характерное время определяется выражением 

0 0.r U  Величина /d dt  в уравнении (6) — материальная (полная) про-

изводная. Масштабные множители для T и S не используются. Вели-
чина C определяется из процедуры конвективного приспособления 
для устранения статической неустойчивости с учетом консерватив-
ности T и S. Уравнение состояния для размерной плотности *  имеет 

вид 

2 5 3
* 1000 0,7968 0,0559 0,0063 3,7315 10 .S T T T             (7) 

Условие отсутствия нормального потока требуется на всех гра-
ницах. На границах материков также принимаются равными нулю 
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нормальные составляющие потоков теплоты и солей. Океан подверга-
ется воздействию напряжения трения ветра τ на поверхности. Потоки 
T и S у дна полагаются равными нулю, а на поверхности определяются 
взаимодействием с атмосферой. Поверхностный температурный поток 

TF  связан с поверхностным тепловым потоком Q  соотношением 

00 p TQ C F   , где 
0pC  — удельная теплоемкость морской воды. 

Уравнения дискретизируются на сетке Аракавы [3] c использова-
нием простых центральных разностей по пространству для диффузии 
и схемой с весами вверх по потоку для адвекции. Простые явные ко-
нечные разности по времени обеспечивают требуемую точность,  
и хотя шаг по времени численно ограничен, являются более эффек-
тивными, чем центральные разности по времени с большим шагом по 
времени. Неявный алгоритм [4] также может быть использован  
в программе, но для стандартных параметров он менее эффективен. 
На каждом шаге по времени поле скоростей определяется диагности-
чески из поля плотностей. 

Вертикальные уровни модели равномерно распределены в лога-
рифмических координатах  log 1 0,1z     так, что верхние слои 

тоньше, чем нижние. Горизонтальная сетка является равномерной  
в  , s  координатах (долгота и синус широты), определяя при этом 

ячейки одинаковой площади в пространстве. В настоящей модели 
используется 8 вертикальных уровней для плотности. Максимальная 
глубина принимается равной 5 км. 

Модель атмосферы. Для описания процессов, протекающих  
в атмосфере, используются энерго- и влагобалансовая модель или 
модель общей циркуляции атмосферы. Для первой из них прогности-
ческими переменными являются температура воздуха aT  и удельная 

влажность aq  на подстилающей поверхности. В модели решается 

вертикально проинтегрированное уравнение для aT , определяющее 

баланс приходящего и уходящего радиационных потоков, явных 
(турбулентных) обменов потоками теплоты с подстилающей поверх-
ностью, высвобождения скрытой теплоты из-за осадков и простой 
однослойной параметризации горизонтальных процессов переноса. 
Источники в уравнении переноса для удельной влажности aq  опре-

деляются осадками, испарением и сублимацией с подстилающей по-
верхности. Уравнения для баланса теплоты и влаги атмосферы (на 
единицу площади) имеют следующий вид: 

    ;a
a t pa T a a ta

T
h C uT v T Q

t

        
                   (8) 
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     0 ,a
a q q a a

q
h uq q E P

t

          
              (9) 

где a  и 0  — плотности воздуха и воды; th  и qh  — толщины атмо-

сферных пограничных слоев для температуры (8,4 км) и влажности 
(1,8 км) соответственно; paC  — удельная теплоемкость воздуха при 

постоянном давлении; ν и   — коэффициенты турбулентной диффу-
зии для температуры и влажности соответственно; taQ  — суммарный 

поток теплоты в атмосферу; E — скорость испарения или сублима-
ции; P — теплоемкость воздуха при постоянном давлении. Парамет-
ры T  и q  являются масштабными множителями для оценки вклада 

адвективного переноса. Они могут быть необходимы вследствие од-
нослойного представления атмосферы, особенно если при счете ис-
пользуются данные о поверхностных скоростях вместо вертикально 
осредненных данных. В статье [5] T  = 0 и q  = 0,4 или q  = 0. 

Полный поток теплоты в атмосферу Qta можно найти из соотно-
шения 

,ta SW A LW PLW SH LHQ Q C Q Q Q Q                       (10) 

где SWQ  — приходящая коротковолновая солнечная радиация, зада-

ваемая соотношением 

  1 ;SW cQ S I                                     (11) 

AC  — коэффициент поглощения, параметризующий поглощение 

солнечной радиации водяным паром, пылью, озоном, облаками и т.д., 
0,3AC   над океаном (т. е. океан поглощает 70 % инсоляции) и СА = 1,0 

над сушей; cS  — солнечная постоянная; I — множитель, отвечаю-

щий за широтное распределение солнечной радиации; α — планетар-
ное альбедо, которое над океаном и сушей определяется косинусом 
широты в соответствии с данными наблюдений. Суммарный поверх-
ностный поток LWQ  длинноволновой радиации в атмосферу является 

разностью между длинноволновыми излучениями подстилающей по-
верхности и атмосферы: 

4 4 ,LW s s a aQ T T                                   (12) 

где s , a  — коэффициенты излучательной способности поверхно-

сти и атмосферы; Ts — температура подстилающей поверхности (над 
сушей предполагается, что Ts = Ta); σ — постоянная Стефана — 
Больцмана. Уходящая планетарная длинноволновая радиация PLWQ  
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должна учитывать парниковый эффект из-за наличия атмосферного 
водяного пара.  

В связи с отсутствием в модели схем для описания облачности  
и радиации используется полиномиальная функция [5, 6], кубическая 
по температуре aT  и квадратичная по относительной влажности 

,a sr q q  где sq  — удельная влажность насыщения. Также учитыва-

ется член, отвечающий за нагревание атмосферы из-за увеличения 
концентрации C углекислого газа по отношению к значению исход-
ной концентрации C0: 

2 3

2
00 0

ln ,i j
PLW ij A

i j

C
Q c r T F

C 
                             (13) 

где 2 4 ln 2F   — показатель радиационного воздействия при уд-

воении концентрации углекислого газа. 
Явный поток теплоты SHQ  параметризует вертикальньный тур-

булентный обмен с подстилающей поверхностью и задается соотно-
шением 

  ,SH a H pa s aQ C C U T T                               (14) 

где U — скорость ветра у поверхности (получена из напряжения тре-
ния ветра). Число Стэнтона ,HC  характеризующее интенсивность дис-

сипации энергии в потоке жидкости или газа, задается соотношением 

0,9 ,H EC C                                         (15) 

где EC  — число Дальтона, 

   3 35max 6 10 , min 2,19 10 ,10 1,0022 0,0822 0,0266 .a sC T T UE
 


       

 (16) 

Латентное выделение теплоты LHQ  при выпадении осадков  

0 ,LH vQ L P                                       (17) 

где Lv — латентная теплота парообразования. Осадки P вычисляются 
в предположении, что вся избыточная влага мгновенно удаляется 
сразу за один шаг по времени, когда относительная влажность r пре-
вышает пороговое значение rmax. Скорость испарения или сублима-
ции E составляет 

 
0

,a E
s a

C U
E q q


 


                              (18) 

где sq  — удельная влажность насыщения, 
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0 exp , , , .s s
s

s s

d T
q q s a o i

T e

 
   

                            (19) 

При значении индекса s = a используется температура атмосферы 
для расчета выпадения осадков P. Индекс s = o относится к темпера-
туре океана, необходимой для расчета испарения с поверхности 
океана, а s = i определяет температуру поверхности льда, требуемую 
для подсчета сублимации морского льда.  

Температура на поверхности принимается равной температуре 
атмосферы ,aT  и испарение приравнивается нулю; таким образом, 

источники атмосферной теплоты упрощаются, так как LWQ 
0.SH LHQ Q    Осадки над поверхностью земли прибавляются к 

стоку в океан в соответствующих ячейках. 
Модель морского льда. В модели эволюции морского льда часть 

океанической поверхности, покрытой морским льдом в любой задан-
ной ячейке (сплоченность льда), обозначается через A. Динамические 
уравнения решаются для A и для средней толщины льда H. Заметим, 
что H представляет собой усредненную толщину льда в ячейке с уче-
том как открытой поверхности океана, так и покрытой льдом. Сред-
нее значение толщины льда на покрытой льдом части площади ячей-
ки определяется выражением H/A. Для температуры поверхности 
льда Ti решается диагностическое уравнение.  

Рост и таяние льда в модели зависят только от разности между 
потоком теплоты из атмосферы в морской лед и потоком теплоты из 
льда в океан [7]. Так как A — это часть ячейки, покрытая льдом, то 
поток любой субстанции F между атмосферой и океаном (или мор-
ским льдом) определяется взвешенной суммой составляющих пото-
ков iF  и oF над открытой и покрытой льдом частями [8]: 

 1 .i oF A F A F                                         (20) 

Потоки теплоты из атмосферы в океан и область океана, покры-
тую льдом, составляют соответственно  

 1 ;to A SW LWo SHo o vQ C Q Q Q L E                      (21) 

 1 .ti A SW LWi SHi o sQ C Q Q Q L E                       (22) 

Члены в правых частях этих уравнений определены соотноше-
ниями (11) − (19) с параметрами для океана в (21) и для льда в (22). 
Потери теплоты из-за испарения или сублимации заменяют приток 
теплоты от выпадения осадков. В уравнении (22) sL  является скры-

той теплотой сублимации.  
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Скорость роста iG  морского льда в части океана, покрытой льдом, 

определяется из разности тепловых потоков в морской лед и обратно 
минус латентные тепловые потери из-за сублимации [9]. Образование 
снега не рассматривается в модели, все осадки над океаном или мор-
ским льдом добавляются непосредственно в поверхностный слой 
океана. Исходя из сказанного можем подсчитать суммарную скорость 
роста G и скорость изменения средней толщины льда, подверженного 
также влиянию адвекции поверхностными течениями океана и диффу-
зии, которые имеют место при детальном представлении подсеточных 
процессов реологии и адвекции морского льда: 

 2 1 ,hi h i o
dH

H AG A G G
dt

                            (23) 

где hi  — эффективный коэффициент горизонтальной диффузии. 

Скорость изменения доли A площади ячейки океана, покрытой 
льдом, равна 

 2 max 0, 1 min 0, .
2

o
hi h i

o

GdA A
A A AG

dt H H

           
  

      (24) 

Первый член в правой части уравнения описывает возможный 
рост льда на открытых поверхностях океана. Влияние этого члена за-
ключается в том, что если Go положительно, то доля поверхности без 
льда убывает экспоненциально со скоростью ,o oG H  где oH  — ми-

нимально допустимая толщина льда. Второй член уравнения описы-
вает возможное таяние льда и отвечает за скорость, с которой пло-
щадь A будет уменьшаться, если весь лед будет равномерно 
распределен по толщине от 0 до 2H/A в части ячейки А, покрытой 
льдом.  

Итак, на каждом шаге необходимо убедиться, что вычисленная 
толщина льда положительна. Практически игнорируется присутствие 
тонкого льда и считается H = 0 всюду, где H < Ho. Это означает, что 
потоки теплоты и пресной воды должны быть модифицированы со-
гласно новому состоянию ледового покрова. Для положительных или 
отрицательных значений H, если H становится равным нулю, соот-
ветствующее количество теплоты ( i fH L  ) добавляется в океан, при 

этом соответствующее добавленное количество пресной воды опре-
деляется выражением 0/iH   . Кроме того, необходимо следить, 

чтобы численные ошибки аппроксимации не приводили к нефизич-
ным значениям А (т. е. A < 0 или A > 1).  

Взаимодействие блоков и численная реализация модели. Все 
блоки климатической модели связаны между собой обменами им-
пульсом, теплотой и водой. Обмен импульсом состоит только в ис-
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пользовании скорости верхнего слоя океана для адвекции морского 
льда. Всеми другими обменами импульсом пренебрегают.  

Потоки теплоты между «смежными» блоками могут быть моди-
фицированы фазовыми переходами на границах (испарением, таяни-
ем и т. д.). Потоки из одного блока в другой могут отличаться на ве-
личину, определяемую латентными тепловыми эффектами. При этом 
материковые стоки воды R добавляются в океанические ячейки на 
каждом шаге по времени. 

Полный обмен потоками теплоты и воды над океаном определя-
ется соотношением (20) и зависит от сплоченности A морского льда. 
Модель морского льда является связующим звеном всех трех компо-
нент как в теории, так и в программной реализации. 

Поток теплоты в атмосферу задается соотношением taQ 

 1ia oaAQ A Q   , где iaQ  и oaQ  определяются из уравнения (10),  

в котором член SWQ отвечает за распределение падающей солнечной 

радиации между атмосферой и подстилающей поверхностью, т. е. 
связывает атмосферу и морской лед посредством зависимости альбе-
до морского льда от температуры воздуха. Заметим, что выпадение 
осадков, испарение и сублимация являются причиной нетривиальной 
сшивки блоков модели из-за пресноводных потоков, а не из-за тепло-
вых, потому что соответствующие тепловые источники и стоки в ка-
ждой из компонент зависят только от ее внутренних переменных. Из 
условий сохранения энергии члены LWQ  и SHQ  из (22) и (21) должны 

быть противоположных знаков в уравнениях для потоков теплоты из 
атмосферы в морской лед и океан. Суммарный поток распределяется 
между морским льдом и открытыми частями океана.  

Поток пресной воды в атмосферу (9) равен E−P с учетом испаре-
ния с поверхности земли и сублимации морского льда. Считаем, что 
осадки выпадают непосредственно в океан, без учета присутствия 
льда, а испарившаяся или сублимированная вода удаляется из океана 
или льда соответственно. В формулировке модели океана в прибли-
жении «твердой крышки», используемой здесь, модель представляет 
океан как неисчерпаемый источник пресной воды для морского льда 
и атмосферы. Пресная вода в них сохраняется, но конвертируется  
в соленость на поверхности океана. В модели океана соленость явля-
ется консервативной переменной вследствие использования постоян-
ного множителя перехода S0 от количества пресной воды к солености. 

Для расчета одного шага по времени для океана, морского льда  
и поверхностных потоков требуется несколько шагов по времени для 
атмосферы. Для атмосферы шаг примерно равен одним суткам, а для 
океана — нескольким суткам. Как отмечено ранее, расчеты для мор-
ского льда и поверхностных потоков тесно связаны между собой и 
играют роль связующего звена. Все потоки между компонентами вы-
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числяются в одни и те же моменты времени для гарантии консерва-
тивности, но их значения берутся из предыдущего шага по времени, 
чтобы избежать сложностей неявной схемы. Диагностическая по-
верхностная температура морского льда удовлетворяет неявному 
уравнению. Дальнейшее усложнение состоит в том, что определен-
ные ограничения на толщину льда и его площадь могут быть оцене-
ны после обновления характеристик морского льда, так как зависят 
от потока пресной воды в океан. По этой причине обновление характе-
ристик морского льда происходит после определения других потоков. 

Прогностические уравнения модели (6), (8), (9), (23) и (24) реша-
ются методом центральных разностей 2-го порядка по пространству 
и простыми разностями вперед по времени. Как альтернативный ме-
тод, (6), (8) и (9) могут быть решены неявной схемой по времени, что 
в принципе создает возможность использования больших шагов по 
времени. Неявная схема включает в себя неявный шаг-предиктор с пе-
ременным числом итераций [3], за которым следует шаг-корректор. 
Обычно используют 4 итерации. Большее количество итераций увели-
чивает точность, но может повлиять на устойчивость системы. Неяв-
ная схема является существенно ограниченной для океана и не имеет 
ни-каких преимуществ перед более простым явным методом. Для ат-
мосферных уравнений она приводит к значительному повышению  
эффективности модели. 

В модели использована равномерная по долготе и синусу широты 
конечно-разностная сетка 36×36 ячеек (рис. 1). Разрешение модели 
по долготе составляет 10°, по широте изменяется от ~3° у экватора до 
~20° у полюсов. Глубина океана представлена в виде восьмиуровне-
вой логарифмической шкалы до 5000 м. 

 

Рис 1. Расчетная сетка и восьмиуровневая шкала глубин 
(серым выделена суша) 
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Численные эксперименты показывают, что модель выходит на 
равновесие за период около 2000 лет. Начальное состояние системы 
характеризуется постоянными температурами океана, атмосферы и 
нулевыми скоростями течений океана.  

Для того чтобы исследовать чувствительность термохалинной 
циркуляции и северо-атлантического океанского переноса теплоты  
к коэффициентам диффузии v  и h  и неявному переносу пресных 

вод из Атлантического океана в Тихий, проведены серии экспери-
ментов. Наиболее близкие к данным наблюдений результаты получе-

ны при следующих значениях параметров: 41,0 10v
   м–2 · с–1, 

2000h  м−2·с–1, 0,24AP
WF  Св (1 Св (Свердруп) = 10–6 м3/с). 

На рис. 2−7 представлены некоторые результаты расчетов. Они 
показывают достаточно хорошее воспроизведение основных харак-
теристик глобальной климатической системы. 

 

Рис. 2. Приближение средней глобальной температуры атмосферы (а) 
и средней удельной влажности (б) к стационарным значениям: 
1 — среднегодовой режим; 2 — режим с сезонным ходом инсоляции 

 

Рис. 3. Приближение значений площади 
морского льда к стационарным: 

1 — среднегодовой режим;  
2 — режим с сезонной инсоляцией 



В.П. Пархоменко 

104 

На рис. 2, а показан выход средней глобальной температуры атмо-
сферы, на рис. 2, б — выход средней удельной влажности на совре-
менные значения этих величин, т. е. температуру около 14,3 °C и 
удельную влажность около 11,3 г/кг. Как видно, эти глобальные ха-
рактеристики при расчете в среднегодовом режиме и с учетом сезон-
ного хода практически не различаются. То же  относится и к площади 
морского льда (рис. 3), которая стабилизируется приблизительно через 
1000 расчетных лет. Однако средняя толщина морского льда для этих 
двух вариантов расчета значительно различается . 

На рис. 4 и 5 показано распределение некоторых основных харак-
теристик климата для зимних и летних условий. 

 

Рис. 4. Поток теплоты в атмосферу для января 

 

Рис. 5. Температура, оС, верхнего слоя океана 
толщиной 175 м для июля 
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Рис. 6. Временной ход средней годовой аномалии 
температуры атмосферы, оС, в XXI в. по отношению 
к базовому периоду (1980−1999) с учетом неизмен- 

ных условий (1), сценариев В1 (2) и А2 (3) 

 

Рис. 7. Изменение температуры атмосферы в конце XXI в. 
при увеличении концентрации СО2 согласно сценарию А2 (лето) 

 
Межправительственная группа экспертов по изменению климата 

(МГЭИК) разработала долгосрочные сценарии эмиссии парниковых 
газов и аэрозоля в атмосферу в XXI в., которые опубликованы в Спе-
циальном докладе о сценариях выбросов (СДСВ) [10]. По сценарию 
A2 развитие мира проходит при постоянном росте общей численно-
сти населения в мире. Экономическое развитие имеет региональную 
направленность, а экономический рост в расчете на душу населения  
и технологические изменения происходят медленнее по сравнению  
с другими сценариями. В результате такого развития ожидается зна-
чительное увеличение концентрации основных парниковых газов  
в атмосфере. К 2100 г. концентрации основных парниковых газов  
в атмосфере увеличатся по сравнению с 1990 г.: CO2 — в 2,42 раза, 
CH4 — в 2,19 и N2O — в 1,45 раза. Сценарий В1 содержит описание 
мира с глобальным населением, которое достигает максимальной 
численности к середине XXI в., а затем уменьшается, но при быстрых 
изменениях в экономических структурах с уменьшением материаль-
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ной интенсивности и внедрением экологически чистых и ресурсосбе-
регающих технологий. К 2100 г. концентрация CO2 и N2O в атмосфе-
ре увеличится по сравнению с 1990 г. соответственно в 1,53 и 1,22 
раза, а концентрация CH4 уменьшится на 6 %. 

Рассчитанное по описанной модели изменение средней глобаль-
ной температуры атмосферы в конце XXI в. для сценария А2 состав-
ляет +2,2 оС, для сценария В1 +1,4 оС, при неизменной концентрации 
+0,35 оС (см. рис. 6). Глобальное распределение изменения темпера-
туры при увеличении концентрации СО2  для июля согласно сцена-
рию А2 показано на рис. 7. 

Заключение. Представленная модель климата, включающая  
блоки океана, атмосферы и морского льда, взаимодействующие меж-
ду собой, определяет основные характеристики элементов климати-
ческой системы. Система уравнений модели океана рассматривается 
в геострофическом приближении с учетом фрикционного члена в 
уравнениях импульса по горизонтали. Значения температуры и соле-
ности удовлетворяют адвекционно-диффузионным уравнениям, что 
позволяет описать термохалинную циркуляцию океана. Такая поста-
новка обеспечивает возможность проведения расчетов на тысячи лет 
для стабилизации характеристик глубоких слоев океана при разум-
ных затратах вычислительных ресурсов. Начальное состояние систе-
мы характеризуется постоянными температурами океана, атмосферы 
и нулевыми скоростями течений океана. Численные эксперименты 
показывают, что модель выходит на равновесие за период около  
2000 лет. Площадь морского льда и его средняя толщина стабилизи-
руются приблизительно через 1000 расчетных лет. Результаты расче-
тов показывают достаточно хорошее воспроизведение основных ха-
рактеристик глобальной климатической системы. Так, средние 
глобальные температуры атмосферы и удельная влажность имеют 
выход на современные значения этих величин, т. е. температуру око-
ло 14,3 оC и удельную влажность около 11,3 г/кг. Рассчитанные по 
описанной модели изменения средней глобальной температуры ат-
мосферы в конце XXI в. для различных сценариев увеличения кон-
центрации СО2 согласуются с результатами исследований других ав-
торов [10]. 

Работа выполнена при поддержке Программы Президиума РАН 
№ 15, проектов РФФИ № 14-01-00308, № 14-07-00037. 
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Global climate model including description of 
thermohaline circulation of the World Ocean 
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The article considers a model of the climate, including interacting blocks of the ocean, at-
mosphere and sea ice. The model describes the deep thermohaline circulation of the oceans 
and the main characteristics of the other elements of the climate system. The paper pre-
sents model operating in the mode of the seasonal variations of solar radiation. The 
changes in atmospheric temperature in XXI century for different scenarios of CO2 concen-
tration variations are calculated.  

Key words: climate model, thermohaline circulation, solar radiation. 
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