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Предложено разложение определителя разреженной, в том числе ленточной, 

матрицы на сумму определителей квазидиагональных матриц. Разработаны и 

реализованы алгоритмы рекурсивного разложения определителя матрицы, пред-

ставленной в виде двух диагональных блоков или половин от деления по горизон-

тали или вертикали с учетом нулевых строк и столбцов для параллельного расче-

та. Доказано, что при делении ленточной матрицы с шириной ленты 

2m+1 пополам горизонтально (вертикально) на равное или отличающееся на еди-

ницу число строк (столбцов) миноры одной подматрицы соответствуют соче-

таниям из 2m столбцов (строк) по m, а сопряженные миноры – дополнениям этих 

сочетаний в другой подматрице, что упрощает применение теоремы Лапласа. 

Введено понятие матричного двоичного вектора. Установлена связь сочетаний 

номеров строк и столбцов матрицы с половинами двоичных векторов, содержа-

щими равное количество единиц. Использование миноров половинного порядка 

приводит решение задачи к подзадачам минимальной одинаковой размерности, 

обеспечивая равномерную загрузку процессоров (вычислительных ядер). Много-

кратно уменьшается время расчета как целочисленных, так и численных (с огра-

ниченным числом десятичных разрядов) определителей. При одно-, 6-ти и 12-ти 

поточных режимах время целочисленного расчета определителей матриц поряд-

ка 400…999 уменьшается по сравнению со временем операто-

ра Det сиcтемы Maple в 5…3, 23…15 и 40…27 раз, а время численного расчета – в 

1,3…2,8 и 2,5…5,5 раз при числе потоков 6 и 12 и порядке матриц 900…2000. По-

ловинное деление реализовано в программе символьного раскрытия и вычисления 

определителя матрицы, но может быть использовано для простой параллельной 

модификации любой программы численного решения систем линейных алгебраиче-

ских уравнений. 

 

Ключевые слова: определитель матрицы, теорема Лапласа, блочная матрица, 

квазидиагональная матрица, ленточная матрица, двоичный вектор, половинное 

деление, символьное вычисление, параллельный расчет, электрическая сеть 

  

Введение. Математическое моделирование в технических систе-

мах обычно связано с решением больших систем линейных алгебра-

ических уравнений (СЛАУ) [1]. Повысить быстродействие алгорит-

мов можно распараллеливанием вычислений на многопроцессорных 

компьютерах [2]. Параллельный расчет определителей с заданным 

количеством десятичных знаков выполняется путем одновременного 

исключения элементов в разных строках матриц с помощью не-
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скольких вычислительных ядер, что уменьшает время расчета при-

мерно в 2...3 раза [3], или с помощью системных программ автома-

тического конструирования [4]. 

Точное решение СЛАУ в целых числах выполняется по алгорит-

му исключения Гаусса-Баррейса, не требующему операций деления 

[5], или разложением определителей по одной или нескольким стро-

кам (столбцам) на основе теоремы Лапласа [6]. Выбранные строки 

(столбцы) образуют одну подматрицу, а их дополнение – другую. 

Если матрица представляется суммой матриц A и B такой же размер-

ности, то определитель равен сумме произведений всевозможных 

миноров матрицы A и алгебраических дополнений матрицы B [7]. 

При параллельном расчете целесообразно объединять элементы мат-

рицы в блоки, оперируя блочными матрицами [8, 9]. В квазидиаго-

нальной матрице квадратные блоки размещаются вдоль главной диа-

гонали без взаимного пересечения. Определитель такой матрицы ра-

вен произведению определителей диагональных блоков [8]. 

Задачам моделирования присущи матрицы высокой разреженно-

сти. При параллельном расчете (расчете по частям – диакоптике) 

можно говорить о сумме квадратных подматриц A и B, представлен-

ных блоками на главной диагонали [10]. В блочно-диагональной 

матрице, обобщаюшей квазидиагональную матрицу, подматрица пе-

ресечения блоков может содержать элементы обеих подматриц A и B 

или одной из них. Номера строк и столбцов этой общей подматрицы 

отображаются двоичными векторами (ДВ) [11], единичные и нуле-

вые элементы которых указывают на удаление или оставление стро-

ки (столбца) в соответствующем миноре или дополнительном мино-

ре. Определитель блочно-диагональной матрицы находится по мето-

ду двоичных векторов (МДВ) как сумма произведений миноров и 

дополнительных миноров, соответствующих ДВ [11, 12]. Такое от-

несение элементов с нулевыми значениями к прямоугольным блокам 

многократно упрощает символьный анализ сложных электронных 

цепей программой CirSym [12, 13], доступной в on-line режиме 

(http://intersyn.net/en/cirsym.html). 

Символьные алгоритмы и программы. Постановка зада-

чи. Системы компьютерной алгебры стали неотъемлемым инстру-

ментом решения матричных задач [14,15]. Проблема оптимальной 

свертки алгебраических выражений до сих пор является одной из 

центральных, поскольку компактное представление увеличивает 

предельный размер задачи и точность решения. При наличии струк-

туры, например, электрической схемы задача свертки схемной функ-

ции решается рекурсивным делением схемы на две подсхемы при-

мерно одинаковой сложности (половинном делении) [16]. Поэтому 

для решения систем уравнений произвольной физической природы 

было предложено схемное отображение [17]. Элементы матрицы со-
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ответствуют источникам тока, управляемым напряжением. В каче-

стве подсхем могут выбираться строки матрицы или произвольные 

их подмножества. Решение получается объединением подсхем на 

основе МДВ [11], что было реализовано в программах MatSym [18] и 

MatSyms [19] для генерации единых и последовательных (иерархи-

ческих) выражений. Соответвующие подпрограммы раскрытия мат-

ричных определителей доступны в составе программы символьного 

анализа и диагностики CirSym, реализующей обобщенный метод 

выделения параметров элементов и подсхем [12]. 
Схемное отображение и последующее использование МДВ огра-

ничивают предельную размерность матриц n по двум причинам: 1) 
число узлов отображающей схемы на единицу больше размерности 
матрицы; 2) число внешних узлов в подсхемах-строках очень велико 
и равно n+1. При этом допустимая сложность полной матрицы для 
программы CirSym не превышает 14-го порядка [12]. Между тем, в 
случае наращивания строк матрицы [18], минуя схемное отображе-
ние [17], или при использовании метода диаграмм [20] предельный 
порядок матрицы увеличивается до 18. Многократное увеличение 
порядка обеспечивает модификация теоремы Лапласа, при которой 
разложение определителя выполняется по совокупности строк или 
столбцов, образующих половину матрицы [21] и [22].  

Как правило, интересует численное значение, а не сверхкомпакт-
ное выражение, например, хранящееся на диске 10 Терабайт для 
полной матрицы 22-го порядка [23]. Интерпретация содержимого 
жесткого диска по времени превышает время генерации выражения. 
Избежать хранения символьных определителей можно при исполь-
зовании шаблона половинного минора полной матрицы в виде 
иерархической последовательной формулы, что позволило вычис-
лить определитель полной матрицы 34-го порядка [23]. Ускорение 
вычисления определителя и увеличение предельного порядка полной 
матрицы обеспечивает параллельный расчет путем предварительно-
го однократного половинного деления и нахождения частичных 
сумм для слагаемых определителя [24]. Число слагаемых в частич-
ной сумме выбирается по заданному числу процессоров, что обеспе-
чивает их равномерную загрузку. В случае разреженных матриц, 
отображающих структуры электрических схем и сетей, барьер для 
порядка матрицы в несколько сотен оказывается преодоленным даже 
при размещении формулы на жестком диске, но по затратам времени 
программа [25] не может конкурировать с системой Maple [15]. 

В статье предлагается рекурсивное половинное деление ненуле-
вых элементов матрицы на два пересекающихся диагональных блока 
и матричный метод двоичных векторов. Для повышения эффектив-
ности параллельного расчета определителя разработаны алгоритмы 
рекурсивного половинного деления матрицы по горизонтали и вер-
тикали, обеспечивающие почти равную сложность минора и допол-
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нительного минора в парах слагаемых при разложении определите-
ля.  

Матричный метод двоичных векторов (ММДВ). Элементы 
узловых матриц электрических цепей и сетей располагаются вдоль 
главной диагонали [26, 27]. Ленточные матрицы A порядка n вклю-
чают m ненулевых диагоналей по одну сторону от главной диагона-
ли 

 0,   ija i j m   . 

Матрицы для значений 2m   и 1 отображают электрические се-
ти (графы) цепной (рис. 1,а) и магистральной (рис. 1,б) структуры 
[26]. При этом узлы (вершины) соответствуют столбцам, а веса вет-
вей (ребер) – элементам матриц. Для сети m – это число узлов, не 
считая базисного, по которому схема (сеть) разделяется на две под-
схемы. 

 

  
а)      б) 

Рис. 1. Электрические сети: цепная с 2m   (a) и магистральная с 1m   (б) 

 
Разделим матрицу порядка n  на диагональные подматрицы-

блоки так, чтобы ненулевые элементы оказались в двух пересекаю-

щихся квадратных блоках порядка 1n  и 2n  (рис. 2,а и 2,б). Подмат-

рица пересечения будет квадратной порядка 1 2 –m n n n  , а нуле-

вые блоки – квадратными или прямоугольными в зависимости от 
четности n  и m . 

 

 
а)             б)              в) 

Рис. 2. Матрица с первым и вторым блоками порядка 1n  и 2n : элементы пересе-

чения находятся в первом блоке (а) и поделены поровну между блоками (б). Ква-

зидиагональная матрица (в), соответствующая ДВ 1111 и 0000 для блоков 1 и 2 (б) 

2          4          6          n

1           3          5          n-1

1        2        3        4        5        n-1        n

1n

1n m

m

2n

m 2n m

0

0

0
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0
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По теореме Лапласа число ненулевых миноров первого (второго) 

блока (рис. 2,а и 2,б) определяется числом всевозможных сочетаний 

из m  строк и m  столбцов подматрицы пересечения 

 2

m

mC  , (1) 

где 2

m

mC  ― число сочетаний из 2m элементов по m.   

С другой стороны, число ненулевых миноров можно найти как 

число ДВ [11] 

 2

0

( )
m

i

m

i

C


 ,                                 

поскольку справедливо комбинаторное тождество 

 2

2

0

( )
m

i m

m m

i

C C


 . (2) 

Позициями ДВ в рассматриваемом случае являются номера строк 

и столбцов подматрицы пересечения, причем номера строк (столб-

цов) размещаются в первой (второй) половине ДВ. Для «схемного» 

МДВ единицы (нули) в позициях ДВ указывают на подключение 

(отсутствие) в соответствующем узле подсхемы элементов нуллора – 

норатора или нуллатора [11]. Это равносильно удалению строки или 

столбца в матрице, отображающей подсхему. В предлагаемых алго-

ритмах используется понятие матричного ДВ, для которого есте-

ственно, что 1 – соответствует оставлению, а 0 – удалению строки 

или столбца в матрице.  

Для доказательства тождества (2) сопоставляются сочетания из 

2m  по m  с ДВ размерности 2m . В рассматриваемом примере ( 2m 

) сочетаний из четырех элементов {1, 2, 3, 4} будет шесть: 

12,  13,  14,  23,  24,  34. Эти сочетания соответствуют единицам в 

ДВ: 1100, 1010, 1001, 0110, 0101, 0011. Все сочетания, кроме первого 

и последнего, перечисляются в порядке следования двоичных векто-

ров с равным числом единиц в половинах каждого вектора. Первая и 

вторая половины ДВ, содержащие по m  элементов, относятся соот-

ветственно к строкам и столбцам матрицы. Тождество (2) связывает 

сочетания из 2m  по m  с ДВ размерности 2m , что используется при 

разложении матричных определителей.  

Число ненулевых миноров (число ДВ) для сетей цепной (рис. 

2,а) и магистральной (рис. 2,б) структуры равно 6 и 2, что следует из 

формулы (1). Для регулярной решетчатой (рис. 3,а [26]) и нерегу-

лярной (рис. 3,б [27]) структуры число миноров определяется по той 

же формуле (1), в которой m  – это число узлов, по которым схема 

делится на две части. Решетчатая (рис. 3,а) схема делится пополам 
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по m  узлам, а нерегулярная (рис. 3,б), например, по 4 узлам – 6, 7, 8 

и 9. Число ДВ равно 70. 
 

 
а)              б) 

Рис. 3. Разветвленные сети с регулярной решетчатой (а) 

и нерегулярной (б) структурой 

 

Деление матрицы на блоки вдоль главной диагонали соответ-

ствует делению электрической схемы на подсхемы для применения 

МДВ [11]. Связанные элементы, подключенные к общим узлам, мо-

гут быть отнесены к любой из двух подсхем, но не поделены между 

подсхемами. В предлагаемом ниже матричном МДВ такого ограни-

чения нет – элементы подматрицы пересечения могут быть отнесены 

к любому блоку, например, все элементы – к первому блоку (рис. 

2,а) или, что важно, поделены поровну между блоками (рис. 2,б).     

Определитель матрицы (рис. 2,а и 2,б) равен сумме произведений  

минора fM  и дополняющего минора 
sM , соответствующих ДВ  

блоков 1 и 2 

 
1

( 1)
p f sM MD 



 
 

  , (3) 

где p  ― сумма номеров позиций нулей в ДВ блока 1 или 2. 

Для реализации матричных алгоритмов важно, что по ДВ минора 
находится ДВ взаимно дополнительного минора с помощью опера-
ции дополнения. Экономно задавать вектор целым числом и выпол-
нять поиск единиц, используя операцию сдвига. Множество ДВ и 
соответствующие значения миноров однозначно характеризуют 
подматрицу. Это позволяет сопрягать ее с другими подматрицами 
той же матрицы при выборе других значений элементов или подмат-

1              2              3                     m
1

2

/ 2 2

/ 2 1

/ 2

1

n

n

n

n

n







T

B

1              2              3              4

5            6

T

B
9

13 14
15

12

7
8

10 11



Алгоритмы параллельного расчета определителей разреженных матриц … 

ММЧМ 2025 № 3 (47)                                                    123 

рицами других матриц, сокращая объем вычислений, а также осу-
ществлять параллельные вычисления.  

Разложение определителя ленточной матрицы 6-го порядка 

при половинном распределении элементов по блокам. Ленточная 
матрица 6-го порядка делится следующим образом (элементы первой 
подматрицы выделены жирным шрифтом): 

 
1 y11 y12 y13       

2 y21 y22 y23 y24      

3 y31 y32 y33 y34 y35    (4) 

4  y42 y43 y44 y45 y46  

5   y53 y54 y55 y56    

6    y64 y65 y66  

 1 2 3 4 5 6  

Все 6 пар миноров для матрицы (5) приведены в табл. 1. 
 

Таблица 1 

Миноры при половинном распределении элементов между подматрицами в (4)  

№ Для первой подматрицы  Для второй подматрицы  

1  
 

y11 y12 

y21 y22 

 

  y35  

y43 y44 y45 y46 

y53 y54 y55 y56 

 y64 y65 y66 

2 
 

y11 y12  

y21 y22 y24 

 y42  

 

 y35  

y53 y55 y56 

 y65 y66 

3 
 

y11 y12 y13 

y21 y22 y23 

 y42  

 

 y35  

y54 y55 y56 

y64 y65 y66 

4 
 

y11 y12  

y21 y22 y24 

y31 y32 y34 

 

y43 y45 y46 

y53 y55 y56 

 y65 y66 

5 
 

y11 y12 y13 

y21 y22 y23 

y31 y32 y33 

 

y44 y45 y46 

y54 y55 y56 

y64 y65 y66 

6 
 

y11 y12 y13  

y21 y22 y23 y24 

y31 y32 y33 y34 

 y42   

 

y55 y56 

y65 y66 
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Отсюда получается формула (с подформулами) для определителя 

матрицы 6-го порядка при диагональном половинном делении  

 

    

 

1 1 2 2 3 3 4 4 5 5 6 6

1 11 22 12 21

1 35 66 43 54 44 53 64 43 56 46 53

2 11 24 42 2 53 35 66

3 42 13 21 11 23 3 35 56 64 54 66

4 34 11 2

– – ;

– ;

–  – – ;

 ;      ;

– ;     – ;( )

t b t b t b t b t b t b

t

b

t b

t b

t

D M M M M M M M M M M M M

M y y y y

M y y y y y y y y y y y

M y y y M y y y

M y y y y y M y y y y y

M y y y

   





   

 

    

     

     

2 12 21 11 32 12 31 24

4 66 43 55 45 53 43 56 46 53 65

5 11 22 12 21 33 23 12 31 11 32 13 21 32 22 31

5 44 55 45 54 66 56 45 64 44 65 46 54 65 55 64

6 42 34 11

–  –  – ;

– – ( ) ;

 – – – ;

 – –   –  ;

( )

 

b

t

b

t

y y y y y y y

M y y y y y y y y y y

M y y y y y y y y y y y y y y y

M y y y y y y y y y y y y y y y

M y y y y

 

  

  

     23 13 21 11 33 13 31 24

6 55 66 56 65

–   –  – ;

– ,b

y y y y y y y

M y y y y

 (5) 

где индексы t  и b  у символа M означают принадлежность соответ-

ствующего минора к первой и второй подматрицам в (4), индексы 

1…6 – порядковый номер минора в табл. 1. Недостатком диагональ-

ного деления является наличие миноров разного порядка, что увели-

чивает затраты при разложении определителей. 

Разложение определителя разреженной матрицы на сумму 

определителей квазидиагональных матриц. Матрицы каждой пары 

миноров в предыдущем решении можно представить в виде одной 

квадидиагональной матрицы 6-го порядка, поскольку на основании 

формулы (3) определитель разреженной матрицы равен сумме опре-

делителей   квазидиагональных матриц 

 
1

( 1)
p

D D




 

  . (6) 

В формуле (6) квазидиагональная матрица частичного определи-

теля D  имеет размерность n  и содержит два непересекающихся 

диагональных блока, построенных по ДВ с порядковым номером ν. 

Например, матрица для ДВ 0000 и 1111 первого и второго блока 

матрицы (рис. 2,б) представлена на рис. 2, в и состоит из двух диаго-

нальных подматриц порядка 2 и 4. Частичный определитель D  

находится как произведение определителей диагональных блоков. 

Показатель p  равен сумме номеров нулевых позиций в ДВ первого 

блока. Формула (6) обобщает формулу для определителя квазидиа-

гональных матриц [8].    
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Половинное деление матрицы по горизонтали (по стро-

кам) или по вертикали (по столбцам). Это разложение является 

следствием теоремы Лапласа [6]. При половинном делении разре-

женной матрицы с четным или нечетным порядком n  на две под-

матрицы – верхнюю T (top) и нижнюю B (bottom)  (рис. 4,а) – с оди-

наковым или отличающимся на единицу числом строк t  и b  – опре-

делитель матрицы равен сумме произведений миноров одного по-

рядка из ненулевых столбцов подматрицы T  и соответствующих ал-

гебраических дополнений (АД) из столбцов подматрицы B . 

Число слагаемых (миноров и АД в верхней T и нижней B под-

матрицах) находится как число сочетаний 

 ,b t

t b t b

t m b m

n m m n m mC C  

      (7) 

где tm  и bm  ― число нулевых столбцов в подматрицах T  и B . 

 
а)                                   б) 

Рис. 4. Ленточная матрица с m диагоналями по одну сторону от главной 

диагонали при половинном делении (жирными линиями) по строкам (а) и 

столбцам (б) 

 

При половинном делении ленточной матрицы с числом  

/ 2t b n   (рис. 4,а) и / 2( )1t n  ; –1 / 2( )b n  при четном и не-

четном n  число нулевых столбцов подматриц 1 и 2 определяется по 

формулам / 2 –t bm m n m   и –1 /( –) 2tm n m ; 1) –( / 2bm n m   

при соответствующих n . При этом формула (7) преобразуется в 

формулу (1), по которой число миноров и слагаемых в определителе 

(3) определяется как число сочетаний из 2m  по m . Формула (1) 

справедлива и для ленточной матрицы с произвольным числом строк 

t  и b . Общее число нулевых столбцов для четного и нечетного по-

рядка – 2t bm m n m  . На рис. 4,а заштрихованы области нулевых 

столбцов, число которых при n m  в каждой подматрице близко 

половине порядка матрицы / 2t bm m n  . 

T

B

    t m t t m 

L Rn b t 

b

0
n l r 

0
l

l m
l

l m





n

0

0

0

0
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Если матрица разделена по столбцам на левую L  (left) и правую 
R  (right) подматрицы (рис. 4,б) с одинаковым или отличающимся на 
единицу числом столбцов l  и r , то число слагаемых в определителе 

находится также по формуле (7), в которой t lm m  и b rm m  – чис-

ло нулевых строк в подматрицах L  и R .  
В матрицах с несимметричным расположением ненулевых эле-

ментов число ненулевых столбцов и строк подматриц различается 
при делении по строкам и столбцам. Так, при делении матрицы 10-го 

порядка по строкам (рис. 5,а) число нулевых столбцов сверху   3tm   

и снизу 0bm  , а при делении по столбцам число нулевых строк сле-

ва 2lm   и справа 4rm   (рис. 5,б), то есть в 2 раза больше. При 

этом по формуле (7) число   слагаемых в определителе при делении 

по строкам равно 21, а при делении по столбцам – всего 4, что поз-
воляет многократно уменьшить число слагаемых и время расчета.  

Формирование половинных миноров для разреженной матрицы  

( ),A A i j‖ ‖ , ,  1,  2,.., )(i j n , разделенной по горизонтали (рис. 4,а), 

выполняется на основе n  множеств номеров ненулевых столбцов 

,{ }i i kA a , где i  ― номер строки, как и в матрице A ;  1,  2, , ik    

― номер элемента; i  ― число ненулевых элементов в строке i  

матрицы A . 
 

 
а)                        б) 

Рис. 5. Разреженная матрица с произвольным расположением ненулевых 

элементов, разделенная пополам (жирной линией) по строкам (а) и столбцам (б) 

 
Матрица A  делится горизонтальной линией на две подматрицы – 

верхнюю T  и нижнюю B  с числом строк t  и b , которые равны при 

четном и отличаются на 1 при нечетном числе n . Число   миноров 

порядка t  и b  в подматрицах T  и B  находится по формуле (7). 
Множества номеров столбцов, составляющих миноры для подмат-
рицы T , получаются набором по одному элементу из множеств 

1 2, , , tA A A : 

  1, 2, ,, ,..., ta a a
       , (8) 

T

B

L R
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где 1, 2, ,    ― номер минора; , , ,      ― номера элементов 

в множествах номеров ненулевых столбцов 1 2, , , tA A A .  

Во все сочетания   формулы (8) должны входить номера нуле-

вых столбцов из подматрицы B . Множество номеров столбцов, со-

ставляющих миноры подматрицы B , находятся, как дополняющие  

множество (8) до полного ряда столбцов 1,  2, , ,n  в виде разности  

 {1,2,..., } \n   . (9) 

Формула для определителя матрицы записывается в виде суммы 

произведений миноров TM


 и BM


 верхней и нижней подматриц 

 
( 1)

2

1

( 1) ( 1)
t t

p T BD M M

 



 






   , (10) 

где θν и σν ― множества (8) и (9) ― номера столбцов соответствую-

щего минора; 1, 2, ,... ta a ap
          ― показатель знака, равный 

сумме номеров столбцов верхней подматрицы. 

 Формула (10) с половинными минорами наиболее эффективна 

по сравнению с другими вариантами применения теоремы Лапласа 

при параллельных вычислениях, поскольку обеспечивает равномер-

ную загрузку произвольного числа процессоров (вычислительных 

ядер). Миноры в (10) находятся рекурсивно по этой же формуле. 

При делении матрицы вертикальной линией по столбцам на левую 

L  и правую R  подматрицы, как показано на рис. 4,б, получается 

формула, аналогичная (10). Для симметричной матрицы число нуле-

вых строк и столбцов и число слагаемых в формулах вида (10) будет 

одинаковым. 

Для разветвленной нерегулярной структуры определить число 

ненулевых миноров можно путем упорядоченного построения сети и 

последовательной нумерации узлов, например, слева–направо и 

сверху–вниз (рис. 3,б [27]). При этом сеть делится пополам по числу 

узлов (жирная штрих-пунктирная линия на рис. 3,б), а затем отсека-

ются (двойной штрих-пунктирной линией) узлы частей T  и B , не 

связанные с подсхемами B  и T  соответственно. Число отсеченных 

узлов частей T  и B равно числу нулевых столбцов tm  и bm . Для се-

ти на рис. 3,б 4tm   и 3bm  . При этом число миноров 35   – 

числу сочетаний из 7 по 4 по формуле (7), то есть вдвое меньше, чем 

по ММДВ.  

Разложение определителя ленточной матрицы 6-го порядка 

при делении по строкам (по горизонтали). Разделим матрицу на 

верхнюю T и нижнюю B подматрицы с числом строк 3b t  :  
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1 y11 y12 y13       

2 y21 y22 y23 y24     T 

3 y31 y32 y33 y34 y35              

 (11) 

4  y42 y43 y44 y45 y46  

5   y53 y54 y55 y56   B 

6    y64 y65 y66  

 1 2 3 4 5 6  

 

где элементы верхней подматрицы выделены жирным шрифтом. 

Число сочетаний из 6 столбцов подматрицы T  по 3 равно 20.  С 

учетом нулевых столбцов 6 и 1 в подматрицах T  и B  множество 

номеров столбцов для миноров подматрицы T  находится путем 

фиксации номера столбца 1, нулевого в подматрице B , и сочетания 

по 2 из 4-х ненулевых столбцов 2…5, в которые не входят нулевые 

столбцы, принадлежащие хотя бы одной из подматриц:  

  1,2,3;  1,2,4;  1,2,5;  1,3,4;  1,3,5,  1,4,5  . (12) 

Этим сочетаниям столбцов соответствуют ДВ {111000, 110100, 

110010, 101100, 101010, 100011}, которые используются при форми-

ровании миноров. Таким образом, учет нулевых столбцов в подмат-

рицах T  и B  многократно (с 20 до 6) сокращает число сочетаний. 

Множество сочетаний столбцов, образующих миноры третьего 

порядка для нижней подматрицы B , находится по формуле (9) как 

дополнение множества (12) до полного ряда номеров столбцов:  

  4,5,6;  3,5,6;  3,4,6;  2,5,6;  2,4,6;  2,3,6   (13) 

или в форме ДВ {000111, 001011, 001101, 010011, 010101, 011100}. 

Определитель матрицы (11) записывается в соответствии с фор-

мулой (10) как сумма произведений соответствующих миноров со 

столбцами из множеств (12) и (13) 

 
123 456 124 356 125 346 134 256

135 246 145 236.

– –

–

D M M M M M M M M

M M M M

  


 (14) 

В (14) при символе M  указаны номера столбцов, а номера строк 

принимают значения 123 и 456 у первых и вторых сомножителей со-

ответственно. Знаки слагаемых с порядковым номером 2 и 5 отрица-

тельные в соответствии с (10), поскольку суммы номеров строк и 

столбцов первого минора принимают нечетные значения.  

Cимвольные выражения для миноров из формулы (14) имеют 

вид: 
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123 11 22 33 23 32 12 21 33 23 31 13 21 32 22 31

456 44 55 66 56 65 45 54 66 56 64 46 54 65 55 64

124 11 22 43 23 42 21 12 43 13 42

356 34 55 66 56 65 35 54 6

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

– – – – ;

– – – – ;

– – – ;

– (–

M y y y y y y y y y y y y y y y

M y y y y y y y y y y y y y y y

M y y y y y y y y y y

M y y y y y y y y

 

 



 6 56 64

125 53 11 22 12 21

346 34 45 66 46 65 35 44 66 46 64

134 11 32 43 33 42 31 12 43 13 42

256 24 55 66 56 65

135 53 11 32 12 31 246 24 45 66 46 65

145

– ;

– ;

– – – ;

– –

)

)

(

( ) ( )

( ) ( )

( )

( ) (

– ;

– ;

– ;    – ;)

y y

M y y y y y

M y y y y y y y y y y

M y y y y y y y y y y

M y y y y y

M y y y y y M y y y y y

M









 

53 11 42 236 24 35 66  ;      .y y y M y y y 

(15) 

Половинное деление по столбцам (по вертикали). Матрица 

имеет вид (граница левой и правой подматриц – жирная линия) 

 
1 y11 y12 y13       

2 y21 y22 y23 y24      
3 y31 y32 y33 y34 y35    (16) 

  

 (17) 

  (18) 

4  y42 y43 y44 y45 y46  

5   y53 y54 y55 y56  

6    y64 y65 y66  

 1 2 3 4 5 6  

 

Все 6 пар миноров приведены в табл. 2. 

Формулы для определителя при делении матрицы (16) на две 

подматрицы по столбцам имеют такой же вид, как и в (14)–(15). При 

этом индексы при символах миноров M  означают номера строк, а 

не номера столбцов, как в (14). Из табл. 2 видно, что разложение 

матрицы по столбцам не содержит миноры размерности, большей 

половины порядка, что уменьшает трудоемкость разложения опре-

делителей. Подобными свойствами обладает также половинное де-

ление матрицы по строкам. Выражения миноров в силу симметрии 

матрицы (16) получаются из миноров (15) путем взаимной замены 

цифр индексов у всех недиагональных элементов, например, 12y  на 

21y . 
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Таблица 2 

Миноры при делении матрицы (16) 6-го порядка по вертикали 

№ Для левой подматрицы Для правой подматрицы 

1  

y11 y12 y13 

y21 y22 y23 

y31 y32 y33 
 

 

y44 y45 y46 

y54 y55 y56 

y64 y65 y66 
 

2  

y11 y12 y13 

y21 y22 y23 

 y42 y43 
 

 
y34 y35  

y54 y55 y56 

y64 y65 y66 
 

3  

y11 y12 y13 

y21 y22 y23 

  y53 
 

 

y34 y35  

y44 y45 y46 

y64 y65 y66 
 

4  

y11 y12 y13 

y31 y32 y33 

 y42 y43 
 

 

y24   

y54 y55 y56 

y64 y65 y66 

 

 5  

y11 y12 y13 

y31 y32 y33 

  y53 
 

 

y24   

y44 y45 y46 

y64 y65 y66 
 

6  

y11 y12 y13 

 y42 y43 

  y53 
 

 

y24   

y34 y35  

y64 y65 y66 

 

  
Алгоритмы разложения определителя ленточной матрицы на 

пары миноров половинного порядка при делении матрицы по 
горизонтали (по строкам) и по вертикали (по столбцам). Исход-
ная матрица порядка n  (рис. 4,а) делится по строкам горизонтальной 

линией на две подматрицы – верхнюю T  и нижнюю B  с числом 
строк t  и b  ( n t b  ). При четном n  число t b , в случае нечетно-

го n  порядок нижней подматрицы больше на 1: 1b t  . Столбцы, 

состоящие только из нулевых элементов, образуют нулевые блоки, 
находящиеся в конце верхней и начале нижней подматрицы. Верх-

няя подматрица имеет tm  таких столбцов, а нижняя – bm . 

При делении матрицы по строкам для получения   ненулевых 

миноров верхней подматрицы (рис. 4,а) перечисление сочетаний 
начинается с первого столбца, при этом: 1) в сочетаниях не участву-
ют столбцы из правого верхнего нулевого блока; 2) каждое сочета-
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ние обязательно заканчивается номерами столбцов, находящимися 
над левым нижним нулевым блоком.  

Для нахождения каждого из   слагаемых, число которых рас-

считано по формуле (1), используется последовательность шагов: 
А. Вычисление строковой s  составляющей знака АД суммирова-

нием номеров строк верхней подматрицы. 

Б. Перебор сочетаний по / 2n  из – tn m  ненулевых столбцов 

верхней подматрицы, обязательно содержащих bm  столбцов, в кото-

рых содержатся только нулевые элементы нижней подматрицы.  
Каждое такое сочетание столбцов соответствует минору, на который 
умножается взаимно дополнительное АД.

 

  
В.  Вычисление столбцовой с  составляющей знака АД суммиро-

ванием номеров стобцов нижней подматрицы, дополняющих столб-
цы верхней подматрицы, соответствующие выбранному сочетанию.  

Г. Рекурсивное вычисление очередной пары минора и взаимно 
дополнительного минора. 

Д. Добавление к определителю матрицы текущего слагаемого как 
произведения миноров верхней и нижней подматриц с учетом знако-
вой переменной s с . 

В случае половинного деления по вертикали исходная матрица 
порядка n  (рис. 4,б) делится по столбцам вертикальной линией на 
две подматрицы – левую L  и правую R  с числом строк l  и r              
( n l r  ). При четном n  число l r , в случае нечетного n порядок 
правой подматрицы больше на 1: 1r l  . Строки, состоящие только 
из нулевых элементов, образуют нулевые блоки, находящиеся внизу 

левой и наверху правой подматрицы. Левая подматрица имеет lm  

таких строк, а правая – rm . 

При делении матрицы по столбцам для получения   ненулевых 

миноров левой подматрицы (рис. 4,б) перечисление сочетаний начи-
нается с первой строки, при этом: 1) в сочетаниях не участвуют 
строки из левого нижнего нулевого блока; 2) каждое сочетание обя-
зательно заканчивается номерами строк, находящимися слева от 
правого нижнего нулевого блока. Для нахождения каждого из   сла-

гаемых, число которых рассчитывается по формуле (1) используется 
последовательность шагов А–Д, аналогичная приведенной выше. 

В ходе раскрытия каждого минора (пункт Г) для сокращения 
времени расчета определителя матрицы предусматриваются анали-
тические преобразования, многократно сокращающие длину строки 
минора. При этом учитываются: 1) нулевые строки и столбцы при 
генерации миноров; 2) нулевые миноры в парах сомножителей каж-
дого слагаемого; 3) наличие одинаковых значений у элементов мат-
рицы. Избыточные операции также сокращаются путем выбора ва-
рианта половинного деления матрицы: по горизонтали или по верти-
кали.  
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Сравнение алгоритмов половинного деления с оптимальной 

сверткой выражений. Формулы (14)–(15), полученные половинным 

делением по строкам, содержат 64 операции умножения, как и в 

формуле (5) при половинном диагональном делении. Аддитивных 

операций формулы (14)–(15) содержат 31, что меньше 33 операций 

при одном диагональном делении (5). Однако при повторном блоч-

но-диагональном делении двух матриц 4-го порядка (табл. 1) на два 

диагональных блока третьего порядка появляются избыточные опе-

рации вычитания за счет удаления строк и столбцов в подматрице 

пересечения, что иллюстрируется ниже на почти полной матрице 

четвертого порядка, являющейся первым диагональным блоком в 

матрице (4): 

y11 y12 y13   

y21 y22 y23 y24 (17) 

 y31 y32 y33 y34  

 y42 y43 y44  

 

Матрицу (17) можно представить в виде двух диагональных бло-

ков третьего порядка при половинном распределении элементов в 

матрице пересечения второго порядка. Элементы первого блока вы-

делены в (17) жирным шрифтом. Используя ММДВ, получаем вы-

ражение определителя: 

    

    

 

1 11 24 32 43 33 42 13 31 24 42 12 31 24 43

11 23 13 21 32 44 34 42 11 22 12 21 33 44 34 43

31 12 23 13 22 44  

( )

. 

D y y y y y y y y y y y y y y

y y y y y y y y y y y y y y y y

y y y y y y

      

      

 

 (18) 

 Половинное деление по вертикали приводит к выражению: 

 

2 11 22 12 21 33 44 34 43

11 32 12 31 23 44 24 43 11 42 23 34 24 33

21 32 22 31 13 44 21 42 13 34 31 42 13 24

 

.  

( )( )

( )( ) ( )

( )

D y y y y y y y y

y y y y y y y y y y y y y y

y y y y y y y y y y y y y y

   

    

   

   (19) 

В соответствии с правилами оптимальной свертки алгебраиче-

ских выражений [13] разложение определителя матрицы следует вы-

полнять по строке или столбцу с минимальным числом элементов 

[16]. Для матрицы (17) в первую очередь следует выделять элемент 

y44, который чаще других элементов четвертой строки или столбца 

присутствует в слагаемых определителя. Это обусловлено тем, что 

при выделении этого элемента удаляются не полностью заполненые 

строка и столбец. Далее можно выполнять разложение по элементам 

42y  и 43y  или 24y  и 34y , что приводит к выражению: 
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3 44 31 12 23 13 22 32 11 23 13 21

33 11 22 12 21 34 42 11 23 13 21

43 11 22 12 21 24 11 32 43 33 42

31 12 43 13 42

  

. 

[ ( ) ( )

( )] [ ( )

( )] [ ( )

( )]

D y y y y y y y y y y y

y y y y y y y y y y y

y y y y y y y y y y y

y y y y y

    

     

    

 

 (20) 

Система Maple [15] рассматривает все варианты выделения эле-
ментов с одинаковыми показателями участия в развернутом выраже-
нии или подвыражении. Поэтому определитель имеет вид 

 

   

 
4 22 33 23 32 44 32 43 33 42 24

34 22 43 23 42 11 21 33 43 11 22 12 21

24 11 32 43 33 42 31 12 43 13 42

(

 

. 

[( ( )]

[ ( ) ( )]

D y y y y y y y y y y

y y y y y y y y y y y y y

y y y y y y y y y y y

   

       

  





 (21) 

Выражения (18)–(20) содержат по 24 умножения и по 3 сложе-
ния. Число операций вычитания в этих выражениях: 10, 8, 11 соот-
ветственно. Формула (21) включает 22 умножения, 7 сложений и 8 
вычитаний. По числу умножений ее можно считать более эконом-
ной.  

Покажем, что минимальное по сложности выражение (21) может 
быть получено непосредственно по матрице (17) без предваритель-
ного получения развернутого выражения определителя с использо-
ванием половинного деления. Сначала выделим элементы y11 и y44, 
которые находятся в неполных строках и столбцах, а оставшаяся 
подматрица раскладывается путем половинного деления по горизон-
тали. Уже этот пример показывает, что свертка выражений, соответ-
ствущих матричным определителям высокого порядка, невозможна 
без половинного деления матриц.  

Программа HalfsVal для параллельного расчета определите-
лей разреженных матриц на основе половинного деления. Реали-
зованы два режима расчета определителя матрицы: 1) делением на 
два диагональных блока (рис. 2,б, формула (6)); 2) делением на две 
подматрицы по столбцам на левую и правую подматрицы (рис. 4,б, 
формула (10)).  Раскрытие каждого минора выполняется рекурсивно 
по тем же формулам, в отличие от [22,25] генерируются только пары 
ненулевых миноров. 

Программа тестируется в обоих режимах работы на пятидиаго-
нальных матрицах A  порядка 400 999n   , обобщающих матрицу 
Гинзбурга порядка 40 [28]: 

 

11

, 1

, 1

, 2

, 2

5; 6,    2,3, , –1;

4,   1, 2, , –1;  

4,   2,3,  , ;

1,   1, 2, , – 2;

1,   3, 4,  , . 

nn jj

j j

j j

j j

j j

a a a j n

a j n

a j n

a j n

a j n









    

   

   

  

  

 (22) 
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Для случая 6n   матрица (16) делится по вертикали на две под-
матрицы: левую и правую, размерностью 6 на 3. Сомножители сла-
гаемых определителя (алгебраическое дополнение и минор), соот-
ветствуют матрицам в строках табл. 2 и помещены в квадратные 
скобки: 

            5 * 5   4 4*5 * 5*4 4   6*5 4*4 * 5* 4*4 6 4*4 1   [ ]D            

     4* 4*5 4 1 6*5 * 5*6 4*4 4* 4*4 6*5 4  [           

         4*5 * 5* 6*4 4 4*4*4 4 6* 6*5 4*4 4* 4 4*5          

     4*4 6 * 5* 6*6 4*4 4* 4 4*6 4*4 6   49.]         

Результаты расчета определителей матриц A  порядка 

400 999n    по программе HalfsVal на компьютере с частотой 2,8 

ГГц и ОЗУ 4 Гб представлены в табл. 3. Формула определителя по-

сле первого половинного деления содержит в соответствии с форму-

лой (1) шесть слагаемых (режим 1) или эти слагаемые в виде произ-

ведений пар миноров (режим 2). Размеры формул миноров при каж-

дом порядке матриц n указаны средними значениями (столбец 3 в 

табл. 3) и отличаются в пределах от 3 до 1,5 %. Размеры слагаемых 

(режим 1) больше суммы размеров соответствующих двух миноров 

(режим 2) на 20 – 23 %. Время генерации слагаемых (столбец 4) и 

миноров (столбец 5) изменяется в пределах от 2,5 до 15 %. Время 

вычисления слагаемого или минора пренебрежимо мало по сравне-

нию со временем их генерации.  

Результаты параллельной работы программы HalfsVal сведены в 

табл. 4. При 1-, 6- и 12-поточном режиме время расчета определите-

лей матриц порядка 400…999 оказывается примерно в 5…3 (столбец 

2 в табл. 4), 23…15 (столбец 3) и 40…27 (столбец 4) раз соответ-

ственно меньше, чем по программе Maple (столбец 5).  

Параллельный расчет численных определителей ленточных 

матриц при половинном делении и отклонении от него. Расчет 

выполняется в системе Maple [15]. Для тестирования используется 

ленточная матрица A  (22) с 900 2000n    и 2m  . Численные 

значения миноров рассчитываются с помощью оператора Det в си-

стеме Maple при 20-ти десятичных разрядах. Неполовинное деление 

матрицы представлено нахождением определителя через одно- и 

трехчетвертные миноры. Из табл. 5 видно, что половинные миноры 

(столбец 5) требуют времени в 1,2…1,5 раза меньше, чем неполо-

винные (столбец 4). Время расчета при 6 и 12 поточном режиме 

(столбцы 6 и 7) в 1,3…2,8 и 2,5…5,5 раз меньше, чем при расчете 

определителя без деления на миноры (столбец 3). 
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Таблица 3 

 

Характеристики программы HalfsVal при расчете определителей  

целочисленных ленточных матриц порядка n = 400…999  

 

n 

Значение 

опреде-

лителя 

Средняя длина строки  

минора 

(режим 2) 

Среднее время генерации  

в минутах' и секундах'' 

слагаемого 

(режим 1) 

 

минора 

(режим 2) 

400 160801 23972643 23,4'' 2,0'' 

500 251001 57093867 54,7'' 6,0'' 

600 361201 108129051 1'39,8'' 10,2'' 

700 491401 232932556 2'50,6'' 14,6'' 

800 641601 285867676 4'41,7'' 24,7'' 

900 811801 451648108 7'24,5'' 45,2'' 

999 1000000 679776508 11'27,4'' 1'21'' 

 
Таблица 4 

  

Сравнение времени t (минуты' секунды'') целочисленного расчета 

 определителей ленточных матриц по программе HalfsVal и системе Maple 

n 
t по Halfscal при числе потоков p: t  по Maple 

(det) 1 6  12 

400 34,94'' 6,52'' 3,56'' 1'57'' 

500 1'38'' 18,15'' 9,85'' 4'13'' 

600 2'46'' 28,34''  14,86'' 7'58'' 

700 4'05'' 45,7'' 25,2'' 14'32'' 

800 6'26'' 70,2'' 38,8'' 21'04'' 

900 11'47'' 2'10,5'' 1'12,2'' 38'04'' 

999 19'14'' 3'28,8'' 1'56,9'' 53'34'' 

 
Таблица 5 

 

Время (в секундах) численного (при 20 десятичных разрядах) расчета  

определителя ленточной матрицы (22) в одно- и многопоточном  

режиме с помощью половинных и неполовинных миноров 

n 

Значение  

определи-

теля 

Число потоков 

1       6             12 

без 

деле-

ния 

1/4 и 3/4 

миноры 

1/2  

миноры 

900 811801,0000 4,41 14,41 11,53 1,93 0,97 

1000 1002001,000 5,19 27,48 24,31 4,06 2,04 

1200 1442401,000 9,13 41,04 28,98 5,01 2,52 

1500 2253001,000 15,14 52,18 39,73 6,63 3,32 

1700 2893401,000 24,57 78,54 52,74 8.81 4,41 

2000 4004001,000 34,25 114,8 77,84 12,98 6,50 

 
Выводы и рекомендации.  1. Предложены алгоритмы разложе-

ния определителя на основе половинного деления разреженных мат-
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риц на подматрицы вдоль главной диагонали, по горизонтали и вер-
тикали для параллельного расчета с учетом строк и столбцов, состо-
ящих из нулей. Получены формулы для числа пар взаимно дополни-
тельных ненулевых миноров матриц графов (сетей) с цепной, маги-
стральной и разветвленной структурой. 

2. Установлено, что рекурсивное деление матрицы на две под-
матрицы приводит к парам миноров с различной размерностью и 
компактностью выражений, но оптимальным является половинное 
деление, когда число ненулевых элементов подматриц одинаково 
или отличается на единицу. Для ленточных матриц алгоритмы поло-
винного деления обеспечивают примерно равные затраты времени 
расчета определителя и размера строки минора. При произвольном 
заполнении матрицы один из вариантов половинного деления может 
быть предпочтительнее других, но алгоритмы половинного деления 
матрицы по вертикали или горизонтали более эффективны. 

3. Разработана программа HalfsVal для параллельного расчета 
определителей разреженных матриц высокого порядка при равно-
мерной загрузке процессоров. Обеспечивается ускорение расчета как 
для целочисленных матриц высокого порядка, конкурируя с систе-
мами компьютерной алгебры, так и в составе численных программ 
решения СЛАУ. Выражениям на основе половинного деления при-
суще меньшее число операций, чем при традиционном использова-
нии теоремы Лапласа и формулам, полученным Maple или CirSym. 

4. Преимуществом блочно-диагонального представления матриц 
является соответствие матричных блоков их реализации в моделиру-
емой системе. Это упрощает многовариантный анализ и структур-
ный синтез на базе типовых звеньев конструкции. Однако алгоритм 
ММДВ более сложный, порядок блоков изменяется, что ухудшает 
балансировку при использовании нескольких процессоров. Поэтому 
для решения матричных задач общего назначения целесообразно 
применять алгоритмы половинного рекурсивного деления матрицы 
по вертикали или горизонтали или использовать их для разложении 
определителей квазидиагональных матриц. 
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The decomposition of the determinant of a sparse, including ribbon, matrix into the sum 

of the determinants of quasi-diagonal matrices is proposed. Algorithms for recursive 
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decomposition of the determinant of a matrix presented in the form of two diagonal 

blocks or halves from horizontal or vertical division, taking into account zero rows and 

columns for parallel calculation, have been developed and implemented. It is proved that 

when dividing a ribbon matrix with a ribbon width of 2m+1 in half horizontally (verti-

cally) into an equal or different number of rows (columns), the minors of one submatrix 

correspond to combinations of 2m columns (rows) in m, and the conjugate minors corre-

spond to the complements of these combinations in another submatrix, which simplifies 

the application of Laplace's theorem. The concept of a matrix binary vector is intro-

duced. The relationship of combinations of row and column numbers of the matrix with 

halves of binary vectors containing an equal number of units is established. The use of 

half-order minors leads the solution of the problem to subtasks of the minimum identical 

dimension, ensuring uniform loading of processors (computing cores). The calculation 

time for both integer and numerical (with a limited number of decimal places) determi-

nants is reduced many times. With one, 6 and 12 inline modes, the time of integer calcu-

lation of matrix determinants of the order of 400...999 decreases in comparison with the 

time of the Det operator of the Maple system by 5...3, 23...15 and 40...27 times, and the 

time of numerical calculation by 1.3...2.8 and 2.5...5.5 times with the number of threads 

6 and 12 and the order of the matrices 900...2000. Half division is implemented in the 

program of symbolic disclosure and calculation of the determinant of the matrix, but can 

be used for a simple parallel modification of any program for the numerical solution of 

systems of linear algebraic equations. 

 

Keywords: matrix determinant, Laplace's theorem, block matrix, quasi-diagonal matrix, 

ribbon matrix, binary vector, half division, symbolic computation, parallel calculation, 

electrical network 
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