
ISSN 2309-3684 

Математическое 
моделирование
и численные методы

Валишин А.А., Запривода А.В., Цухло С.С. Повышение
эффективности обучения нейронных сетей для сегментации
изображений. Математическое моделирование и численные
методы, 2025, № 3, с. 103–116.

Источник: https://mmcm.bmstu.ru/articles/385/

Параметры загрузки:

IP: 216.73.216.210

01.02.2026 13:55:51



ММЧМ 2025 № 3 (47)                                                    103 

 УДК 519.7                                DOI: 10.18698/2309-3684-2025-3-103116 

 

 

Повышение эффективности обучения нейронных сетей 

для сегментации изображений  
 

© А.А. Валишин
1
, А.В. Запривода

2
, С.С. Цухло

1 

1МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 
2АО «ВПК «НПО машиностроения», Реутов, 143966, Россия 

 

В данной статье критически анализируются современные подходы к повышению 

эффективности обучения нейронных сетей для сегментации изображений. Под 

эффективностью обучения понимаются два взаимосвязанных аспекта: вычисли-

тельная эффективность и точность сегментации обученной модели. Особое вни-

мание уделено трём способам повышения эффективности обучения:1. применение 

методов аугментации. Аугментация – это процесс искусственного генерирования 

новых данных на основе существующих для обучения новых моделей. Этот метод 

позволяет увеличить размер и разнообразие набора данных, что важно для улуч-

шения обобщающей способности модели. В данном случае аугментация включала  

в себя повороты изображения, наложение гауссовского шума, коррекция цветовой 

гаммы, 2. оптимизация архитектур нейронных сетей посредством интеграции 

эффективных энкодеров на базе EfficientNet, 3. применение методов активного 

обучения для выбора наиболее информативных обучающих примеров на основе вы-

числения энтропии выходных данных. Модели обучались с использованием оптими-

затора Adam на задаче OpenEarthMap, где выборка составляла 20 % от исходного 

объёма, изображения уменьшались до разрешения 512×512 пикселей и дополни-

тельно разбивались на 4 части размером 256×256 пикселей. Обучение проводилось 

на 9212 изображениях обучающей выборки и 1536 изображениях валидационной 

выборки в течение 100 циклов обучения. Результаты экспериментов показывают, 

что аугментация увеличивает точность сегментации модели UNet (IoU) с 36 % до 

38,7 %, оптимизация архитектуры с использованием EfficientNet-b0 и b4 повыша-

ет IoU до 44,6 % и 45,3 % соответственно, а активное обучение, основанное на 

вычислении энтропии, демонстрирует потенциал выравнивания IoU по классам, 

хотя стабильность метрик остаётся проблематичной. Данная работа подчёрки-

вает необходимость и перспективность комплексного подхода к оптимизации 

нейросетевых моделей для сегментации изображений и указывает направления 

для дальнейших исследований в области машинного обучения и повышения вычис-

лительной эффективности. 
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Введение. Сегментация изображений представляет собой одну из 

важнейших задач компьютерного зрения, поскольку она позволяет 

разбивать изображение на смысловые участки, что существенно 

упрощает последующий анализ и принятие решений. Однако, не-

смотря на значительный прогресс, существующие методы сегмента-

ции сталкиваются с рядом фундаментальных проблем, влияющих на 

их точность и универсальность: 
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1) Неоднородность входных данных и влияние шума: Современ-

ные методы сегментации сталкиваются с большой вариативностью 

изображений: различия в освещении, наличии шума, размытости и 

артефактах негативно сказываются на качестве выделения объектов. 

Как отмечено в исследованиях [2], шум и вариативность условий 

съёмки затрудняют корректное разделение изображения на однород-

ные области, что приводит к снижению точности сегментации. 

2) Ограниченность и стоимость разметки данных: Для обучения 

моделей требуется большое количество качественно размеченных 

данных, где каждому пикселю присвоена корректная метка. Ручное 

аннотирование изображений – процесс трудоемкий, дорогой и под-

верженный субъективным ошибкам. Это ограничивает возможность 

масштабного обучения и негативно сказывается на обобщающей спо-

собности моделей [3,4]. 

3) Высокая вычислительная сложность современных архитектур: 

Мощные нейросетевые модели, демонстрирующие высокую точность 

сегментации, требуют значительных вычислительных ресурсов для 

обучения и использования модели. Это ограничивает их применение 

в системах реального времени и на устройствах с ограниченными ре-

сурсами, что является существенным препятствием для внедрения в 

промышленные и мобильные приложения [5]. 

Кроме того, в работе [6] качественно продемонстрировано, что 

точность сегментации напрямую влияет на надёжность алгоритмов 

поиска изображений. Более чёткое выделение объектов позволяет 

значительно сократить количество ложных совпадений и повысить 

полноту поиска. Эти наблюдения подчёркивают важность разработки 

методов сегментации, способных обеспечивать высокую консистент-

ность и точность разметки в разнообразных условиях съёмки. 

Оптимизация нейросетевой архитектуры. Одной из важней-

ших задач при разработке систем сегментации изображений является 

не только улучшение точности предсказаний, но и оптимизация вы-

числительной эффективности модели. Архитектура U-Net [7] зареко-

мендовала себя как эффективное решение для сегментации, однако её 

прямое применение в задачах, требующих работы в реальном време-

ни или на устройствах с ограниченными вычислительными ресурса-

ми, может быть затруднено из-за большого числа параметров и вы-

числительных затрат. Для оптимизации архитектуры в данной работе 

предлагается замена стандартного энкодера U Net на более эффек-

тивные блоки на базе архитектуры EfficientNet [8]. EfficientNet, раз-

работанный с использованием принципа масштабирования глубины, 

ширины и разрешения, обеспечивает высокий баланс между точно-

стью и числом параметров. В рамках оптимизации были исследованы 

два варианта – модели с EfficientNet-b0 и EfficientNet-b4, которые 

применяются в качестве энкодера для сегментационных сетей. 
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Оптимизация нейросетевой архитектуры посредством интеграции 

EfficientNet в качестве нкодера имеет ряд преимуществ: 

1) Сокращение числа параметров: Использование EfficientNet-b0 

позволяет добиться значительного уменьшения числа параметров, 

что снижает требования к памяти и вычислительным ресурсам. Это 

особенно важно для применения моделей в реальном времени. 

2) Увеличение скорости: более легкая архитектура обеспечивает 

более быструю обработку изображений без существенной потери 

точности, что критично для систем, где время реакции является клю-

чевым параметром. 

3) Повышение точности: несмотря на уменьшение числа пара-

метров, оптимизированные модели демонстрируют улучшенную спо-

собность извлекать релевантные признаки, что приводит к повыше-

нию метрики IoU. Применение EfficientNet-b4, несмотря на сохране-

ние сложности, позволяет достигать еще более высоких показателей 

сегментации благодаря более глубокому представлению данных. 

4) Гибкость и масштабируемость: архитектура EfficientNet легко 

масштабируется в зависимости от требований приложения. Возмож-

ность выбора между более легкими и более сложными вариантами 

позволяет адаптировать модель под конкретные задачи, учитывая ба-

ланс между скоростью и точностью. 

Методы обучения. При разработке нейросетевых моделей для 

сегментации изображений важна комплексная стратегия, которая 

включает несколько этапов: расширение обучающего набора с по-

мощью аугментации, использование специализированной функции 

потерь для борьбы с дисбалансом классов, применение адаптивного 

оптимизатора и интеграция активного обучения для повышения эф-

фективности обучения. 

Аугментация данных – этап, позволяющий искусственно расши-

рить объём обучающего датасета и повысить обобщающую способ-

ность модели. В данной работе применяется ряд строгих методов 

аугментации, среди которых основное внимание уделено фиксиро-

ванным поворотам изображений. 

1) Фиксированные повороты. Изображения поворачиваются на 

0°, 90°, 180° или 270°, что позволяет модели увидеть объекты в раз-

ных ориентациях без дополнительной сложности случайного выбора 

углов. Преобразование координат для 90° поворота, например, опре-

деляется следующими формулами: 

Для поворота изображения можно использовать матрицы преоб-

разования. Пусть ( ),x y  — координаты исходного пикселя, тогда но-

вые координаты ( ', ')x y  вычисляются по формулам (1) следующим 

образом для каждого угла (поворот системы координат производится 

по часовой стрелке): 
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0 : ,    ,

90 : ,    ,

180 : ,    ,

270 : ,    .

x x y y

x y y x

x x y y

x y y x

   

    

     

    

 (1) 

2)Добавление гауссовского шума. Для повышения устойчивости 

модели к изменениям условий съёмки, каждому пикселю изображе-

ния добавляется гауссовский шум. Если  ,I x y  ― исходное значе-

ние пикселя, новое значение после добавления шума определяется 

как: 

 
2( , ) ( , ) (0, )noiseI x y I x y   , (2) 

где 
2(0, )  ― гауссовское распределение с математическим ожи-

данием 0 и дисперсией 2 . Такой подход помогает модели лучше 

обучаться, учитывая естественные шумы и помехи, присутствующие 

в реальных данных. При обучении значение 2  варьировалось от 0 

до 0,04. 

3) Цветовая коррекция в пространстве HSV [9] (hue saturation val-

ue – тон насыщенность яркость). Важным элементом аугментации 

является корректировка цветовых характеристик изображений. Для 

этого исходное изображение преобразуется из цветового простран-

ства красного, зеленого, синего (RGB) в пространство HSV. Затем 

случайным образом изменяются значения оттенка, насыщенности 

или яркости, что позволяет модели обучаться на данных, полученных 

в различных условиях освещения. После этих изменений изображе-

ние возвращается в цветовое пространство RGB для дальнейшей об-

работки. Визуально пространство HSV можно представить как на 

рис. 1. 

Пространство HSV представляет собой цилиндрическую систему 

координат, где координата H является полярным углом, S ― поляр-

ный радиус, V ― Z-координата. Переход между пространством RGB 

и HSV осуществляется по формулам (3): 
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где 

  0,360H  ,  1, ,, 0, ,R G B S V  . 

 

 
 

Рис. 1. Визуальное представление распределения цветов в пространстве HSV. 

H (hue, оттенок) ― полярный угол, S (saturation, насыщенность) ― полярный 

радиус, V (value, яркость) ― Z-координата 

 

Обратное преобразование проводится следующим образом: вы-

числяются значения , , ,min inc decV V V V  по формулам (4). Затем эти зна-

S

H

V
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чения используются для определения цвета в пространстве RGB со-

гласно таблице 1. 

 

 

 

1 ,

mod 60

60

;    .

,

min

min

inc min dec

V S V

H
a V V

V a V aV V

 

 

   

 (4) 

 

Таблица 1 

Таблица подстановок для определения цвета в пространстве RGB  

6
60

mod
H 

 
 

 R G B 

0 V incV  minV  

1 decV  V minV  

2 minV  V incV  

3 minV  decV  V 

4 incV  minV  V 

5 V minV  decV  

 

В процессе обучения цвет изображений в пространстве HSV кор-

ректировался случайным образом на следующие величины:  

 

 30; 30H    ,  0,15; 0,15S    ,  0,15; 0,15V    . 

 

Функция потерь – это математическая функция, которая измеря-

ет разницу между предсказанием нейронной сети и истинным отве-

том. Одной из проблем сегментации является дисбаланс классов: ча-

сто некоторые классы объектов занимают большую часть изображе-

ния, тогда как другие классы – меньшую. Для борьбы с этой пробле-

мой используется функция фокусной потери (focal loss) [10], которая 

модифицирует стандартную кросс-энтропию за счёт введения моди-

фицирующего множителя, уменьшающего вклад легко классифици-

руемых примеров. 

Формула фокусной потери для одного примера выглядит следу-

ющим образом: 

 ˆ ˆ(1 ) log( )focal p p   , (5) 

где p̂  ― предсказанная вероятность для правильного класса,   ― 

весовой коэффициент для балансировки классов, задается картой ве-
сов, вычисленной для каждого класса [7],   ― параметр фокусиров-

ки, использовалось 2  . 



Повышение эффективности обучения нейронных сетей для сегментации … 

ММЧМ 2025 № 3 (47)                                                    109 

При обучении сегментационной модели функция потерь рассчи-
тывается для каждого пикселя, а итоговая ошибка усредняется по 
всем пикселям. Таким образом, функция фокусной потери позволяет 
модели сконцентрироваться на трудных примерах, улучшая качество 
сегментации особенно для объектов, встречающихся реже. 

Для обновления весов модели применялся метод градиентного 
спуска Adam [11] (Градиентный спуск с адаптивной оценкой момен-
та), который адаптивно масштабирует шаг обновления для каждого 
параметра. Он использует экспоненциально взвешенное скользящее 
среднее градиентов и их квадратов. При обучении величины коэффи-

циентов затухания использовались следующие: 1 20.9; 0.999   . 

Активное обучение – это подход в машинном обучении, при ко-
тором сама модель выбирает, какие данные ей стоит изучить в 
первую очередь. Идея в том, что не все примеры из обучающей вы-
борки одинаково полезны: некоторые – простые, а другие – сложные, 
граничные или неоднозначные. Активное обучение направлено на 
улучшение качества модели за счёт выбора наиболее информативных 
примеров для аннотации и последующего обучения. В контексте сег-
ментации изображений используется критерий энтропии для оценки 
уверенности модели в её предсказаниях. Энторопия сегментирован-
ного изображения характеризует степень неопределенности в пред-
сказаниях модели. 

 
1

( ) log
C

j j

j

H p p p


  , (6) 

где 
jp  ― вероятность, предсказанная для класса сегментации j; C ― 

количество классов сегментации. Примеры с высокой энтропией, то 
есть те, где модель не уверена в предсказании, формируются в вы-
борку с целью проведения на ней цикла обучения модели. Таким об-
разом, активное обучение позволяет эффективно использовать ресур-
сы и улучшить общую способность модели обрабатывать сложные и 
неоднозначные случаи, что в конечном итоге приводит к повышению 
точности сегментации. 

Оценка точности сегментации проводилось при помощи метрики 
IoU (Intersection over Union) известной как коэффициент Жаккара, 
вычисляемой по формуле (7). Идея состоит в том, что находится от-
ношение числа пересечений множества предсказанных моделью сег-
ментов изображения и множества размеченных сегментов изображе-
ния к числу обединения этих множеств. 

 
P T

IoU
P T





, (7) 

где P  ― (prediction) предсказанная карта сегментов модели, T  ― 

(target) разметка сегментов изображения. 
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Обучение моделей проводилось на наборе данных OpenEarthMap 

[12]. Набор предназначен для обучения нейронных сетей для задачи 

сегментации спутниковых фотоснимков. Каждый снимок сопровож-

дается сегментированным изображением или разметкой. Все объекты 

на изображениях разделены на 8 классов: земля, поле, развитое про-

странство, дороги, деревья, водоемы, С/Х земля, здания.  

Для  сокращения времени обучения и оптимизации использова-

ния вычислительных ресурсов изображения уменьшались до размера 

512х512 пикселей и разбивались на 4 части размера 256×256. Из это-

го набора были сформированы: выборка из 9212 обучающих приме-

ров и выборка из 1536 валидационных примеров. Также для проведе-

ния одного цикла обучения использовалось только 20 % данных из 

обучающей выборки, выбираемых равномерно либо методом актив-

ного обучения. 

Результаты. Сначала оценивалось влияние методов аугментации 

данных на качество сегментации при использовании архитектуры 

UNet. Модель обучалась в течение 100 циклов с величиной шага оп-

тимизации 5 × 10⁻⁵. На рис. 2 приведены кривые динамики метрики 

IoU и значений фокусной потери в процессе обучения. Эксперимент 

показал, что применение аугментации обучающей выборки позволи-

ло повысить показатель IoU с 36 % до 38,7 %. При этом в обоих слу-

чаях наблюдалось устойчивое снижение значения фокусной потери, 

что свидетельствует о сходимости параметров модели к оптимуму и 

отсутствии признаков переобучения. Для всех прогонов использова-

лись одинаковые значения начальных весов сети. 

 
  
 

  

  
 

Рис. 2. Сравнение метрик при обучении модели UNet с аугментацией и без аугмен-

тации за 100 циклов обучения: IoU (слева), значение фокусной потери (справа). 

Использовалось скользящее среднее по последним 10 значениям 

 

Далее было проведено сравнительное исследование трёх архи-

тектур — EfficientUNet‑b0, EfficientUNet‑b4 и классической UNet — с 

применением того же метода аугментации, на протяжении 100 цик-

лов и при шаге обучения 5 × 10⁻⁵. На рис. 3 представлены кривые ди-
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намики метрики IoU и значений фокусной потери в процессе обуче-

ния. Результаты показывают, что EfficientUNet‑b0 достигает IoU   

44,6 %, а EfficientUNet‑b4 — 45,3 %, тогда как для UNet этот показа-

тель составляет лишь 38,7 %. При этом фокусная потеря для моделей 

EfficientUNet демонстрирует более быстрое и глубокое снижение, 

достигая более низких значений по сравнению с UNet, что свидетель-

ствует о лучшей сходимости и повышенной устойчивости к переобу-

чению у архитектур на базе EfficientNet. 

 

  
 

Рис. 3. Сравнение метрик при обучении моделей UNet, EfficientUNet-b0 и 

EfficientUNet-b4 за 100 циклов обучения: IoU (слева), значение фокусной по-

тери (справа). Использовалось скользящее среднее по последним 10 значениям 

 

Кроме повышения качества сегментации, архитектуры 

EfficientUNet показали и значительное преимущество по скорости 

обучения. При прочих равных условиях время полного обучения 

классической UNet составило примерно 5,5 ч, тогда как 

EfficientUNet‑b0 потребовал около 2,5 ч, а EfficientUNet‑b4 – около 5 

ч. Таким образом, EfficientUNet‑b0 обеспечивает более чем двукрат-

ное ускорение обучения по сравнению с UNet при одновременном 

росте метрики IoU, тогда как EfficientUNet‑b4 сочетает близкие к 

UNet затраты времени с наивысшей точностью.  

Затем с использованием модели EfficientUNet‑b0 было исследо-

вано применение стратегии активного обучения, при которой отбор 

обучающих примеров осуществлялся на основе максимальной сред-

ней энтропии выходных распределений модели. Обучение проводи-

лось при тех же условиях (100 циклов, шаг обучения = 5 × 10⁻⁵), на 

рисунке 4 представлены кривые динамики метрики IoU и функции 

фокусной потери. Итоговый средний IoU при активном отборе соста-

вил 36,5 % против 44,6 % при пассивном (случайном) выборе приме-

ров; при этом кривые метрик, даже после обработки скользящим 

средним, демонстрируют сильную флуктуацию и отсутствие устой-

чивой монотонной сходимости, что указывает на нестабильность 
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процесса оптимизации. В то же время при анализе метрик IoU по от-

дельным классам обнаруживаются следующие закономерности: 

1) Для наиболее труднообучаемых классов активный метод обес-

печивает появление первых корректных предсказаний уже на 

начальных эпохах обучения (рис.5), что свидетельствует о частичном 

решении проблемы несбалансированности выборки за счёт концен-

трации на наиболее «сложных» примерах. 

2) Межклассовая дисперсия итоговых значений точности при ак-

тивном обучении ниже, чем при пассивном (таблица 2), что указыва-

ет на более равномерное качество сегментации по всем классам. 

 
Таблица 2 

Точность IoU по классам при обучении пассивным и активным методами.  

Метод Пассивный Активный 

Земля 14,55 % 9,35 % 

Поле 35,46 % 28,50 % 

Развитое пространство 33,92 % 28,69 % 

Дороги 38,13 % 25,79 % 

Деревья 46,45 % 41,73 % 

Водоемы 24,26 % 20,52 % 

С/Х земля 46,94 % 38,73 % 

Здания 53,72 % 40,30 % 
2  143,29 106,6 

 

Однако применение активного подхода оказалось значительно 

более ресурсоёмким: при том же объёме обучающих данных общее 

время обучения выросло до 30 ч, что ставит под вопрос практиче-

скую целесообразность метода. 

 

  
 

Рис. 4. Сравнение метрик при обучении модели EfficientUNet-b0 при пассив-

ном и активном выборе обучающих примеров за 100 циклов обучения: IoU 

(слева), значение фокусной потери (справа). Использовалось скользящее сред-

нее по последним 10 значениям 
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Рис. 5. Сравнение метрик IoU по каждому классу при обучении модели 
EfficientUNet-b0 при пассивном и активном выборе обучающих примеров за 100 

циклов обучения: Пассивный метод (слева), Активный метод (справа). Использова-
лось скользящее среднее по последним 10 значениям 

 
Заключение. В ходе исследования были сравнительно оценены 

три ключевых направления повышения качества семантической сег-
ментации на архитектуре UNet. Применение техники аугментации 
позволило повысить средний IoU на 2,7 % при сохранении устойчи-
вая монотонного снижения фокусной потери. Это свидетельствует о 
надёжной сходимости модели и отсутствии признаков переобучения. 
Архитектуры EfficientUNet‑b0 и EfficientUNet‑b4 показали суще-
ственное превосходство над классической UNet как по точности сег-
ментации, так и по скорости обучения. Наиболее оптимальным с точ-
ки зрения соотношения «точность / ресурсоёмкость» является 
EfficientUNet‑b0. Метод активного обучения с выбором наиболее 
«информативных» примеров по средней энтропии выходного распре-
деления частично сгладила дисбаланс классов: появление первых 
корректных предсказаний для трудных классов на ранних эпохах; 
снижение межклассовой дисперсии IoU. Однако общая точность мо-
дели уменьшилась на 8,1 %, а время обучения выросло до 30 ч, что 
ограничивает практическую ценность метода без дополнительной 
оптимизации. 

Таким образом, для приложений, предъявляющих высокие тре-
бования к качеству сегментации при ограниченных вычислительных 
ресурсах, рекомендуется сочетать аугментацию данных с архитекту-
рой EfficientUNet‑b0. Активное обучение целесообразно использо-
вать в задачах, где важно выравнивание точности по всем классам, 
при условии внедрения механизмов стабилизации процесса обуче-
ния. 
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This paper critically analyzes modern approaches to improving the efficiency of training 

neural networks for image segmentation. Training efficiency refers to two interrelated 

aspects: computational efficiency and segmentation accuracy of the trained model. Par-

ticular attention is paid to three ways to improve training efficiency: 1. using augmenta-

tion methods. Augmentation is the process of artificially generating new data based on 

existing models for training. This method allows increasing the size and diversity of the 

dataset, which is important for improving the generalization ability of the model. In this 

case, augmentation included image rotations, Gaussian noise imposition, color correc-

tion, 2. optimization of neural network architectures by integrating efficient encoders 

based on EfficientNet, 3. using active learning methods to select the most informative 

training examples based on calculating the entropy of the output data. The models were 

trained using the Adam optimizer on the OpenEarthMap task, where the sample was 20% 

of the original volume, the images were downsampled to 512x512 pixels and further split 

into four parts of 256x256 pixels. Training was performed on 9212 images of the training 

set and 1536 images of the validation set for 100 training cycles. The experimental re-

sults show that augmentation increases the segmentation accuracy of the UNet model 

(IoU) from 36 % to 38.7 %, architectural optimization using EfficientNet-b0 and b4 in-

creases IoU to 44.6 % and 45.3 %, respectively, and active learning based on entropy 

calculation shows the potential to equalize IoU across classes, although the stability of 

the metrics remains problematic. This work highlights the need and potential of an inte-

grated approach to optimizing neural network models for image segmentation and points 

to directions for further research in the field of machine learning and improving compu-

tational efficiency. 

 

Keywords: convolutional neural networks, computer vision, semantic segmentation, ma-

chine learning, active learning 
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