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Статья посвящена разработке многоагентной модели эвакуации, учитывающей 

физические характеристики агентов (возрастные категории, скорость, манев-

ренность), уровень паники, социальные взаимодействия в группах типа «лидер–

последователь» и наличие нескольких эвакуационных выходов, открывающихся c 

заданным интервалом (рассматривался интервал 6 секунд). Для обучения поведе-

ния агентов используется алгоритм Multi-Agent Proximal Policy Optimization 

(MAPPO). Используется гибридное пространство действий, сочетающее дис-

кретный выбор выхода и непрерывное управление движением. Обучение проводит-

ся по принципу «curriculum learning» с постепенным наращиванием количества 

агентов. Это позволяет агентам адаптироваться к сложным сценариям с высо-

кой скученностью и улучшить обобщающую способность модели для эксперимен-

тов с разным числом агентов. Среда представляет собой помещение заданных 

размеров (рассматривались помещения 15×20 м) с заданным количеством выходов 

определенной ширины (рассматривалось 3 выхода по 1,5 м). В модель заложена 

логика распространения информации о выходах. Индивидуальные агенты узнают 

информацию о новых открытых выходах в радиусе 5 м и передают сигнал сосе-

дям. Лидеры изначально знают обо всех доступных выходах вне зависимости от 

расстояния. Предусмотрен механизм распространения паники в зависимости от 

скученности агентов, расстояния до выхода и прошедшего времени с начала эва-

куации. Введены специфические правила поведения для социальных групп: лидеры 

принимают стратегические решения, а пожилые последователи получают бонус к 

скорости при следовании за лидером. В текущей реализации выбор выхода для ин-

дивидуальных агентов основан на кратчайшем расстоянии агента до него. В со-

циальных группах решение о выборе выхода принимается лидером на основе сред-

него расстояния всех агентов. Проведены вычислительные эксперименты для 40 

агентов в различных сценариях: с разным числом лидеров (2–16) и без групп (инди-

видуальная эвакуация). Проведенные вычислительные эксперименты показали, что 

в рассматриваемых условиях сценарии с социальными группами приводят к более 

быстрой эвакуации (снижение общего времени составило около 38%). Также при 

групповой эвакуации наибольшее преимущество получают уязвимые агенты, в рас-

сматриваемом случае – пожилые. Оптимальное число лидеров составляет 4–6: 

дальнейшее увеличение их количества не дает статистически значимых улучше-

ний. По итогам экспериментов зафиксировано снижение количества столкнове-

ний и меньший уровень паники при таком числе лидеров. Полученные результаты 

демонстрируют практическую применимость подхода MAPPO к задачам анализа 

процессов эвакуации в реалистичных условиях. 
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 Введение. Одной из главных задач в обеспечении безопасности 

населения является оперативная и своевременная эвакуация людей из 

зданий при возникновении чрезвычайных ситуаций. Важным аспек-

том подготовки помещений к таким ситуациям выступает математи-

ческое моделирование процессов эвакуации в разных условиях. Оно 

позволяет анализировать возможные сценарии поведения людей во 

время аварий, определять предельно допустимое количество находя-

щихся в помещении людей, рассчитывать время, необходимое для 

полной эвакуации, а также учитывать другие значимые параметры. В 

связи с этим вопросам моделирования эвакуации посвящено множе-

ство научных исследований и нормативных документов в различных 

странах мира. 

Обзор публикаций показывает разнообразие подходов к модели-

рованию эвакуации. Агентно-ориентированные модели [1-2] фокуси-

руются на индивидуальном и групповом поведении, учитывая когни-

тивные и социальные аспекты: например, эмоциональные и рацио-

нальные типы агентов. Однако возможности адаптации этих моделей 

к изменяющимся условиям и учету физических характеристик аген-

тов часто ограничены. Нейросетевые подходы, например, самоорга-

низующиеся карты Кохонена [3], предсказывают маршруты эвакуа-

ции, но не реагируют на динамические изменения среды. Геоинфор-

мационные системы [4] визуализируют оптимальные пути эвакуации 

с учетом инфраструктуры, но игнорируют индивидуальное поведение 

в условиях плотной толпы. Интеллектуальные системы оповещения 

[5] и прогнозирования [6] предлагают решения для управления пото-

ками с учетом индивидуальных характеристик, но ограничиваются 

статическими сценариями и не моделируют сложное поведение аген-

тов. 

В [7-9] предложены многоагентные модели эвакуации с учетом 

физических столкновений и сложной геометрии помещений. В [8] 

интегрируется моделирование пожара и эвакуации с использованием 

модели частично упругого удара, в [9] акцентируется внимание на 

спонтанной эвакуации и целенаправленном поведении агентов, таких, 

например, как обгон. Однако в этих работах не учитываются возмож-

ные физические различия агентов, социальные взаимодействия и 

влияние паники на их поведение. В [10] на основании методик МЧС 

России учитываются возрастные группы и их физические характери-

стики. Модель включает механизм ожидания агентами свободного 

пространства при заторах, что повышает организованность эвакуа-

ции. Тем не менее, исследование также не рассматривает влияние па-

ники и социальных связей. 

Значительный прогресс в моделировании эвакуации был достиг-

нут с применением глубокого обучения с подкреплением (DRL, Deep 

Reinforcement Learning). Работы [11-13] используют DRL для оптими-
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зации путей эвакуации в реальном времени, представляя помещения 

как графы и прогнозируя заторы. Например, в [11] трансферное обу-

чение сокращает время тренировки, но модель не учитывает столкно-

вения и панику. В [13] агенты оптимизируют выбор выходов с учетом 

их пропускной способности, но представленные модели не учитыва-

ют социальные группы и физические различия. В исследовании [14] 

эвакуация моделируется с учетом психологических факторов, возрас-

та и мобильности агентов. Приводится информация о точности 87% 

при сравнении с реальными данными. Однако данная модель не мас-

штабируется на более сложные помещения. Многоагентное обучение 

с подкреплением (MARL, Multi Agent Reinforcement Learning) [15] 

позволяет эффективно управлять потоками в условиях конкуренции 

за узкие маршруты, но здесь наблюдается ощутимая потеря произво-

дительности при высокой плотности агентов. Лидер-

ориентированные модели [16] на основе алгоритма оптимизации 

проксимальной политики (PPO, Proximal Policy Optimization) ускоря-

ют эвакуацию за счет использования координации агентов, но упро-

щают при этом их поведенческие аспекты. Иерархические модели 

[17] обеспечивают многоуровневое управление, но требуют значи-

тельных вычислительных ресурсов. Подходы DRL и MARL представ-

ляются достаточно гибкими, но редко учитывают панику, физические 

столкновения и групповую динамику. 

Таким образом, рассмотренные работы имеют следующие огра-

ничения: статичность среды, игнорирование индивидуальных харак-

теристик, столкновений и социального взаимодействия, недостаточ-

ная адаптивность к сложным помещениям с множеством выходов. 

Эти обстоятельства обуславливают актуальность разработки и разви-

тия новых подходов, способных масштабироваться и адаптироваться 

к реальным сценариям. 

Задачей данной работы является разработка такой многоагентной 

модели, которая позволяет при моделировании эвакуации людей из 

помещений учитывать: 

Наличие агентов трех возрастных категорий с различными физи-

ческими характеристиками (скорость, маневренность, радиус проек-

ции). 

Уровень паники и ее влияние на движение. 

Социальные взаимодействия в рамках групп «лидер-

последователь». 

Наличие нескольких выходов, открывающихся в разное время. 

В работе уделено внимание использованию гибридного простран-

ства действий, включающего дискретный выбор действия и непре-

рывное движение. Работа обученной модели сравнивается в случаях 

одиночной эвакуации и эвакуации в социальных группах с различным 

числом лидеров. 
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Используемые модели и алгоритмы. Алгоритм Multi-Agent 

Proximal Policy Optimization (MAPPO) — это алгоритм обучения с 

подкреплением, адаптирующий Proximal Policy Optimization (PPO) 

[18] для многоагентных систем. Используется парадигма централизо-

ванного обучения с децентрализованным исполнением (CTDE, Cen-

tralized Training with Decentralized Execution), где агенты обучаются с 

доступом к глобальной информации, но действуют независимо, пола-

гаясь только на локальные наблюдения [19]. 

В MAPPO каждый агент имеет собственную политику ( | )
i i ia s , 

где is  – локальное наблюдение, а ia  – действие. Во время обучения 

используется общая функция ценности  V s , оценивающая ожидае-

мую совокупную награду для глобального состояния s . Обновление 

политики основано на обрезанной суррогатной цели: 

   clip ( ) min ( ) ,clip ( ),1 ,1 ,i t i t t i tL r A r A       
 

 

где  
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t t

a s
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a s
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― отношение вероятностей текущей и старой политики, tA  ― оцен-

ка преимущества, вычисленная с помощью Generalized Advantage Es-

timation (GAE), а   ― коэффициент отсечения. Коэффициент отсе-

чения определяет степень изменения политики за одно обновление: 

меньшие значения делают обновление более консервативным, 

предотвращая резкие изменения, которые могут дестабилизировать 

обучение.  

Значение GAE ( tA ) вычисляется как взвешенная сумма времен-

ных разностей:  

      10
γλ δ ,    δ γ

l

t t l t t t tl
A r V s V s



 
    , 

где δ t  ― временная разность, tr  ― награда, γ  ― коэффициент дис-

контирования, а λ  ― параметр сглаживания, который балансирует 

между смещением и дисперсией оценки [18]. Оценка GAE позволяет 

более точно оценивать преимущество, учитывая долгосрочные по-

следствия действий. 

Для поддержания исследования добавляется энтропийный бонус, 

который поощряет разнообразие действий. Энтропия политики 

 θπ
i

H  добавляется к целевой функции с коэффициентом β :  
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     entropy

θθ β π |
ii tL E H s  

 
, 

где  

      θ θ θπ π | log π |
i i it ta

H a s a s   

― для дискретных действий. Коэффициент β  регулирует степень ис-

следования: большие значения усиливают случайность действий, что 

полезно на ранних стадиях обучения, но может замедлить сходимость 

на поздних этапах. 

Функция потерь критика минимизирует среднеквадратичную 

ошибку между предсказанной ценностью  V s  и фактическим воз-

вратом tR :  

  
2critic

t tL E V s R  
  

, 

где  

γ
T k t

t kk t
R r


  

– дисконтированный возврат. Эта функция позволяет критику оцени-

вать ценность состояния, что улучшает стабильность обучения поли-

тики. 

В [19] MAPPO был протестирован в средах кооперативных мно-

гоагентных игр, где агенты, представленные точками в двумерном 

пространстве, должны достигать целей, избегая столкновений, что 

напоминает пешеходную динамику. Было показано, что производи-

тельность с MAPPO лучше, чем с off-policy алгоритмами. Этот алго-

ритм более эффективен в координации действий множества агентов в 

условиях динамических взаимодействий. 

В [20] MAPPO был использован для улучшения алгоритма ORCA 

(Optimal Reciprocal Collision Avoidance) для автономных мобильных 

роботов, работающих в толпе. Метод позволил обучать роботов при-

нимать оптимальную скорость избегания по отношению к каждому 

человеку в толпе, оценивая влияние этих скоростей на итоговую тра-

екторию. Симуляция показала, что метод показал более высокий уро-

вень успешной навигации по сравнению с базовым ORCA, при этом 

сохраняя время выполнения. Результат продемонстрировал способ-

ность MAPPO успешно работать в динамических средах. 

В [21] была предложена модификация алгоритма MAPPO – MAP-

PO-PIS (Multi-Agent Proximal Policy Optimization with Prior Intent 

Sharing) для управления автономными транспортными средствами. 

Моделировалась задача принятия решений в сложных сценариях сли-

яния транспортных потоков с транспортными средствами различных 

типов с различными стилями вождения. Предложенная модель ис-
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пользует модули генерации намерений и модуль повышения безопас-

ности. Результаты показали значительное улучшение безопасности по 

сравнению с другими многоагентными алгоритмами обучения с под-

креплением (MARL). Сделан вывод, что MAPPO подходит для обра-

ботки гетерогенных агентов с разными поведенческими характери-

стиками. 

В [22] предлагается модификация AM-MAPPO (Action-Mask 

Multi-Agent Proximal Policy Optimization) для решения задачи слияния 

беспилотных транспортных средств на въездных рампах. Было рас-

смотрено использование гибридного пространства действий, где ком-

бинируются дискретные решения (выбор полосы) и непрерывные 

действия (регулировка скорости). Продемонстрирована устойчивость 

алгоритма к нестационарности среды, а результаты превзошли другие 

алгоритмы MARL в сложных сценариях слияния. 

Подытоживая сказанное, отметим, что алгоритм на основе MAP-

PO выбран для решения поставленной задачи по следующим причи-

нам. Во-первых, он эффективно масштабируется на большое число 

агентов [19]. Во-вторых, CTDE позволяет учитывать глобальные вза-

имодействия (например, столкновения или групповую координацию) 

при обучении, сохраняя децентрализованное исполнение, соответ-

ствующее реальным сценариям, где агенты не имеют полного досту-

па к состоянию среды. В-третьих, MAPPO стабильно обучает гетеро-

генные политики, что подходит для агентов с различными типами 

(подростки, взрослые, пожилые в нашем случае) и гибридным про-

странством действий (дискретный выбор выхода и непрерывное дви-

жение в нашем случае). Наконец, устойчивость MAPPO к нестацио-

нарности многоагентных сред дает ему преимущество перед другими 

алгоритмами, такими как MADDPG [23], в задачах с динамическими 

взаимодействиями [19]. 

Развитая математическая модель. Предлагаемая математиче-

ская модель включает акторскую и критическую сети. Пространство 

действий гибридное: дискретный компонент определяет выбор выхо-

да, непрерывный — вектор движения в двумерном пространстве. Та-

кой подход позволяет реалистично отразить реалии эвакуации, где 

агенты принимают стратегические решения о цели (подходящем вы-

ходе) и тактически маневрируют в толпе. Подобные гибридные про-

странства действий показали свою эффективность в задачах с иерар-

хическим управлением [24]. 

Акторская сеть принимает вектор наблюдений (положение, ско-

рость, тип агента, уровень паники, информация о выходах). Она со-

стоит из двух скрытых слоев по 256 нейронов с активацией ReLU и 

dropout-слоями (вероятность отключения 0, 2p  ), которые предот-

вращают переобучение модели при высокой размерности данных и 

вариативности сценариев, улучшая обобщающую способность [25-26].  



Моделирование эвакуации из помещений с учетом социальных групп … 

ММЧМ 2025 № 3 (47)                                                    91 

Выход делится на две «головы» – дискретную и непрерывную. 

Дискретная выдает логиты kl  для выбора выхода k : 

 k d dl W h b  , 

где h  ― выход последнего скрытого слоя, dW  и db  ― веса и смеще-

ние. Логиты преобразуются в вероятности через softmax – функцию, 

которая нормализует входные значения в вероятностное распределе-

ние, где сумма всех вероятностей равна 1: 

  
 

 disc

exp
|

exp

k

jj

l
k s

l
 


. 

Непрерывная «голова» выдает среднее   и логарифм стандартно-

го отклонения log  гауссовского распределения вектора движения 

 ,x yv v : 

 ,c cW h b    log W h b    , 

где , , ,c cW b W b   ― обучаемые параметры. 

     Действие  cont ,x ya v v  сэмплируется из распределения ( , )N   , 

причем log  ограничено диапазоном  2,0;2,0  для контроля дис-

персии. 

 Сеть критика оценивает ценность состояния, имеет аналогичную 

архитектуру без dropout-слоев и один выходной нейрон для  V s . 

Оптимизация проводится через Adam – адаптивный алгоритм гради-

ентного спуска, который использует моментные оценки первого и 

второго порядка для ускорения сходимости и стабильного обновления 

весов. Скорость обучения актора 5

actorα 5 10  , критика  
3

criticα 1 10  . Более высокая скорость обучения критика позволяет 

ему быстрее адаптироваться к изменениям наград, что улучшает ста-

бильность обучения политики [18]. 

Обучение модели. Обучение модели происходит как серия 50 эпи-

зодов, симулирующих эвакуацию до ее завершения или достижения 

5000 шагов. Применяется принцип curriculum learning [27]: число 

агентов начинает линейно увеличиваться с 20 до 50 начиная с 25 эпи-

зода. Это позволяет сначала освоить простые сценарии с малым чис-

лом взаимодействий, где основная цель агента – идти к выходу, а за-

тем масштабироваться до более сложных сценариев с высокой ску-

ченностью агентов и более тонкими взаимодействиями агентов. Та-

кой подход ускоряет обучение и повышает обобщающую способность 

модели [27]. Предусмотрено несколько типов агентов, которые разли-
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чаются скоростью, маневренностью и радиусом проекции (таблица 

1). В эпизодах симуляции используется фиксированная пропорция 

возрастного состава агентов: 30% подростков, 50% взрослых, 20% 

пожилых.  

 
Таблица 1 

Характеристики агентов по их типам 

Тип агента Скорость (м/с) Маневренность 
Радиус проек-

ции (м) 

Подросток 1,5 1,0 0,2 

Взрослый 1,2 0,8 0,23 

Пожилой 0,8 0,7 0,23 

 

В случае с социальными группами число лидеров в каждом эпи-

зоде варьируется случайно от двух до половины количества агентов. 

При этом лидерами могут быть только взрослые. Случайный выбор 

числа лидеров в каждом эпизоде позволяет повысить обобщающую 

способность модели. 

Траектории сохраняются в буфер для MAPPO, обновление сетей 

проводится с мини-батчами по 1024 перехода за 20 эпох. Функция 

потерь включает обрезанную суррогатную цель, энтропийный бонус 

с коэффициентом β  0,02 , и GAE с λ  0,95 . Параметр λ  в GAE 

определяет баланс между краткосрочными и долгосрочными оценка-

ми преимущества: значение 0,95 делает оценку более устойчивой к 

шуму в наградах [18]. Градиенты критика обрезаются до нормы 0,5, а 

возвраты нормализуются по стандартному отклонению для стабили-

зации обучения при вариативных наградах [18]. Стандартное откло-

нение непрерывных действий уменьшается экспоненциально, обес-

печивая переход от активного исследования к точным движениям, что 

поддерживается практиками управления исследованием в RL [28-29]. 

Валидация проводится каждые 5 эпизодов, оценивая время эвакуа-

ции, панику и столкновения. 

Правила поведения агентов. В качестве среды выступает поме-

щение 15 20  м с тремя выходами шириной 1,5, один из выходов от-

крыт изначально, а остальные открываются с интервалом 6 сек. По-

лученная площадь 300 м
2
 характерна для различных общественных 

помещений, таких как конференц-залы, офисные помещения, учеб-

ные аудитории, рестораны или торговые залы. Согласно [30], для по-

мещений с одновременным пребыванием более 50 человек требуется 

не менее двух выходов, а минимальная ширина эвакуационного вы-

хода при пребывании в помещении более 15 человек должна быть не 

меньше 1,2 м.  Агенты размещаются в среде случайно, при этом в 

сценариях с социальными группами лидеры располагаются первыми, 

а последователи – вокруг них, образуя кластеры (рис. 1). 
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Рис. 1. Визуализация среды с 40 агентами и 4 лидерами 

 

Модель предусматривает влияние паники на маневренность 

агентов, ее рост зависит от близости других агентов и расстояния до 

выхода [31], при этом в социальных группах паника растет медлен-

нее [32]. Высокий уровень паники снижает маневренность агентов 

[33]. 

Важной особенностью логики социальных групп в модели явля-

ется получение пожилыми агентами бонуса к скорости 50% при сле-

довании за лидером. Такая особенность связана с предположением о 

способности лидера управлять скоростью агентов, в частности помо-

гать уязвимым участникам движения. Такое предположение под-

тверждается экспериментами, проведенными в [32]. 

Агенты узнают о выходах в радиусе 5 м, лидеры — независимо 

от расстояния, все агенты передают информацию соседям в радиусе 2 

м. В группах лидер выбирает выход по среднему расстоянию для по-

следователей, но агенты (кроме пожилых) могут выбрать ближе рас-

положенный выход. Одиночные агенты выбирают ближайший вы-

ход. У выходов (радиус 3 м) активируется очередь: агенты сортиру-

ются по расстоянию, скорость корректируется, желаемое расстояние 

— 0,75 м для пожилых, 0,5 м для остальных. 

Система наград. Система наград в модели состоит из следую-

щих компонент: 

1. базовая награда: небольшой штраф для стимулирования 

быстрой эвакуации; 
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2. награда за эвакуацию: большое поощрение агентов за 

успешную эвакуацию с учетом скорости эвакуации (от 20 до 30); 

3. награда за движение: небольшой штраф за резкое изменение 

направления или неподвижность; 

4. награда за близость к выходу: поощрение движения к выхо-

ду, пропорционально размеру комнаты; 

5. награда за смену выхода: поощрение агентов за выбор более 

близкого или менее переполненного выхода; 

6. групповая награда: поощрение координации в группу, моти-

вирующее лидеров вести последователей, а последователей – следо-

вать за лидером; 

7. награда за панику: при высоком уровне паники, но близкому 

расположению к выходу, начисляется штраф; в остальных случаях 

(низкий уровень паники и большое расстояние от выхода) начисляет-

ся награда; 

8. награда за скученность: штраф за нахождение в переполнен-

ных зонах или столкновения, особенно близи выходов; 

9. награда за застревание: штраф за длительное отсутствие 

движения, особенно вблизи выхода; 

10. коллективная награда: большое поощрение за успешное за-

вершение эвакуации всеми агентами. 

Вычислительные эксперименты. Для обучения модели и про-

ведения вычислительных экспериментов было разработано про-

граммное обеспечение на языке Python. Использовались библиотеки: 

PyTorch для реализации алгоритма MAPPO, NumPy для работы с 

числовыми данными, Pygame для визуализации симуляции. После 

обучения модель запускалась для нескольких сценариев: без групп и 

с группами, где число лидеров варьировалось от 2 до 16 с шагом 2. 

Симуляции проводились для 40 агентов, для каждого сценария запу-

щено по 50 эпизодов, для каждого эпизода измерялось среднее и об-

щее время эвакуации для всех агентов и отдельно для каждого типа, 

затем значения усреднялись.   

Результаты вычислительных экспериментов представлены на 

рис. 2. 

Как показано на рис. 2, в целом в рамках рассматриваемых усло-

вий эвакуация с социальными группами проходит значительно быст-

рее, чем эвакуация без групп. При этом эвакуация с двумя лидерами 

в среднем потребовала времени меньше, чем эвакуация при любом 

другом сценарии.  

Как показано на рис. 3, наименьшее преимущество от эвакуации 

в социальных группах получили самые быстрые агенты — подрост-

ки, наибольшее — пожилые. 
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Рис. 2. Время эвакуации в сценариях с различным количеством лидеров. 

По вертикальной оси на рисунках 2 и 3 – общее время эвакуации, 

по горизонтальной – количество лидеров 

 

 
 

Рис. 3. Общее время эвакуации 

 

При этом действительно, при эвакуации без групп пожилые аген-

ты вносят наибольший вклад в общее время эвакуации, а в сценариях 

с группами полное время их эвакуации превышает время взрослых 

агентов незначительно. 

Обсуждение результатов. Наибольшее среднеквадратичное от-

клонение полного времени эвакуации наблюдается в сценарии без 

групп и с двумя лидерами. В первом случае такой разброс может объ-

ясняться общей нескоординированностью агентов, а также влиянием 

случайного расположения агентов при инициализации среды. 
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Наибольшее влияние на увеличение длительности времени эвакуации 

оказывают пожилые агенты (рис. 3), обладающие самой низкой ско-

ростью и маневренностью. Соответственно, при случайном располо-

жении агентов в среде они могут появиться как на большом расстоя-

нии от выходов, так и очень близко, что влияет на время эвакуации от 

эпизода к эпизоду.  

Похожая ситуация с влиянием размещения агентов в среде может 

наблюдаться при малом количестве лидеров, в частности, при двух. 

Группы изначально располагаются кластерами (рис. 1), поэтому чем 

меньше количество лидеров или групп, тем больше вероятность воз-

никновения ситуации, где одна из групп при инициализации среды в 

эпизоде расположена сильно ближе или сильно дальше от выхода.  
Помимо этого, можно увидеть, что в сценариях без групп и с дву-

мя лидерами значительно выше уровень паники. В первом случае это 
обуславливается общей нескоординированностью и более быстрым 
ростом паники у агентов без групп, во втором случае группы имеют 
очень большую плотность, из-за которой паника растет. По этим же 
причинам в данных сценариях наблюдается наибольшее число столк-
новений, хотя различия не настолько масштабны по сравнению с 
остальными сценариями. Показатели при эвакуации с 4–16 лидерами 
отличаются на уровне погрешности за исключением среднеквадра-
тичного отклонения общего времени эвакуации в сценарии с 4 лиде-
рами, что обусловлено той же причиной, что и в сценарии с двумя 
лидерами. 

Выводы и рекомендации. В работе предложен способ моделиро-
вания процесса эвакуации на основе алгоритма MAPPO. Особенно-
стью модели является возможность учитывать гетерогенность аген-
тов, наличие нескольких выходов, открывающихся в разное время, 
влияние паники на движение агентов, наличие социальных групп ви-
да «лидер-последователь». Было уделено внимание использованию 
гибридного пространства действий для повышения реализма модели.  

Полученные результаты говорят о том, что, согласно построенной 
модели, эвакуация с социальными группами дает значительные пре-
имущества во времени эвакуации, особенно для пожилых агентов. По 
результатам моделирования, в рассматриваемых условиях увеличи-
вать количество лидеров свыше 4–6 становится бесполезным: метри-
ки изменяются незначительно. При этом наиболее быстро эвакуация 
происходила с двумя лидерами, но стоит учитывать тот факт, что 
группы были организованы в кластеры при инициализации среды, в 
реальной ситуации агентам может потребоваться время, чтобы до-
браться до лидера, прежде чем приступать к движению к выходу. 
Эпизоды с 4–6 лидерами завершались в среднем на 2,5 секунд позже, 
однако имеют более стабильные показатели уровня паники, столкно-
вений, среднеквадратичного отклонения общего и среднего времени 
эвакуации, чем эпизоды с двумя лидерами.  
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В рамках рассматриваемых условий для безопасной эвакуации 

всех агентов рекомендуется наличие 4–6 лидеров, помогающих своим 

последователям добраться до выхода. При этом наблюдается умерен-

ный уровень паники и сравнительно небольшое число столкновений 

в процессе избегания скученности. 
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The article is devoted to the development of a multi-agent evacuation model that takes 

into account the physical characteristics of agents (age categories, speed, maneuverabil-

ity), the level of panic, social interactions in groups of the “leader-follower” type, and 

the presence of several evacuation exits opening at a given interval (an interval of 6 sec-

onds was considered). The Multi-Agent Proximal Policy Optimization (MAPPO) algo-

rithm is used to train the behavior of agents. A hybrid action space is used, combining 

discrete output selection and continuous motion control. Training is carried out accord-

ing to the curriculum learning principle: with a gradual increase in the number of 

agents. This allows agents to adapt to complex scenarios with high crowding and im-
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proves the generalization ability of the model for experiments with different numbers of 

agents. The environment is a room of given dimensions (rooms of 15×20 m were consid-

ered) with a given number of exits of a certain width (3 exits of 1.5 m each were consid-

ered). The model includes the logic of disseminating information about exits. Individual 

agents learn about new open exits within a radius of 5 m and transmit the signal to their 

neighbors. Leaders initially know about all available exits regardless of the distance. A 

mechanism is provided for spreading panic depending on the crowding of agents, the 

distance to the exit, and the time elapsed since the start of the evacuation. Specific rules 

of behavior for social groups are introduced: leaders make strategic decisions, and el-

derly followers receive a speed bonus when following the leader. In the current imple-

mentation, the choice of exit for individual agents is based on the shortest distance from 

the agent to it. In social groups, the decision to choose an exit is made by the leader 

based on the average distance of all agents. Computational experiments were conducted 

for 40 agents in various scenarios: with a different number of leaders (2–16) and without 

groups (individual evacuation). The computational experiments showed that under the 

considered conditions, scenarios with social groups lead to faster evacuation (the total 

time was reduced by about 38%). Also, during group evacuation, vulnerable agents re-

ceive the greatest advantage, in this case, the elderly. The optimal number of leaders is 

4–6: further increase in their number does not provide statistically significant improve-

ments. According to the results of the experiments, a decrease in the number of collisions 

and a lower level of panic with this number of leaders was recorded. The obtained results 

demonstrate the practical applicability of the MAPPO approach to the problems of ana-

lyzing evacuation processes in realistic conditions. 

 

Keywords: multi-agent model, evacuation, reinforcement learning, MAPPO, social 

groups, panic, hybrid action space, leader-follower, age categories, dynamic environ-

ment 
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