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Предложена постановка трехмерной задачи расчета собственных 

частот и собственных форм колебаний упругих конструкций с уче-

том предварительного их нагружения. Постановка задачи записана 

в тензорной безиндексной форме и выведена с использованием общей 

теории геометрически нелинейного деформирования конструкций. 

При выводе использована аналогия с выводом трехмерной задачи 

теории устойчивости упругих конструкций, который был предло-

жен ранее в работах [10-15]. Предложена вариационная формули-

ровка задачи модельного анализа предварительно напряженных 

трехмерных конструкций, а также методика конечно-элементного 

решения задачи. Разработан программный модуль для решения задач 

модального анализа преднапряженных конструкций в составе про-

граммного комплекса Manipula/SMCM, разрабатываемого в НОЦ 

«СИМПЛЕКС» МГТУ им. Н.Э. Баумана. На основе разработанного 

программного модуля приведен пример численного решения  задачи 

модального анализа для случая пластины, предварительно нагру-

женной продольной сжимающей нагрузкой. Показано, что предва-

рительное нагружение для этой задачи существенно влияет на соб-

ственные частоты колебаний пластины. Проведено сравнение с ре-

зультатами расчетов в программном комплексе ANSYS, показано, 

что имеет место хорошее совпадение результатов расчета соб-

ственных частот. 

 

Ключевые слова: модальный анализ, предварительное напряжение, 

метод конечных элементов, Manipula/SMCM 

  

Введение. Введение. Задача модального анализа предварительно 

нагруженных конструкций заключается в определении собственных 

частот (СЧ) и собственных форм (СФ) конструкций для случая, когда 

конструкция предварительно была нагружена статическими нагруз-

ками. Такая задача часто возникает в различных приложениях, по-

этому ее решению посвящено значительное число работ, укажем 

лишь некоторые из них [1-8]. Решение этой задачи реализовано в том 
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числе в коммерческих программных комплексах, например в Ansys 

[9], однако, как правило, во всех исследованиях учет предваритель-

ного нагружения осуществляется для частных видов конструкций, 

например, пластин или оболочек.  

В работах [10-12] была разработана общая теория устойчивости 

3D конструкций на основе строгого анализа геометрически нелиней-

ной теории деформирования. Целью настоящей работы является 

применение этого метода для вывода уравнений модального анализа 

предварительно нагруженных трехмерных конструкций. 

Влияние предварительного нагружения (ПН) на СЧ и СФ заклю-

чается в наличии следующих эффектов: 

– для определенного типа конструкций ПН может увеличивать 

общую жесткость конструкции, что приводит к изменению СЧ, этот 

эффект наиболее ярко выражен для тонкостенных конструкций; 

– ПН приводит к изменению формы конструкций даже при 

малых деформациях, а это сказывается, как на СЧ, так и на СФ 

последующих собственных колебаниях этой конструкции. 

Таким образом, задача модального анализа ПН конструкций име-

ет аналогию с нелинейной задачей 3D устойчивости конструкций и  

состоит из 3 этапов: 

1 этап: решение квазистатической 3D задачи линейной упругости 

при малых деформациях с заданной системой нагрузок ,  e eS u ; 

2 этап: определение формоизменения конструкции за счет полу-

ченного решения задачи 1-го этапа (определение актуальной конфи-

гурации тела) и перенос решения из отсчетной конфигурации в акту-

альную; 

3 этап: решение задачи на собственные колебания с учетом акту-

альной конфигурации тела, полученной на этапах 1 и 2 и с учетом 

напряженного состояния конструкции, полученном на этапах 1 и 2. 

Математическая постановка задач модального анализа пред-

варительно нагруженных трехмерных конструкций. Для форму-

лировки задач 1-го и 3-го этапов используем аналогию с теорией 3D 

устойчивости конструкций, разработанной в [10-14]. 

Задача 1-го этапа – задача равновесия упругой конструкции для 

основного состояния (трехмерная задача теории упругости) в безин-

дексной тензорной форме имеет вид [12]: 
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где 
0
σ  ― тензор напряжений; 

0
ε  ― тензор малых деформаций; 

0
u  ― 

вектор перемещений; 
4
C  ― тензор 4-го ранга модулей упругости; 

― набла-оператор, eS  и eu  ― векторы внешних поверхностных сил и 

перемещений, соответственно. Ноликом сверху обозначены величи-

ны, относящиеся к основному (устойчивому состоянию). 

Задача 2 этапа: определение актуальной конфигурации тела и пе-

ренос решения из отсчетной конфигурации в актуальную. После ре-

шения задачи (1) находим координаты x  точек М  тела в актуальной 

конфигурации K  

 0 0 ,= +x x u  (2) 

где 
0x  ― координаты точек М тела в начальной (отсчетной) конфи-

гурации K . 

Решение задачи (1 ― поля 
0

u  и  
0
σ  ― переносится в актуальную 

конфигурацию: 

 0 0 0 0 0 0( ) ( ),  ( ) ( ),= =σ σ ux ux x x  (3) 

т.е. поля напряжений и перемещений – остаются одни и те же, но пе-

реносятся в новые положения точек М в актуальной конфигурации. 

Задача 3 ― это задача на собственные значения с учетом предва-

рительного напряженного состояния, которое учитывается аналогич-

но теории устойчивости для варьируемого состояния конструкции (в 

данном случае оно имеет смысл малого отклонения от основного со-

стояния) и имеет следующий вид [10-12]: 
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 (4) 

где обозначены функции в варьируемом состоянии: σ  ― тензор 

напряжений; ε  ― тензор малых деформаций; w  ― вектор перемеще-

ний в варьированном состоянии; а 
3

 ― тензор Леви-Чивиты.  

Вывод уравнений системы (4) осуществляется на основании об-

щей теории нелинейного деформирования при наличии малых откло-

нений от устойчивого решения линейной задачи [12]. 
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Будем искать решение задачи (4) в виде гармонических колеба-

ний 

 ,i te =w w  (5) 

где w  ― амплитудное значение перемещений, которое определяет 

СФ конструкции, а значение параметра   ― СЧ конструкции. Так 

как в данном случае демпфирование не учитывается, то   ― являет-

ся действительной величиной. 

Подставляя (5) в систему (4), в силу линейности этой задачи, 

находим, что напряжения и деформации также являются гармониче-

скими функциями 

 ,  ,i t i te e = =σ σ ε ε  (6) 

где σ  и ε  ― амплитудные значения напряжений и деформаций, со-

ответствующие СФ конструкции. 

Из (4) с учетом представлений (5) и (6) получаем следующую за-

дачу на собственные значения  
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 (7) 

Это и есть искомая постановка задачи на собственные значения 

  с учетом предварительного нагружения конструкции, которое 

определяется наличием тензора 
0
σ  и учетом деформированного со-

стояния конструкции. 

Вариационная формулировка трехмерной задачи модального 

анализа предварительно нагруженной конструкции.  Для задач 

(1) и (7) могут быть сформулированы вариационные постановки. Рас-

смотрим сначала задачу (1) равновесия для основного состояния. 

Введем кинематически допустимое поле 
0 0=Ψ u , где 

0u  – ва-

риация вектора перемещения 
0

u , понимаемая как разность двух ки-

нематически допустимых полей. Будем считать, что данное поле удо-

влетворяет нулевому граничному условию на части поверхности u  

области V . Умножая скалярно уравнение равновесия из системы (1) 

на 
0Ψ  и интегрируя полученное выражение по области V , с учетом  
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теоремы Гаусса-Остроградского получаем вариационное уравнение 

для задачи равновесия в основном состоянии 

 ( ) ( )4 0 0 0 0 0 0.
о о

e

V

dV d



 



  −   = C ε u ε u S u  (8) 

Используя аналогичный подход применительно к задаче на соб-

ственные значения (7) в варьируемом состоянии, получаем следую-

щее вариационное уравнение: 

 ( ) ( )( )4 0 2 0.T

V V

dV dV   +    +  = C ε w σ w w w w  (9) 

Уравнение (9) представляет собой задачу на собственные значе-

ния предварительно нагруженной конструкции. 

Метод конечных элементов для численного решения трех-

мерной задачи в основном состоянии конструкции. Для решения 

задач (9) и (11) применим метод конечных элементов (МКЭ) [13,14]. 

Триангуляцию расчетной области осуществим с помощью тетраэд-

ральных конечных элементов (КЭ). Будем использовать линейную 

аппроксимацию для перемещений в каждом КЭ, напряжения и де-

формации при этом полагаем постоянными в каждом КЭ. Для даль-

нейших преобразований введем следующие матричные обозначения: 

 
6 6

C


 ― матрица компонент тензора модулей упругости 
4
C ,  

3 12

Ф


 ― 

матрица функций формы;  1

6 3

L


 ― матрица оператора дифференциро-

вания. 
Для основного (устойчивого) состояния введем следующие обо-

значения:  0

6

T

 ― строка компонент тензора напряжений в КЭ; 

 0

6

T

  ― строка компонент тензора малых деформаций в КЭ;  0

3

T

u  

― строка компонент вектора перемещений в КЭ;  0

12

T

U  ― строка 

компонент вектора перемещения в узлах КЭ ( 0

ijU  ― j-ая компонента 

вектора перемещений 0

ju  в i-ом узле КЭ); 
3

T

eS  ― строка компонент 

вектора внешних поверхностных сил в КЭ. 
С учетом введенных обозначений обобщенный закон Гука (вто-

рое из уравнений в системе (1)) может быть записан в следующей эк-

вивалентной форме 

     0 0

6 66 6

,C 


=  (10) 
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а соотношения Коши (третье из уравнений в (1)) примут вид 

     0 0

1

6 36 3

,L u


=  (11) 

где вектор перемещений КЭ связан с вектором перемещений его уз-

лов как 

     0 0

3 123 12

.u Ф U


=  (12) 

Подставляя соотношения в вариационное уравнение (8) и преоб-

разуя полученное выражение, получаем систему линейных алгебраи-

ческих уравнений (СЛАУ) для нахождения значений в узлах КЭ ком-

понент вектора перемещений в основном состоянии: 

     0

1212 12 12

,K FU


=  (13) 

где введены обозначения для локальной матрицы жесткости  
12 12

K


 и 

вектора правых частей  
12
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12 312 3 6 12 6 3 3 12

 ,  .
T

eF Ф S dV B L Ф


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= =  (15) 

Метод конечных элементов для численного решения трех-
мерной задачи модального анализа предварительно нагруженной 
конструкции. Рассмотрим теперь вариационное уравнение (9) для 
задачи модального анализа предварительно нагруженной конструк-
ции устойчивости. Введем следующие обозначения для величин в 

варьируемом состоянии: 
6

T
  ― строку компонент тензора напряже-

ний; 
6

T
  ― строку компонент тензора малых деформаций; 

3

T
w  ― 

строку компонент вектора перемещения;  
12

T
W  ― строку компонент 

вектора перемещения в узлах конечного элемента. 

Образуем матрицу 
0

9 9




    из компонент 
0

ij  тензора напряжений в 

основном состоянии, а также строку, элементами которой являются 

все производные вида /ij j iR w x=   ,  матрицу  2

9 3

L


, составленную из 

операторов дифференцирования и  
9 9

T


 ― матрицу транспонирования 

[13]. 
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С учетом введенных обозначений обобщенный закон Гука (вто-

рое из уравнений в системе (7)) может быть записан в следующей эк-

вивалентной форме 

     
6 66 6

,C 


=  (16) 

а соотношения Коши (третье из уравнений в системе (7)) примут вид 

     1

6 36 3

,L w


=  (17) 

где вектор перемещения конечного элемента (КЭ) в варьированной 

конфигурации связан с вектором перемещений его узлов как 

 

                                          
3 123 12

.w Ф W


=                                       

Преобразуем первое подынтегральное выражение в (11) с учетом 

обобщенного закона Гука и выражения для кососимметричного тен-

зора ( ) w  из (7): 

 ( ) ( )( ) (1) (2) (30 )4 ,T G G G +   = + +C ε w σ w w  (18) 

где введены обозначения для слагаемых 
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,
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T
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T T
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

 

  

− 

=

=

=   

σ w

σ w w

σ w w

 (19) 

Эти слагаемые в (20) могут быть записаны в матричной форме 

 

    

      

(1)

(2) (3) 0

9

2

9

1

6 126 12

2

12 1212 9 9 12

1

2
,

,
T

TT

G

G

B W

W B B WG

 







=

 + = −  

 (20) 

где введены матрицы производных функций формы  

          1 1 2 2

6 12 6 3 3 12 9 12 9 3 3 12

 и B L Ф B L Ф
     

= =  (21) 

и обозначена матрица: 

    0 0

9 9 9 99 9 9 9

T E
  

 
    = −    

 
. (22) 

Преобразуем второе подынтегральное выражение в (9) 
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           
3 3 12 1212 3 3 12

TT T
w w W Ф Ф W    

 

 = =w w . (23) 

Подставляя соотношения (19)-(24) в вариационное уравнение (9), 

получаем искомую СЛАУ для задачи  на собственные значения: 

        2

1212 12 12 12 12 12

0K S M W
  

 
− − = 

 
, (24) 

где введены обозначения для следующих матриц: 

 

      

           
9 12 1

1 1

12 12 12 6 6 6 6 12

0

2 2

12 12 12 9 9 3129 2 12 3 12

,  

1
 ,  .

2

T

V

T T

V V

K

S M Ф

B C B dV

B B dV dФ V
 

   

   

=

  == 



 
 (25) 

Здесь  
12 12

K


 ― матрица жесткости,  
12 12

S


 ― матрица изменения  жестко-

сти из-за предварительного нагружения,  
12 12

M


 ― матрица массы. 

Для численной реализации разработанного конечно-элементного 

алгоритма решения задач модального анализа предварительно 

нагруженных конструкций был разработан специализированный мо-

дуль «Собственные колебания с предварительным нагружением» в 

составе программного комплекса Manipula/SMCM, создаваемого в 

НОЦ «Симплекс» МГТУ им. Н.Э. Баумана [15]. С помощью этого 

модуля было проведено численное решение тестовых задач.   

Пример численного моделирования тестовой задачи. В каче-

стве примера численного решения задачи рассмотрим тестовую зада-

чу модального анализа предварительно нагруженной титановой бал-

ки прямоугольного сечения с размерами 0,10 0,01 1 м  . Основные 

свойства материала приведены в таблице 1. Один торец балки пола-

гался жестко закрепленным, на втором прикладывалась изгибающая 

сила 500 Н в направлении, противоположенном оси Y , как показано 

на рис. 1. 

 
Таблица 1 

 

Основные свойства материала титановой балки 

Параметр Значение 

Модуль упругости, ГПа 110,25 

Коэффициент Пуассона 0,3 

Плотность, 
3кг м  4500 

 

Решение тестовой задачи было осуществлено с помощью специ-

ализированного модуля программного комплекса Manipula/SMCM, 
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разрабатываемого в НОЦ «Симплекс» МГТУ им. Н.Э. Баумана [15]. 

Был разработан специализировнный модуль для решения задач мо-

дельного анализа предварительно нагруженных конструкций.  Эти 

результаты сравнивались с результатами, полученными в ПК ANSYS 

на одной и той же тетраэдральной конечно-элементной сетке с пара-

метрами: количество узлов – 17 376, количество конечных элемен-

тов – 72 192, количество граничных конечных элементов – 20 462. 

 

  
Рис. 1. Граничные условия для задачи модального анализа предварительно 

нагруженной балки 
 

Таблица 2 

 

Сравнение собственных частот, полученных в ПК «Manipula» и ПК AN-

SYS с учетом и без учета предварительного нагружения 

Собствен-

ная частота 

Частота без учета 

ПН (ПК «Manipu-

la»/SMCM и ПК 

ANSYS),  Гц 

Частота с учетом ПН Относи-

тельное от-

клонение, % 
ПК «Manipu-

la»/SMCM 

ПК AN-

SYS 

1 9,47 70,9611 70,9560 0,0072 

2 59,33 85,5123 85,5040 0,0097 

3 79,66 183,1117 183,2700 0,0864 

 

Рассчитывалось три первые собственные частоты. Результаты 

сравнения частот с учетом и без учета ПН, полученные в различных 

программных комплексах, приведены в таблице 2. На рис. 2–3 пока-

заны соответствующие моды колебаний. 

Сравнение численные расчетов, полученных с помощью разрабо-

танного метода, реализованного в ПК «Manipula»/SMCM, с анало-

гичными результатами, полученными с помощью ПК ANSYS, пока-

зало, что имеет место хорошее совпадение результатов, как по соб-

Жесткое закрепление 
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ственным частотам (относительно отклонение не превышает 0,01 %), 

так и по собственным формам. 

 

  
 

а) 

  

б) 

  

в) 

 
Рис. 2. Сравнение компоненты 1w  вектора перемещений, полученной в ПК 

«Manipula»/SMCM (слева) и ПК ANSYS (справа):  

а) – мода 1; б) – мода 2; в) – мода 3 
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а) 

  

б) 

 
 

в) 

 
Рис. 3. Сравнение компоненты 33  тензора напряжений, полученной в ПК 

«Manipula»/SMCM (слева) и ПК ANSYS (справа): 

а) – мода 1; б) – мода 2; в) – мода 3 

 

Выводы. Предложена постановка трехмерной задачи расчета 

собственных частот и собственных форм колебаний упругих кон-

струкций с учетом предварительного их нагружения, которая выве-

дена с использованием общей теории геометрически нелинейного 

деформирования конструкций.  

На основе этой постановки предложена вариационная формули-

ровка задачи модального анализа предварительно напряженных 

трехмерных конструкций, а также методика конечно-элементного 

решения задачи. Разработан программный модуль для решения задач 
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модального анализа преднапряженных конструкций в составе про-

граммного комплекса «Manipula»/SMCM, разрабатываемого в НОЦ 

«СИМПЛЕКС» МГТУ им. Н.Э. Баумана.  

Приведен пример численного решения тестовой задачи модаль-

ного анализа для случая пластины, предварительно нагруженной 

продольной сжимающей нагрузкой. Показано, что предварительное 

нагружение для этой задачи существенно влияет на собственные ча-

стоты колебаний пластины. Проведено сравнение с результатами 

расчетов в программном комплексе ANSYS, которое показало, что 

имеет место хорошее совпадение результатов расчета собственных 

частот и собственных форм колебаний. 
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Modal analysis of prestressed 3D structures  

based on finite element modeling 
 

© Yu. I. Dimitrienko, I.O. Bogdanov 

 
Bauman Moscow State Technical University, Moscow, 105005, Russia 

 

A formulation of a three-dimensional problem for calculating the natural frequencies and 

natural modes of vibrations of elastic structures is proposed, taking into account their 

preliminary loading. The problem statement is written in a tensorial index-free form and 

is derived using the general theory of geometrically nonlinear deformation of structures. 

The derivation is based on an analogy with the derivation of a three-dimensional prob-

lem of the theory of stability of elastic structures, which was proposed earlier by Yu.I. 

Dimitrienko. A variational formulation of the problem of model analysis of prestressed 

three-dimensional structures, as well as a methodology for a finite element solution of the 
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problem, are proposed. A software module for solving problems of modal analysis of 

prestressed structures has been developed as part of the Manipula/SMCM software 

package, developed at the REC "SIMPLEX" of Bauman Moscow State Technical Univer-

sity. Based on the developed software module, an example of a numerical solution of the 

modal analysis problem is given for the case of a plate preloaded with a longitudinal 

compressive load. It is shown that preloading for this problem significantly affects the 

natural frequencies of vibrations of the plate. A comparison was made with the results of 

calculations in the Ansys software package, and it was shown that there is good agree-

ment between the results of calculating natural frequencies. 

 

Keywords: thermal degradation, composites, periodicity cell, FEM, high temperatures, 

Manipula/SMCM 
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