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Предложена методика численного конечно-элементного решения задачи овализа-
ции, которую используют при экспериментальной отработке новых материалов 
для авиационной промышленности, в целях определения сопротивления деформи-
рованию элементов конструкций с наличием концентраторов напряжений, глав-
ным образом, соединительных элементов. Методика основана на трехмерном ко-
нечно-элементном решении задачи упругопластического деформирования пластин 
с отверстием при смятии и предназначена для сокращения экспериментальных 
исследований путей замены их на численные эксперименты. Используется модель 
малых упругопластических деформаций Ильюшина. Представлены результаты 
численного моделирования трехмерного напряженно-деформированного состояния 
упругопластических пластин при смятии, а также результаты эксперименталь-
ных исследований деформирования пластин из алюминиевого сплава 163. Показано, 
что результаты численного и экспериментального моделирования деформирова-
ния пластин при смятии достаточно хорошо совпадают. 
 
Ключевые слова: задача овализации, смятие пластин, численное моделирование, 
метод конечных элементов, упругость, пластичность, диаграммы деформирования. 

 
Введение. При экспериментальной отработке новых материалов 

для авиационной промышленности в целях определения сопротив- 
ления деформированию элементов конструкций с наличием концент- 
раторов напряжений, главным образом соединительных элементов,  
в промышленности применяют стандарт ASTM D 5961/D 5961M, в 
соответствии с которым проводят испытания образца в виде плас- 
тины с отверстием. Пластина одним краем жестко закреплена, на дру-
гом крае в отверстие вставлен цилиндрический стержень, к которому 
приложена нагрузка (рис. 1). При определенной нагрузке P пластина 
начинает деформироваться — возникает эффект овализации 
отверстия, или происходит смятие пластины. По стандарту ASTM D 
5961/D 5961M используется пластина прямоугольного сечения 
шириной 36 ± 1 мм, длиной не менее 135 мм и толщиной 3…5 мм. 
Применяется цилиндрический стальной (сталь Р6М5) стержень 
диаметром 5,99 ± 0,02 мм. Испытание проводят до деформации 5 % 
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или момента разрушения, если оно наступает ранее. В процессе испы-
тания записывают диаграмму деформирования ( )P P   «напряже-

ние смятия — деформация смятия   (овализация отверстия)». Диа-

грамма деформирования является характеристикой материала в сос-
таве конструкции и характеризует сопротивляемость материала 
воздействию нагрузок в зоне концентраторов напряжений, главным 
образом соединительных элементов конструкций. 

Цель исследования — разработка численного алгоритма решения 
задачи смятия пластин на основе трехмерного конечно-элементного 
анализа напряженно-деформированного состояния (НДС)  пластины 
вплоть до разрушения. 

 

Рис. 1. Схема проведения испытания и вид образца 
при испытании на смятие 

 
Алгоритм основан на трехмерном конечно-элементном решении 

задачи упруго-пластического деформирования пластин с отверстием 
при смятии и предназначен для возможности проведения численных 
экспериментов. Используется модель малых упругопластических де-
формаций Ильюшина [1]. Решение задачи овализации отверстия пла-
стины при растяжении рассматривается в рамках трехмерной поста-
новки задачи теории пластичности. С помощью этой теории 
вычисляют поля напряжений, деформаций и перемещений в пласти-
не, а также строят диаграмму деформирования.  

Математическая задача деформирования упругопластиче-
ских пластин при смятии. Рассмотрим постановку трехмерной за-
дачи деформационной теории пластичности при активном нагруже-
нии [2]: 
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где ij , kl  — декартовы компоненты тензоров напряжений и де-

формаций; iu  — компоненты вектора перемещений; ( )ij klF   — нели-

нейная тензорная функция, описывающая модель пластичности; ,i ju  — 

частные производные; e
iu  — заданные перемещения на части 1u по-

верхности тела; часть поверхности 2u полагаем жесткозащемленной, 

на ней заданы нулевые перемещения. Для плоской пластины, пред-
ставляющей собой тонкий параллелепипед с отверстием, ребра кото-
рого ориентированы по осям координат, эти перемещения были зада-
ны на  половине поверхности отверстия пластины и  направлены по 

оси 1Ox , поэтому  

1 0( )eu U t t  U ;   2 3 0e eu u  .                             (2) 

Задаваемое перемещение ( )U t  изменяется по линейному закону 

во времени (постоянная скорость нагружения 0
U  в «жестком» режи-

ме). После решения задачи (1) для каждого момента времени t вы-
числяем силу, действующую на полуповерхности отверстия,  

0

1 1 0( ) ,i iP t n d


                                         (3)  

где 0  — полуповерхность отверстия, к которой приложено нагру-

жающее устройство (стержень). Далее определяем  среднее напряже-
ние 11  и деформацию овализации отверстия 1  в пластине: 

11
0

1
( )P t 


;     0

1
0

( )D t D

D


  ,                          (4) 

где 0D  — начальный диаметр отверстия в пластине; ( )D t  — текущее 

значение диаметра отверстия в направлении оси растяжения. 
Материал пластины полагаем изотропным, подчиняющимся де-

формационной теории малых упругопластических деформаций Иль-
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юшина для активного нагружения [1]. В этом случае функция ( )ij klF 
 

имеет следующий вид:  

2 2
2

( ) [1 ( ( ))] 2 [1 ( ( ))] ,
3ij ij pq kk ij ijF K G Y G Y                  (5) 

где 2 2 2 2 2 2
2 11 22 22 33 33 11 12 13 23

1
( ) = ( ) ( ) ( ) 6( )

3
Y                  — 

второй инвариант (интенсивность) [3] тензора деформации; K  — 
модуль объемного сжатия материала; G  — модуль сдвига;   — 
функция пластичности Ильюшина, которую представим в степенном 
виде [2]: 

2 т

12 т
2 т

2
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1 ( ) ; ( ) ,
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n

Y

Y
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Y


  
        

                      (6) 

где n  — показатель упрочнения; т  — деформация начала текучести 

материала. Такой выбор функции пластичности  характерен для ма-
териалов со степенным упрочнением диаграммы деформирования, 
например  для некоторых марок алюминиевых сплавов и сталей. 
Вводя тензор четвертого ранга  

2 2 2
2

( ( )) ( (1 ( ( )))) (1 ( ( )))( ),
3ijkl kl ij ik jl il jkС Y K G Y G Y                (7) 

определяющее соотношение (5), записываем в следующем псевдоли-
нейном виде: 

2( ( )) .ij ijkl klС Y                                         (8) 

Это соотношение в частном случае 0  переходит в закон Гука 

для изотропного материала: 
2

( ) 2
3ij kk ij ijK G G       . 

Численный метод решения задачи деформирования при смя-
тии. Для решения задачи теории пластичности (1)−(8) применим 
один из вариантов метода упругих решений [1, 4], согласно которому 
определяющее соотношение (8) линеаризуем с помощью итерацион-
ного алгоритма 

( ) ( 1) ( )
2( ( )) ,m m m

ij ijkl klС Y                                     (9) 

где ( )m
ij и ( )m

kl  — тензоры напряжений и деформаций на m-м шаге 

итерации. 
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В качестве критерия выбора числа необходимых итераций выби-
раем условие достижения заданного значения   — относительного 
отклонения напряжений

 ( ) ( 1)

,
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,
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С помощью итерационного процесса (9) задачу (1) можно пред-
ставить в виде последовательности линейных задач 
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Для численного решения каждой задачи (11) на каждой итерации 
был применен метод конечных элементов (МКЭ). Вариационную 
формулировку задачи (11) можно записать стандартным образом:  

( )T ( ) ( )T ( ) ,m m m m

V V

dV u S d


                            (12) 

куда введены координатные столбцы для компонент вектора пере-
мещений, тензоров напряжений и деформаций: 

( ) ( ) ( ) ( ) т
1 2 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) т
11 22 33 12 23 31

( ) ( ) ( ) ( ) ( ) ( ) ( ) т
11 22 33 12 23 13

[ , , ] ;

[ , , , , , ] ;

[ , , , 2 , 2 , 2 ] ,

m m m m

m m m m m m m

m m m m m m m

u u u u

       

       

 

а ( )mS =[S1
(m), S2

(m), S3
(m)]т — координатный столбец вектора поверх-

ностных сил. Запишем определяющие соотношения и соотношения 

Коши в системе (11) в матричном виде: ( ) ( ) ( )m m mС   ; ( ) ( )m mDu  , 

где ( )mС  — матрица размером [6×6], составленная из компонент тен-

зора ( 1)
2( ( ))m

ijklС Y  ; D  — матрица размером [3×6] дифференциаль-

ных операторов [5, 6]. 
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Тогда вариационное уравнение (12) примет следующий вид: 
( ) т ( ) ( ) ( )т ( )( ) .m m m m m

V W

D u С Du dV u S d                        (13) 

Разбивая всю область V на конечные элементы, аппроксимируем 

перемещения ( )mu  в каждом КЭ в следующем виде: ( ) ( )( ) ,m m
ku x q 

 
где Ф(хk) — матрица функций формы размером [3×n] ( 3n m , где m — 

число узлов конечного элемента); ( )mq  — перемещения в узлах КЭ. 

Для деформаций и напряжений имеем следующие аппроксимации:
( ) ( ) ( )m m mС Bq  ; ( ) ( )( )m m

kD x q   ; ( )sB D x  . Тогда вариацион-

ное уравнение (13) приводим к системе линейных алгебраических 

уравнений (СЛАУ) для каждого КЭ:
 

( ) ( )m m
e eK q f , где ( )m

eK 
T ( ) T ( ); ( ) .

k

m m
k e s

V

V B С B f x S d     Путем стандартной процедуры 

ансамблирования СЛАУ собираются в глобальную систему 
( ) ( )m mK q f . Для решения такой СЛАУ большой размерности при-

меняют метод сопряженных градиентов, который в совокупности  
с разреженным методом хранения СЛАУ [7] обеспечивает хорошую 
скорость решения. 

В рамках проведенного исследования применены конечные элемен-
ты в виде тетраэдра с четырьмя узлами ( 4m  , 12n  ) в вершинах, ко-

торые обеспечивают линейную аппроксимацию перемещений ( )mu и 

приводят к постоянным напряжениям ( )m  и деформациям ( )m  в каж-

дом КЭ. Программная реализация разработанного алгоритма осуществ-
лялась на базе программного обеспечения Научно-образовательного 
центра «Суперкомпьютерное инженерное моделирование и разработка 
программных комплексов» МГТУ им. Н.Э. Баумана. 

Экспериментальные диаграммы деформирования алюминие-
вых сплавов. Тестирование разработанного алгоритма численного 
моделирования осуществлялось путем сравнения расчетных и экспе-
риментальных данных в задаче смятия. На рис. 2 представлены экспе-
риментальные диаграммы деформирования алюминиевого сплава 1163 
при растяжении и сжатии, использованного в качестве тестового мате-
риала. 

Эти диаграммы были использованы для определения констант 
пластичности в рамках степенной модели (6), (7) E, т, , ,K n  . Значе-

ния этих параметров для сплава 1163: 70 ГПа,E   63 ГПа,K   
26,3 ГПа,G   т0,33, 0,004, 0,31.n      
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Рис. 2. Диаграммы деформирования алюминиевого сплава 1163, полученные 
на разных образцах при сжатии (С) и растяжении (Р) 

 
Результаты численного моделирования НДС в задаче овали-

зации. Для численного моделирования НДС в задаче овализации при 
смятии с помощью программы SolidWorks была создана геометрия 
пластины с отверстием, затем с помощью программы NetGEN была 
сгенерирована конечно-элементная сетка для решения данной задачи 
(рис. 3).  

 

Рис. 3. Конечно-элементная сетка, построенная для решения задачи овализации 



Ю.И. Димитриенко, Е.А. Губарева, С.В. Сборщиков, В.С. Ерасов, Н.О. Яковлев 

74 

Параметры и значения сетки: 

Используемый тип КЭ ………………………… Четырехузловой тетраэдр 
Число КЭ в сетке …………………………..…. 41 044 
Число узлов в сетке ……………………..……. 25 088 
Точность определения решения ………….…. 0,00001 
Максимальное число итераций в методе 
решения СЛАУ …………………………….…  250 
Размер шага по методу упругих решений …  0,0001 
Число точек расчета …………………….……. 30 
Среднее число итераций для вычисления 
одной точки ………………………………..….. 25 
 
На рис. 4−6 представлены некоторые из результатов расчетов: 

поля нормальных напряжений 11  и 22 , касательного напряжения 

12  в пластине в задаче овализации. Максимальные значения всех 

напряжений достигаются непосредственно на поверхности отверстия 
пластины, в той ее части, где эта поверхность контактирует с растя-
гивающим устройством. От отверстия в сторону передней свободной 
поверхности (на рис. 4 справа) направлены линии — условные гра-
ницы максимальных напряжений в пластине. Особенно заметны эти 
линии на рис. 4 для касательных напряжений. 

Определим параметр повреждаемости упругопластического ма-
териала  
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Y                — 

интенсивность тензора напряжений; ii    — первый инвариант тен-

зора напряжений; т c, ,s    — пределы прочности материала при од-

ноосном растяжении, сдвиге и сжатии соответственно;  h y  — функ-

ция Хевисайда (   1h y   при 0y  , и   0h y   при 0y  ). Разрушение 

материала начинается, когда параметр повреждаемости z = 1. 
Такой параметр повреждаемости соответствует критерию прочно-

сти Писаренко — Лебедева [5, 6]. При т    и с    параметр z  
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представляет собой отношение интенсивности напряжений к соот-
ветствующему пределу прочности при растяжении или сжатии, что 
соответствует критерию прочности Мизеса. А при с т      па-

раметр повреждаемости соответствует критерию прочности Ягна.  

 

 

 

 

Рис. 4. Поля напряжений 11  и 12 , МПа, в пластине в задаче овализации 



Ю.И. Димитриенко, Е.А. Губарева, С.В. Сборщиков, В.С. Ерасов, Н.О. Яковлев 

76 

 

 

 

 

 

Рис. 5. Поля поперечного нормального напряжения 22 , МПа,  

и продольного перемещения 1u , м, в пластине в задаче овализации 
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Рис. 6. Поле параметра повреждаемости материала 
 в пластине  при двух значениях 

 растягивающего перемещения ( )U t  

 
На рис. 6 показано поле параметра повреждаемости материала в 

пластине при двух значениях растягивающего перемещения ( )U t , 
максимум этого параметра достигается на поверхности контакта рас-
тягивающего устройства и отверстия пластины, в передней ее точке. 
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В этой точке и начинается разрушение материала, когда параметр по-
вреждаемости 1z  . 

На рис. 7 показаны экспериментальная и расчетная диаграммы 
деформирования 11 1   алюминиевого сплава 1163 при смятии. 

Видно, что совпадение экспериментальных и расчетных результатов 
достаточно хорошее, что позволяет говорить об адекватности разра-
ботанной вычислительной модели. 

 

Рис. 7. Экспериментальная (Э) и расчетная (Р) диаграммы  
деформирования алюминиевого сплава 1163 при смятии 

 
Разработанный алгоритм может быть применен для расчета НДС 

тонких пластин [8−14], содержащих конструктивные отверстия, со-
единительные элементы и другие неоднородности конструкции. 

Выводы. Разработан численный конечно-элементный алгоритм 
решения трехмерной задачи овализации отверстия при смятии образ-
ца для упругопластических материалов, деформирование которых 
подчиняется теории малых упругопластических деформаций Илью-
шина. 

Численным путем получены поля нормальных напряжений 33   

и 22  и касательного напряжения 23  в пластине из алюминиевого 

сплава 1163, а также поле параметра повреждаемости материала  
в пластине. Установлено, что максимум этого параметра достигается 
на поверхности контакта растягивающего устройства и отверстия 
пластины, в передней ее точке. В этой точке и начинается разруше-
ние материала, когда параметр повреждаемости достигает единицы.  

Численным путем получены диаграммы деформирования при 
смятии образца с отверстием из алюминиевого сплава 1163. Показа-
но, что имеет место достаточно хорошее совпадение эксперимен-
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тальных и расчетных диаграмм овализации, что позволяет говорить 
об адекватности разработанной вычислительной модели. 
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Computational modeling and experimental investigation 

of elastic-plastic plates deforming under crushing 
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V.S. Erasov2, N.O. Yakovlev2 
1 Bauman Moscow State Technical University, Moscow, 105005, Russia 
2 Federal State Unitary Enterprise “All-Russian Scientific Research Institute  
of Aviation Materials”, Moscow, 105005, Russia  

 
The article presents a suggested  method of numerical finite-element solving the ‘hole 
ovalization’ problem. This method can be applied for experimental development of ad-
vanced aviation materials with the aim of determining structure element resistance 
against deforming with stress concentrators, mainly, connectors. The method is based on 
three-dimensional finite element solution of the problem of elastoplastic deformation of 
plates with a hole under crushing. It is appropriate for reduction of experimental studies 



Численное моделирование и экспериментальное исследование деформирования… 

81 

and replacing them by the numerical experiments. The Ilyushin model of small elasto-
plastic deformations has been used. The results of numerical simulation of a three-
dimensional stress-strain state of elastoplastic plates under crushing are presented as 
well as results of experimental investigations of deforming plates of Al-alloy 163. It is 
shown that the results of numerical and experimental modeling for deforming plates un-
der crushing agree quite well.  
 
Keywords:’ hole ovalization' problem, plate crumpling, numerical modeling, finite ele-
ment method, elasticity, plasticity, deforming diagram. 
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