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Рассмотрена пространственная задача о возмущении ледяного покрова точечным 

импульсным источником, локализованным в толще жидкости конечной глубины. 

Проведено численное исследование возмущений ледяного покрова разной толщины 

источниками, находящимися на разных глубинах. Основное внимание уделено ис-

следованию возмущений ледяного покрова, возникающих непосредственно над ис-

точником. 
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Введение. Численное моделирование является ключевым ин-

струментом для исследования сложных процессов, которые трудно 

или невозможно наблюдать. Актуальность данного исследования 

связана с перспективностью арктического региона, характерной осо-

бенностью которого является наличие ледяного покрова. Точные мо-

дели поведения льда под воздействия внешних факторов, таких как 

взрывы, акустические импульсы или подводные удары, могут быть 

использованы для разработки методов предотвращения разрушений 

ледяных покровов, а также для решения задач, связанных с безопас-

ностью, транспортом, энергетикой и охраной окружающей среды. 

Основные теоретические результаты о распространении волн на 

ледяном покрове изложены в работе [1], однако там не уделено вни-

мание вопросам генерации таких волн. С другой стороны, известны 

решения задач о генерации волн в жидкости без ледяного покрова [2–

5]. С помощью изложенных там методов в работах [6–7] получены 

выражения для отклонений границы раздела жидкости и льда под 

воздействием пульсирующего и точечного источника в жидкости 

бесконечной глубины. Исследования [8–12] посвящены динамике ле-

дяного покрова в присутствии внешних и внутренних воздействий, 

включая нагрузки, колебания тел и сдвиговые течения. Задачи рас-

смотрены в линейной постановке для жидкости бесконечной глуби-

ны, а ледяной покров моделируется упругой пластиной. Получены 

аналитические и численные решения, которые описывают волны, де-

формации и прогибы в различных условиях, например, под влиянием 

движущихся и периодических нагрузок [8], неравномерного сжатия 
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ледяного покрова [9], наличия трещин и неоднородностей [10], а 

также взаимодействие с жидкостью, характеризующейся сдвиговыми 

течениями [11–12]. Исследование [13] посвящено задаче о движении 

тонких тел в жидкости под плавающей пластиной. В недавней работе 

[14] проведено исследование фазовой структуры волновых возмуще-

ний, возбуждаемых пульсирующим источником на поверхности раз-

дела потока жидкости конечной глубины и ледяного покрова. Эти 

результаты демонстрируют важность учета конечности глубины 

жидкости и динамических характеристик источника для точного мо-

делирования взаимодействия с ледяным покровом. Новые методы 

моделирования сред, находящихся в напряженно-деформируемом 

состоянии [15–16], могут лечь в основу других подходов к задачам 

динамики ледяного покрова на основе более полного учета его мно-

гообразных физических свойств. Особенно полезными такие подхо-

ды могут быть в задачах о воздействии на лед разрушающих воздей-

ствий. 

В работе [7] рассмотрена задача о воздействии на ледяной покров 

точечного импульсного источника, находящегося в бесконечно глу-

бокой жидкости. Такая модель отвечает случаю больших глубин от-

крытого моря. При этом прибрежные участки акваторий северных 

морей имеют небольшую глубину. Таким образом, для более точного 

описания необходимо учитывать конечность глубины жидкости. Це-

лью настоящей работы является изучение влияния на ледяной покров 

точечных импульсных источников, расположенных в жидкости ко-

нечной глубины. В настоящей статье представлены результаты чис-

ленного моделирования воздействия на ледяной покров мгновенного 

выброса жидкости импульсным источником в жидкости конечной 

глубины. Эта задача решалась в предположении, что на границе раз-

дела жидкости и льда возникают волны, амплитуда которых много 

меньше их длины, а течение жидкости потенциально всюду, кроме 

точки локализации источника. Ледяной покров рассматривался как 

тонкая упругая пластина постоянной толщины, плавающая на по-

верхности жидкости. 

Постановка задачи и основные соотношения. Рассмотрим вза-

имодействие точечного импульсного источника, расположенного в 

толще жидкости, с ледяным покровом, который представлен в виде 

тонкой упругой пластины, свободно плавающей на поверхности во-

ды. Для описания системы будем использовать декартову систему 

координат ( , , )x y z , где плоскость 0z =  совпадает с невозмущённой 

поверхностью раздела льда и жидкости, а ось z  направлена вверх. 

Источник с интенсивностью ( )Q Q t=  примем локализованным в точ-

ке (0,0, )l− , где 0l   задает глубину погружения. Считая, что тече-

ние жидкости потенциально во всей области  , за исключением точ-
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ки расположения источника 0r , где возникает характерная для точеч-

ного источника особенность, потенциал скорости ( , )t =  r , 

( , , )x y z=r  удовлетворяет уравнению Лапласа. На глубине L  при-

мем условие непротекания дна: 

 

0, ( \ ),

( ) 1
( , ) ~ , ( ),

4

0, ( ).

xx yy zz

z

Q t
t

z L



 + + = 

 →
−

 = = −

0

0

0

r r

r r r
r r

, (1) 

Обозначим отклонение границы раздела жидкости и льда от её 

равновесного положения 0z =  через ( , , )x y t = . Волны на 

поверхности льда будем рассматривать как малые по амплитуде 

относительно их длин. Тогда граничные условия на границе раздела 

0z =  примут вид [1]: 

 2_ _ 0,t tt t zg C B A     + −  +  + = =  , (2) 

где _ xx yy =  +   ― горизонтальный оператор Лапласа, g  ― 

ускорение свободного падения, , ,A B C  ― постоянные 

коэффициенты, зависящие от упругих свойств льда, его плотности и 

толщины, определяемые выражениями: 
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где 0  ― плотность воды, 1  ― плотность льда, h  ― толщина льда, 

E  ― модуль Юнга льда,    ― коэффициент Пуассона льда, 11  ― 

начальное напряжение льда. В морских условиях эти величины 

имеют следующие характерные значения: 
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Введем цилиндрическую систему координат  ( , , )r z  так, чтобы 

ось z  проходила через источник. Тогда, в силу цилиндрической 

симметрии источника поля скорости, ни одна из величин, возникаю-

щих в задаче, не будет зависеть от полярного угла  . В предположе-

нии, что источник начинает свою работу в невозмущенной среде, 

следуя общим подходом статей [6-7,17], с помощью преобразования 

Ханкеля из решения задач (1) и (2) можно найти выражение для воз-

никающего на ледяном покрове возмущения: 
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где 0 ( )J rk  ― функция Бесселя первого рода нулевого порядка. 

Если предположить, что в момент времени 0t =  источник выбра-

сывает объем жидкости W , то интенсивность источника определяет-

ся равенством ( ) ( ),Q t W t=  где ( )t  ― дельта-функция. Тогда воз-

мущения на ледяном покрове при 0t   можно найти из выражения: 
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Заметим, что при L → (случай бесконечно глубокой жидкости) 

формула (5) совпадает с результатами статьи [7]. 
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Как видно из формулы (5) величина отклонения границы раздела 

жидкости и льда от равновесного положения ( , )r t  линейно зависит 

от объема выбрасываемой жидкости W .  

Численное исследование. Для упрощения расчетов примем 

2W =  м3. На рис. 1 и 2 представлены профили волн на ледяном по-

крове для случаев: неглубокого дна в моменты времени t , равные 0, 

0,1; 0,3; 1 секунд, рассчитанные по формуле (5) для глубины дна 

5L =  м, глубины погружения источника 1l =  м и толщины льда 

0,3h = м; и глубокого дна — 100L =  м, 10l =  м, 0,3h =  м для мо-

ментов t  равных 0, 5; 10; 25 секунд.  

Как видно из рис. 1 и 2, наибольшее отклонение точки поверхно-

сти льда проявляется непосредственно над источником. Как и ожида-

лось, отклонения в случае неглубокого дна существенно больше. 
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Рис. 1. Профили волн на ледяном покрове в различные моменты времени 

(мелкая вода) t  (c): 1 — 0t =  c; 2 — 0,1t =  c; 3 — 0,3t =  c; 4 — 1t =  c 

 

 
Рис. 2. Профили волн на ледяном покрове в различные моменты времени 

(глубокая вода) t  (c): 1 — 0t =  c; 2 — 5t =  c; 3 — 10t =  c; 4 — 25t =  c 

 

Максимальное значение отклонения точки поверхности льда, нахо-

дящейся непосредственно над источником, достигается в начальный 

момент времени 0t =  с. Поэтому рассмотрим взаимодействие источ-

ника с ледяным покровом, находящимся прямо над источником, т.е. в 

точке 0r =  м. Графики зависимостей величины отклонения поверх-

ности льда от равновесного положения (0, )t  от времени при глу-
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бине источника 10l =  м различных характерных значений для моря 

Лаптевых и Восточно-Сибирского: толщина льда 0,25h =  м и глубина 

дна 570L =  м и Баренцева моря: толщина льда 0,7h =  м и глубина 

жидкости 230L =  м представлены на рис. 3. Как и ожидалось, мак-

симальное значение отклонения точки поверхности льда достигается 

в начальный момент времени, после чего совершаются быстро зату-

хающие колебания, и точка стремится к положению равновесия. По 

результатам численных расчетов можно заключить, что максималь-

ное значение отклонение точки поверхности льда достигается в 

начальный момент. 

 

 
Рис. 3. Зависимость отклонения точки поверхности льда, находящейся 

непосредственно над источником ( 0r =  м) от времени t (с) при  

различных параметрах: 1 — 0,25h =  м; 570L =  м; 2 — 0,7h =  м; 

230L =  м 

 
Рассмотрим подробнее влияние различных параметров на макси-

мальное отклонение (0,0) : на рис. 4 и 5 представлены графики за-

висимости толщины льда h  при различных глубинах погружения ис-
точника для случаев малой глубины жидкости ( 5L =  м — рис. 4) и 
большой ( 100L =  м — рис. 5). Из рис. 4 и 5 видно, что отклонения 
ледяного покрова для случая малой глубины жидкости существенно 
больше. 
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Рис. 4. Зависимость максимального отклонения точки поверхности льда 

(0,0)  (м)  от толщины льда h (м) при 5L =  м и различных глубинах          

источника: 1 — 0,5l =  м; 2 — 1l =  м; 3 — 2,5l =  м; 4 — 5l =  м 

 

 
Рис. 5. Зависимость максимального отклонения точки поверхности льда 

(0,0)  (м)  от толщины льда h (м) при 100L =  м и различных глубинах          

источника: 1 — 5l =  м ; 2 — 10l =  м ; 3 — 25l =  м ; 4 — 50l =  м 

 

На рис. 6  представлен график зависимости максимального от-

клонения ледяного покрова от толщины льда h  при различных глу-

бинах жидкости ( 1l =  м). Имеется монотонное убывание (0,0) при 

увеличении толщины льда при всех глубинах источника и жидкости. 

На рис. 6 видно, что при увеличении глубины жидкости 100L   м 

изменение величины отклонения становится практически незамет-

ным. 
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Рис. 6. Зависимость максимального отклонения точки поверхности льда 

(0,0)  (м)  от толщины льда h (м) при различных глубинах жидкости: 

1 — 1L =  м; 2 — 2,5L =  м; 3 — 50L =  м; 4 — 100L =  м; 5 — 300L = м 

 
На рис. 7 приведены графики зависимостей величины макси-

мального отклонения ледяного покрова (0,0)  от глубины погруже-

ния источника l  при различных толщинах льда ( 100L =  м). При глу-

боком расположении источника ( 30l   м) различия в максимальных 

отклонениях становятся незначительны. 

 

 
Рис. 7. Зависимость максимального отклонения точки поверхности льда 

(0,0) (м) от глубины источника l (м) при различных толщинах льда: 

1 — 1h =  м; 2 — 0,5h =  м; 3 — 0,1h =  м 
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На рис. 8 приведены графики зависимостей величины макси-

мального отклонения ледяного покрова (0,0)  от глубины жидкости 

L  при различных толщинах льда ( 1l =  м), видно что уже при 10L   

м изменения величины максимального отклонения неразличимы. 

 

 
Рис. 8. Зависимость максимального отклонения точки поверхности льда 

(0,0)  (м)  от глубины дна L  (м) при различных толщинах льда: 

1 — 1h =  м; 2 — 0,5h =  м; 3 — 0,1h =  м 

 

Заключение. Проведенное исследование показало, что макси-
мальное отклонение ледяного покрова наблюдается непосредственно 
над источником в начальный момент времени, после чего оно быстро 
затухает. Увеличение толщины льда, глубины погружения источника 
и глубины жидкости приводит к уменьшению отклонения ледяного 
покрова от положения равновесия. Существенное влияние на возму-
щения ледяного покрова оказывает конечность глубины жидкости, 
что отличает полученные результаты от результатов, полученных ра-
нее в рамках модели жидкости бесконечной глубины.  

Полученные результаты могут быть полезны для мониторинга 
состояния ледяного покрова и разработки методов предотвращения 
его разрушений, что особенно актуально для судоходства, нефтегазо-
вых платформ и экологической безопасности арктического региона. 
Кроме того, результаты могут быть применимы при разработке мето-
дов идентификации подобных источников, на основе вызываемых 
ими возмущений ледяного покрова. 
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This paper considers the three-dimensional problem of ice cover perturbation caused by 

a point impulse source localized in a finite-depth fluid. A numerical study was conducted 

to investigate ice cover disturbances of varying thicknesses caused by sources at different 

depths. Particular attention was paid to the disturbances occurring directly above the 

source. 
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