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В данной работе представлена валидационная задача численного определения газоди-

намических параметров при сверхзвуковом истечении турбулентной горячей струи в 

затопленное пространство. В основе используемой вычислительной схемы лежит мо-

дифицированная в части определения члена генерации турбулентности двухпарамет-

рическая модель Ментера, дополненная поправкой на сжимаемость Саркара с коррек-

тировкой на малые значения турбулентного числа Маха. Проводится сравнение газо-

динамических параметров течения вдоль оси струи с экспериментальными данными 

Сейнера и результатами численного моделирования других авторов. Модель турбу-

лентности k-ω SST с модифицированной поправкой на сжимаемость Саркара демон-

стрирует лучшее согласие с результатами экспериментальных данных, чем модели 

турбулентности со стандартным вариантом данной поправки. 
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Введение. Современные технологии проектирования высокоско-

ростных летательных аппаратов сложной конфигурации достигли 

высокого уровня развития. Дальнейшее усовершенствование, касаю-

щееся распространения шума или расхода топлива, становится все 

более сложной задачей. Если несколько десятилетий назад получение 

и оценка экспериментальных данных были основной частью процес-

са разработки авиационного двигателя, то сегодня существенная 

часть разработки проводится с использованием современных методов 

численного моделирования. Несмотря на использование современ-

ных суперкомпьютеров, применение методов вычислительной гид-

родинамики (CFD) ограничено и зависит от сложности решаемой за-

дачи. Средством решения проблемы является доработка и упрощение 

математических моделей, достоверно описывающих физические 

процессы в исследуемом классе задач. 

Эффективность турбулентного смешения горячего ядра сверх-

звуковой струи с холодным спутным потоком играет важную роль с 

точки зрения генерации шума в окружающем пространстве [1]. Од-

ним из известных подходов в моделировании сжимаемых турбулент-
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ных течений является решение системы уравнений Навье – Стокса, 

осредненной по Фавру. Данный метод (RANS) основывается на 

осреднении газодинамических параметров течения по времени, что 

приводит к появлению дополнительных слагаемых, связанных с 

пульсационными составляющими параметров потока. В связи с этим 

требуется использовать дополнительные соотношения для замыкания 

получаемой системы дифференциальных уравнений. На данный мо-

мент для решения данной проблемы широко распространенным ме-

тодом является использование моделей турбулентности, основанных 

на гипотезе Буссинеска.  

В целом можно сказать, что RANS модели, основанные на гипо-

тезе Буссинеска, переоценивают скорость затухания слоев смешения 

в задачах истечения сверхзвуковых струй в затопленное простран-

ство. Эта проблема возрастает в случае наличия больших градиентов 

температур в слоях смешения, не позволяя корректно описать поля в 

турбулентных течениях [2-7]. Одной из первопричин является то, что 

указанные выше стандартные модели турбулентности создавались в 

предположении несжимаемых потоков. Таким образом, величины 

турбулентных пульсаций плотности, связанные с эффектами сжима-

емости, в осредненных по Фавру уравнениях считаются пренебрежи-

мо малыми. 

Как указано в работе [8], основной эффект сжимаемости – это 

уменьшение производства энергии турбулентности и увеличение 

анизотропии напряжений Рейнольдса в слоях смешения. Рабочим, но 

не совершенным методом решения данной проблемы является ис-

пользование поправок на сжимаемость [9-11]. Применение таких по-

правок позволяет замкнуть систему дифференциальных уравнений в 

части описания слагаемых, связанных со сжимаемой диссипацией. 

Однако остается проблема учета влияния дополнительных эффектов 

на генерацию турбулентности в течениях с интенсивным нагревом 

потока. 

Томас и Сейнер в своих работах [4] и [5] показали, что высокие 

градиенты температуры приводят к более интенсивному перемеши-

ванию потока в слоях смешения. Несколько авторов в работах [12-14] 

пытались улучшить прогнозирование поля течения в высокоскорост-

ных струях, где требовался учет высокотемпературных эффектов. 

Они изменяли как коэффициенты в моделях, так и сами члены в 

уравнениях, описывающих перенос турбулентных параметров. Одна-

ко такие модификации уравнений могут привести к снижению точно-

сти прогнозирования течения для других задач. Абдоль Хамид [15] 

выбрал более общий подход. На основе эмпирических данных была 

предложена модификация хорошо известной модели турбулентности 

k   [16]. Идея модификации данной модели заключается в увели-

чении турбулентной вязкости в области больших градиентов темпе-
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ратуры для усиления интенсивности турбулентного смешения. В об-

ластях, где градиент температуры торможения становится достаточ-

но низким, например, в пограничном слое при отсутствии теплооб-

мена со стенкой, модель турбулентности возвращается к своему пер-

воначальному виду. 

Модификация Абдоль Хамида нашла развитие в работах и дру-

гих авторов. Зегелер предложил [17] использовать поправку на тем-

пературу совместно с моделью Ментера k   SST [18], поскольку 

данная модель турбулентности хорошо зарекомендовала себя при 

решении достаточно большого количества задач аэрогазодинамики. 

Трумнер в работах [19-21] представил свой вариант поправки, а так-

же применил ее в моделях турбулентности, основанных на решении 

дифференциальных уравнений переноса касательных напряжений 

Рейнольдса (DRSM). В тоже время Алама интересовало истечение 

холодной струи в нагретое пространство [22], [23]. Он предложил ва-

риант модификации поправки Абдоль Хамида для решения такого 

типа задач. 

Все вышеприведенные работы, как экспериментальные, так и 

выполненные с использованием инструментов численного моделиро-

вания, позволяют оценить надежность и точность вычислительных 

схем, описывающих газодинамические параметры в интересующих 

областях струйных течений, которые характеризуются высокотемпе-

ратурными эффектами. 

В данной работе проводилось сравнение результатов численного 

моделирования с экспериментальными данными Сейнера и с резуль-

татами расчетов других авторов. Используемая вычислительная схе-

ма включает в себя модифицированную модель турбулентности 

Ментера, которая дополнена поправкой на сжимаемость Саркара с 

корректировкой на малые значения турбулентного числа Маха. 

Математическая постановка задачи. Расчеты турбулентного 

истечения сверхзвуковой горячей струи из осесимметричного сопла 

проводились с использованием компьютерного кода ГАЛА, который 

является вариантом модификации программного решения ГРАТ [24-

26], численно решающего трехмерную нестационарную систему 

уравнений движения вязкого теплопроводного газа, дополненную 

двухпараметрической RANS моделью турбулентности Ментера k   

SST [18] с поправкой на сжимаемость, предложенной Саркаром [9]. 

Система уравнений Навье – Стокса, выражающая законы сохранения 

массы, импульсов и полной энергии, записывается в следующем ви-

де: 
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где   ― плотность, кг/м
3
; p  ― давление, Па; E ― полная энергия, 

отнесенная к единице массы, Дж/кг; t  ― время, c; iu  ― компоненты 

вектора скорости, м/с; xi – компоненты пространственной координа-

ты, м; iq  ― компоненты вектора теплового потока, 2Вт/м ; 

ij  ― компоненты тензора напряжений, Па. Здесь и далее использу-

ется соглашение Эйнштейна о суммировании по повторяющимся ин-

дексам. 

В задачах сверхзвукового моделирования, не требующих учета 

физико-химических процессов в газе, решаемая система уравнений 

замыкается термическим и калорическим уравнениями состояния.  

В случае исследования поведения рабочего газа – воздуха при 

температуре до 1500 К можно использовать уравнение идеального 

газа с постоянными значениями теплоемкостей (совершенный газ) 

[27]. Термическое уравнение состояния в данном случае имеет вид: 

  1
p

e

  , 1.4

p

V

c

c
   , (2) 

где γ ― показатель адиабаты; cp, cV ― удельные теплоемкости при 

постоянном давлении и объеме, Дж/(кг·К); e ― удельная внутренняя 

энергия, Дж/кг, а калорическое уравнение состояния принимает фор-

му: 

 Ve c T , (3) 

при этом удельная энергия определяется как: 

 
3

2

1

1

2
i

i

E e u


   . (4) 

Для замыкания системы уравнений газовой динамики, описыва-

ющей турбулентное движение, в данной работе используется вариант 

модели, в основе которого лежат дифференциальные уравнения пе-

реноса кинетической энергии турбулентности k  (м
2
/с

2
) и удельной 

скорости диссипации турбулентных пульсаций  (1/с) с дополни-

тельными членами, учитывающими влияние сжимаемости течения. 

Компоненты тензора напряжений и вектора теплового потока в 

модели турбулентности Ментера определяются как: 
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 (5) 

где T  ― температура, К;   ― эффективная динамическая вязкость, 

Па·с ;   ― эффективный коэффициент теплопроводности,  Вт/ м·К ; 

ijS  ― тензор скоростей деформации, 1/с ; ij  ― символ Кронекера; 

 .
L
 и  .

T
 ― ламинарная (молекулярная) и турбулентная составля-

ющие эффективного параметра. 

Текущая модель турбулентности содержит в себе адаптирован-

ную под задачи с дозвуковыми областями течения поправку Саркара, 

позволяющую ограничить влияние сжимаемости, где числа Маха не-

велики, и записывается следующим образом [11], [28]: 
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где T  определяется соотношением: 
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Модифицированный член генерации турбулентности P  с учетом 

сжимаемости имеет вид: 
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 (8) 

где 1F  ― функция смешения Ментера в модели k   SST, а 

ij  ― тензор завихренности, 1/с. 

Как можно видеть, в уравнении для генерации турбулентности 

присутствует тензор завихренности Ωij с функцией смешения F1, что 

отсутствует в оригинальной модели Ментера [18]. Предполагается, 
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что данная модификация привносит в модель турбулентности эффект 

уменьшения физически необоснованной генерации турбулентной 

вязкости в областях с наличием разрывов и торможения потока [29]. 

Функции 1F  и 2F  определяются как: 
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где d  ― кратчайшее расстояние до стенки, м. 

Квадрат турбулентного числа Маха tM  записывается как: 
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Константы модели турбулентности определяются через функцию 

смешения: 
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где остальные величины: 

 10.09, 0.31, 1.k a     (12) 

Для расчета свойств переноса, коэффициентов вязкости и тепло-

проводности, используются соотношения: 
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 (13) 

где    0.72Pr   ― число Прандтля;    0.9TPr   ― турбулентное число 

Прандтля;    286.7R  ― газовая постоянная воздуха,  Дж/ кг·К . 

Численный алгоритм решения задачи. Численный алгоритм 

построен на реализации метода контрольного объема с использова-



Н.А. Носенко, Н.А. Харченко 

108                                                       ММЧМ 2025 № 2 (46) 

нием неструктурированных сеток [30], [31], где в качестве контроль-

ных объемов выступают: тетраэдры, пирамиды и треугольные приз-

мы. 

Определение свойств данных геометрических фигур проводится 

путем разбиения объемных и плоских объектов на тетраэдры и тре-

угольники. Центры масс элементов неструктурированных сеток вы-

числяются с помощью средневзвешенного значения: 

 
1

1

N

j j

j

N

j

j

r f

r

f










, (14) 

где r  ― радиус-вектор, определяющий положение центров масс 

объемных и плоских геометрических объектов; jr  ― радиус-вектор, 

определяющий положение центров масс составных частей соответ-

ствующего геометрического объекта; jf  ― составная часть объема 

или площади геометрического объекта. 
Численное интегрирование системы уравнений газовой динамики 

проводилось с использованием модифицированного метода AUSM+ 

[32]. Используемый для численного интегрирования метод AUSM+ 

является методом расщепления потоков на конвективную и акусти-

ческую составляющие в зависимости от числа Маха. Такой подход 

является альтернативой методам, основанным на идеи вычисления 

потоков через грани конечного объема из решения задачи о распаде 

произвольного разрыва, предложенной С.К. Годуновым [33]. 

Численный поток методом AUSM+ определяется из соотношения 

[34]: 
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 (15) 

где in  ― компонента единичного вектора внешней нормали. 

Расщепление потока на вклады конвекции и давления выражает-
ся посредством представления числа Маха в виде двух состояний: 

 
1/2

1/2

;

.
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L RL R

M M M M

P P p P p
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 
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 
 (16) 

Конвективная и акустическая составляющие расщепленного по-

тока аппроксимируются полиномами четвертого и третьего порядка: 
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 (17) 

Для сохранения устойчивости численной схемы при расчетах те-

чений с большими числами Маха в выражения для вкладов конвек-

ции и давления добавляются диффузионные слагаемые [35], обеспе-

чивающие дополнительную диссипацию для подавления численной 

неустойчивости сильных ударных волн: 

 

  
 

 
 

2
1/2

1/2

1 1 ;
c

0.75
, 1,2,3,

c R L

R L
P

L R

L R
i i iL R

p p
M g

g p p
P P P u u i


 

 


  




  

 (18) 

где функции g  и   определяются как: 
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В результате численных исследований предложено следующее 

выражение для определения скорости звука, позволяющее увеличить 

диссипацию путем уменьшения 1/2c  в области течения, где 

/ / |  |L R L RU c : 
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Для получения более высокого порядка точности численного 

решения по пространству задается линейное распределение газоди-

намических параметров внутри ячейки [36]: 

       ,l l l
j l j l j l j l

f f f
f f x x y y z z

x y z

   

       
   

 (21) 

где   ― коэффициент ограничения градиента в центре расчетной 

ячейки; lf  и jf  ― значения функций в центрах расчетной ячейки и 

ее грани. 
Линейная реконструкция проводится по неконсервативным пере-

менным: u , v , w , p ,  , e , T , k ,  , а значения газодинамических 

параметров, используемые для вычисления потоков через грани ко-

нечного объема, определяются на каждой грани из задаваемого рас-

пределения, что приводит к схеме второго порядка в областях, где 

решение гладкое. Но при этом для сохранения свойства монотонно-

сти численной схемы на газодинамических разрывах необходимо ис-

пользовать ограничитель задаваемого распределения [36]. 

Коэффициент ограничения   задаваемого распределения вычис-

ляется из соотношения: 
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 (22) 

где с индексами « l » и « » указаны значения функций в центрах рас-

четной и соседней ячеек, а с индексом « j » – значения функций, вы-

численные в центре j -ой грани. 

Но отсутствие дифференцируемости записанной функции-

ограничителя приводит к ухудшению монотонности схемы. Обеспе-

чить монотонность численной схемы позволило использование до-

полнительной дифференцируемой функции-ограничителя [37]: 
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 (23) 

Для расчета вязких слагаемых необходимо вычислять производ-

ные скорости, температуры и турбулентных параметров в центрах 
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граней конечного объема. Вычисление производных основывалось на 

численном интегрирование по конечному объему, состоящему из 

двух смежных ячеек, относительно центра общей грани и является 

решением следующей системы уравнений: 
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где 
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Расчетные соотношения для численного интегрирования решае-

мой системы уравнений методом конечного объема приведены в ра-

боте [25]. 

Численная реализация граничных условий основана на использо-

вание фиктивных ячеек, прилегающих к каждой границе расчетной 

области. В фиктивных ячейках задаются значения функций, соответ-

ствующие типу граничных условий: 

 для свободной дозвуковой границы, располагаемой вдали от 

исследуемой области течения (невозмущенный поток), значения 

функций в фиктивных ячейках задаются в соответствии с зависимо-

стями в виде инвариантов Римана [38]; 

 на выходной сверхзвуковой границе значения функций в фик-

тивных ячейках задаются линейной экстраполяцией переменных из 

расчетной области; 

 в случае выходной границы, имеющей области с числами Ма-

ха меньше и больше единицы, используется гибридное граничное 

условие; 

 в соответствии с нормальной скоростью на выходной границе 

ограничивается возможность наличия обратного потока в расчетную 

область: проводится смена направления течения на обратное, если 

скалярное произведение векторов скорости и внешней нормали 

меньше нуля; 

 на границе симметрии обеспечивается условие равенства ну-

лю вектора скорости и нормальных производных. Значения осталь-
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ных функций в фиктивных ячейках задаются линейной экстраполя-

цией переменных из расчетной области; 

 на поверхность тела накладываются условия прилипания, по-
стоянное значение удельной диссипации турбулентности и равенство 
нулю кинетической энергии турбулентности. В случае адиабатной 
стенки температура в фиктивной ячейке приравнивается значению в 
прилегающей расчетной ячейке. 

Описанный численный метод имеет первый порядок аппрокси-
мации по времени и второй порядок аппроксимации по пространству. 
Численное интегрирование решаемой системы уравнений газовой 
динамики проводилось методом установления. 

Исходные данные для численного моделирования. Для прове-
дения газодинамических расчетов была создана трехмерная поверх-
ность, которая состояла из осесимметричного сопла, а также крупно-
габаритной области, соединяемой со срезом сопла, игравшей роль 
«затопленного» пространства с минимально возможной для получе-
ния стабильного численного решения скоростью течения. 

Сверхзвуковая часть данного сопла спрофилирована на число 
Маха 2 методом характеристик [39], являющимся основой методики, 
описанной в работах [40], [41]. 

Плавный контур сужающегося дозвукового участка сопла стро-
ился по варианту Ветошинского [42] для получения близкого к рав-
номерному профилю скорости в критике: 
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 (26) 

где r  ― радиальная координата сопла, м; x  ― осевая координата 

сопла, м; вхr  ― радиус цилиндрической части сопла (форкамеры), м; 

крr  ― критический радиус сопла, м; вхx  ― координата критики соп-

ла, м. 
В данной работе к радиусу изоэнтропического контура (радиаль-

ной координате r ) сверхзвукового участка сопла, получаемого в ре-
зультате использования метода характеристик, добавлялась толщина 
вытеснения турбулентного пограничного слоя, определяемая по эм-
пирической формуле [40]: 
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2 3
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где  * *  x   ― толщина вытеснения турбулентного пограничного 

слоя, м; x  ― продольная координата сечения сверхзвукового участка 

сопла, м; xRe  ― безразмерное число Рейнольдса, определяемое по 

параметрам потока на изоэнтропическом контуре сопла и координате 

сечения;  M M x  ― число Маха на изоэнтропическом контуре 

сопла;   )  (w wT T x  ― температурный фактор, К , который вычисляет-

ся через отношение температуры стенки в текущем сечении к темпе-

ратуре торможения в форкамере: 

 ,w
w

o

T
T

T
  (28) 

где wT  ― температура стенки в сечении, К; oT  ― температура тор-

можения в камере сопла, К. 

Температура торможения в форкамере при проектировании сопла 

принималась равной 1366 К , что соответствует условиям экспери-

мента [5]. 

Температура стенки приравнивалась к равновесной температуре, 

которая вычислялась с помощью газодинамических параметров на 

изоэнтропическом контуре сопла по формуле [43]: 

 23 1
1 Pr ,

2
eT T M

  
  

 
 (29) 

где eT  ― равновесная температура стенки, К. 

Размер критики выбирался исходя из данных эксперимента Сей-

нера [5]: диаметр выходного сечения jetD  равнялся 91.44 мм, а раз-

мер критического сечения крD  ― 69.53 мм. Диаметр цилиндрической 

части сопла вхD  принимался равным 120 мм. Кромка сопла представ-

ляла собой поверхность с прямыми углами и толщиной в 1 мм. 

Как отмечают авторы работы [44], в общем случае необходимо 

добавлять вышеуказанный параметр * , характеризующий турбу-

лентность у стенок сопла, по нормали к стенке. Однако это зависит 

от метода определения толщины вытеснения и рекомендаций по его 

использованию. Помимо этого, в работе [44] указано, что подход, 

связанный с добавлением толщины вытеснения для профилирован-

ных сопел с относительно небольшим числом Маха на срезе (    6М  ), 

с большой степенью точности позволяет корректно описывать про-

филь сверхзвукового участка сопла, поскольку для таких режимов 

течения пограничный слой относительно тонкий.  

Для использования граничного условия типа инвариантов Римана 

на входе в форкамеру требовалась точная информация о характери-
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стиках потока. Для этого было сделано предположение, что присут-

ствует равномерное распределение газодинамических параметров. 

Однородное по сечению число Маха на входе в сопло определя-

лось исходя из решения трансцендентного уравнения для совершен-

ного газа – воздуха, получаемого по одномерной теории, с примене-

нием известных геометрических размеров критического и входного 

сечений [45]: 

 
 

32 21 0.2
,

1.73

вхвх

кр вх

Mr

r M

 
  

 

 (30) 

где вхM  ― число Маха на входе в форкамеру, предполагаемое мень-

ше 1. 

Значения статических давления и температуры вычислялись по 

известным формулам для сжимаемого газа [45]: 
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где вхp  ― статическое давление на входе в сопло, Па; 

op  ― давление торможения в камере сопла, Па; вхT  ― статическая 

температура на входе в сопло, К. 

Стоит отметить, что давление торможения op  определялось пу-

тем использования известного числа Маха на срезе и значения стати-

ческого давления p  спутного потока, равного атмосферному, исходя 

из предположения о расчетном режиме работы сопла. Температура 

торможения в форкамере oT  для исследуемого в данной работе ре-

жима считалась заданной и в ходе эксперимента равнялась 1116 К. 

Геометрические размеры исследуемого сопла и расчетной обла-

сти показаны на рис. 1 и 2. 
  

 
Рис. 1. Геометрические размеры (мм) осесимметричного сопла 

69,53

490,14
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Рис. 2. Габаритные размеры (мм) осесимметричной расчетной области 

 

На стенке сопла задавались граничные условия прилипания и от-

сутствия турбулентных пульсаций. Вследствие относительно высо-

кой продолжительности эксперимента использовалось условие от-

сутствия теплообмена на твердых поверхностях.  

На входной границе расчетной области вне геометрии сопла при-

менялось граничное условие типа «спутный поток» с небольшим 

числом Маха для уменьшения времени сходимости и увеличения 

стабильности расчета. Влияние относительно малой величины данно-

го газодинамического параметра на результаты численного модели-

рования, как показано в работе [6], минимально. Значения таких ста-

тических параметров, как температура и давление, на данной границе 

соответствовали нормальным условиям.  

На остальные границы расчетной области накладывалось сме-

шанное граничное условие.  

Начальные условия соответствовали значениям параметров спут-

ного потока. 

Исходные данные, используемые для численного моделирования 

сверхзвуковой горячей турбулентной струи, истекаемой в затоплен-

ное пространство из профилированного осесимметричного сопла, 

представлены в таблице 1. 

 
Таблица 1 

Исходные параметры для численного моделирования 

Параметры Давление, кПа Температура, К Число Маха 

Форкамера 773 1108 0.2 

Спутный поток 101 278 0.025 

 

На рис. 3 и 4 представлен вид квазирегулярной неструктуриро-

ванной расчетной сетки с количеством ячеек 12871077. Такое коли-

чество сеточных элементов позволило достичь сходимости решения 

2990,14

2610

110
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по сетке. Структура турбулентной струи, истекающей из осесиммет-

ричного сопла, разрешалась с использованием квазирегулярного рас-

пределения тетраэдральных ячеек для увеличения точности решения. 

С поверхности сопла выдавливались призматические элементы с 

фиксированным коэффициентом роста, что обеспечило безразмерное 

значение параметра 1 y  . 

 

 
Рис. 3. Вид квазирегулярной сетки расчетной области 

 

 
Рис. 4. Увеличенный вид квазирегулярной сетки 

 

В рамках перекрестной верификации приведенной в данной ра-

боте вычислительной схемы проводится сравнение газодинамических 
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параметров течения вдоль оси струи с результатами, полученными 

компьютерными кодами других авторов: 

 FUN3D [7]: стандартная модель Спаларта-Аллмарэса (SA); 

 WIND [6]: стандартная низкорейнольдсовая модель Чиена 

(Chien k  ) и модель Чиена с поправкой на сжимаемость Саркара 

(Chien k   S); 

 PAB3D [15]: высокорейнольдсовая модель k   Лаундера и 

Сполдинга с поправками на сжимаемость Саркара и температуру Аб-

доль Хамида ( k   ST). 

Валидация текущей модели была основана на сравнении резуль-

татов численного моделирования с соответствующими параметрами 

потока, полученными в ходе эксперимента Сейнера [5]. 

Результаты численного моделирования. На рис. 5 и 6 пред-

ставлены пространственные распределения полей течения: числа 

Маха, температуры и турбулентной вязкости, полученные в резуль-

тате численного моделирования сверхзвукового истечения турбу-

лентной горячей струи из осесимметричного сопла в затопленное 

пространство. 

 

 
Рис. 5. Пространственное распределение числа Маха с линиями тока 

 

На графиках ниже (рис. 7-9) показаны распределения вдоль оси 

струи безразмерных газодинамических параметров: числа Маха, про-

дольной компоненты скорости, давления и температуры торможения. 

Сравнение полученных в данной работе распределений проводится с 

результатами других авторов и экспериментальными данными Сей-

нера [5]. Представленные на графиках значения газодинамических 

0.00 0.31 0.63 0.94 1.25 1.57 1.88 2.19
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параметров отнесены к соответствующим величинам на срезе сопла. 

Осевая координата отсчитывалась от выходного сечения и отнесена к 

величине диаметра среза сопла jetD . 

 

 
а) 

 

 
б) 

 

Рис. 6. Пространственные распределения полей течения: 

а) – температура (К); б) – турбулентная вязкость (Па·с) 
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а) 

 
б) 

 

Рис. 7. Распределения безразмерных параметров вдоль оси струи: 

а) ― число Маха; б) ― продольная компонента скорости 
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а) 

 
б) 

 

Рис. 8. Распределения безразмерных параметров вдоль оси струи 

а) ― давление торможения; б) ― температура торможения 
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а) 

 
б) 

 

Рис. 9. Распределение числа Маха вдоль оси симметрии: 

а) ― в окрестности среза сопла; б) ― в сверхзвуковом участке сопла 
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На рис. 9 дополнительно приведено задаваемое распределение 
числа Маха, требуемое для профилирования сверхзвукового участка 
сопла методом характеристик [40], а также его сравнение с аналогич-
ным параметром течения, полученным численно в рамках данной ра-
боты. 

Как видно на представленных графиках (рис. 7-9), распределения 
газодинамических параметров, полученные в результате численного 
моделирования с использованием описанной вычислительной схемы, 
имеют расхождение при сравнении с экспериментальными данными. 
Использование одной модифицированной поправки Саркара завыша-
ет длину начального участка струи, где осредненные параметры по-
тока по сечению остаются в целом постоянными. Однако поведение 
представленных на графиках величин вниз по потоку хорошо согла-
суется с данными экспериментальных исследований. 

Сравнение с результатами других авторов в окрестности среза 
сопла (рис. 9) показало в целом хорошее согласие по расположению 
пиков в распределении числа Маха, что говорит о сеточной сходимо-
сти решения. Однако можно заметить, что вычислительная схема, 
реализованная в компьютерном коде PAB3D [15], вносит в решение 
большую диссипацию, тем самым значительно уменьшая амплитуду 
колебаний в получаемых распределениях. 

Проведенный анализ (рис.7-9) показал, что используемая в дан-
ной работе модифицированная поправка Саркара дает аналогичный 
результат по величине длины начального участка струи в сравнении с 
данными, полученными кодом WIND [6]. Помимо этого, описанная в 
данной работе вычислительная модель позволяет получить хорошую 
корреляцию с экспериментальными данными по скорости затухания 
газодинамических параметров сверхзвуковой горячей струи вниз по 
потоку. Результаты, полученные другими авторами без использова-
ния поправки на сжимаемость, дают существенное отличие при срав-
нении осевых распределений с экспериментальными данными. 

Заключение. В результате проведенных численных исследова-

ний турбулентного истечения горячей сверхзвуковой струи из осе-
симметричного сопла получены пространственные распределения 
полей газодинамических функций. 

Проведенное численное исследование показало хорошее согласие 

полученных в результате моделирования осевых распределений с 

экспериментальными данными Сейнера. Вычислительная схема, 

представленная в данной работе, позволяет получить эксперимен-

тальную скорость затухания газодинамических параметров вниз по 

потоку без использования дополнительной поправки на температуру. 

Величина длины начального участка струи, где осредненные пара-

метры потока по сечению остаются в целом постоянными, оказалась 

несколько завышенной, что говорит о необходимости дальнейшей 

модификации используемой модели турбулентности. 
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Сравнение с результатами программных решений других авторов 

показало качественное соответствие по наличию колебаний числа 

Маха в области начального участка струи. Вариант вычислительной 

схемы, реализованный в компьютерном коде PAB3D, включающий в 

себя поправку на температуру Абдоль Хамида, вносит в решение 

большую диссипацию, тем самым значительно уменьшая амплитуду 

колебаний в осевых распределениях. 
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This paper presents the validation problem for the numerical determination of gas dy-

namic parameters in the supersonic flow of a turbulent hot jet into a flooded space. The 

computational scheme used is based on the two-parameter Menter model modified in 

terms of the determination of the turbulence generation term, supplemented by the Sarkar 

compressibility correction with correction for small values of the turbulent Mach num-

ber. Gas dynamic parameters of the flow along the jet axis are compared with experi-

mental data of Seiner and results of numerical modelling of other authors. The k-ω SST 

turbulence model with a modified Sarkar compressibility correction shows better agree-

ment with the experimental data results than turbulence models with the standard version 

of this correction. 
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