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Разработан метод получения точных аналитических решений краевых задач ма-

тематической физики, основанный на определении дополнительной граничной ин-

формации, позволяющей удовлетворять искомым решением исходное дифферен-

циальное уравнение в граничных точках. Выполнение уравнения на границах приво-

дит к его выполнению и внутри рассматриваемой области, исключая его непо-

средственное интегрирование по пространственной переменной. Собственные 

числа находятся из решения временно́го обыкновенного дифференциального урав-

нения относительно дополнительной функции, определённой в одной из граничных 

точек. Отметим, что в классических методах получения точных аналитических 

решений собственные числа находятся из краевой задачи Штурма-Лиувилля, 

определённой в области пространственных координат. Следовательно, в настоя-

щей работе рассматривается другое направление определения собственных чисел, 

совпадающих с точными их значениями. Константы интегрирования обыкновен-

ного дифференциального уравнения относительно дополнительной функции нахо-

дятся из начального условия методом наименьших квадратов, позволяющим ис-

ключить определение сложных интегралов по пространственной переменной. 

 

Ключевые слова: краевая задача, точное решение, дополнительная граничная    

информация, метод наименьших квадратов 

  

Введение. В теории теплопроводности известны методы, осно-

ванные на определении интеграла теплового баланса [1 – 14]. Его ис-

пользование связано с осреднением дифференциального уравнения 

краевой задачи. Выполнение уравнения в среднем приводит к низкой 

точности получаемых решений. Этот недостаток характерен практи-

чески для всех приближенных аналитических методов (Ритца, Галер-

кина, Л.В. Канторовича, интегрального метода теплового баланса – 

метод Т. Гудмена, М. Био и др.). Точность их решений с увеличением 

числа приближений возрастает незначительно, что связано с низкой 

точностью определения собственных чисел и собственных функций. 

Так как собственные числа находятся из выполнения уравнения крае-

вой задачи, то, следовательно, повышение точности их определения 

связано с увеличением точности его выполнения во всех точках про-

странственной переменной и во всём диапазоне времени нестацио-

нарного процесса. Точность решений может быть повышена гранич-

ным выполнением уравнения при использовании дополнительных 

граничных условий (ДГУ). В работах [11, 12] дается математическое 



Метод дополнительных граничных условий в краевых задачах теплопроводности 

ММЧМ 2025 № 2 (46)                                                    69 

обоснование выполнения уравнения внутри области при его выпол-

нении в граничных точках. Выполнение уравнения на границах поз-

воляет избежать нахождение сложных интегралов по пространствен-

ной переменной. Такой путь получения решения приводит к упроще-

нию процесса получения собственных чисел, определяемых из реше-

ния обыкновенного дифференциального уравнения относительно до-

полнительной функции, зависящей от времени (в отличие от класси-

ческих методов, в которых собственные числа находятся из решения 

краевой задачи Штурма – Лиувилля, определённой в области про-

странственных переменных). Константы интегрирования, появляю-

щиеся в решении временно́го уравнения для дополнительной функ-

ции, с заданной степенью точности находятся из начального условия 

краевой задачи методом наименьших квадратов. Его применение 

позволяет избежать определения сложных интегралов по простран-

ственной переменной, возникающих при выполнении начального 

условия в классических методах. 

Математическая постановка задачи. Рассмотрим задачу теп-

лопроводности для бесконечной пластины с симметричными гранич-

ными условиями первого рода в следующей математической поста-

новке: 

 
2

2
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где T  ― температура, К ; х  ― координата, м ;   ― время, с ; 

ρ

λ

c
a   ― коэффициент температуропроводности, 

2 /м с ; λ  ― коэф-

фициент теплопроводности,  /Вт м К ; с ― теплоемкость, 

 /Дж кг К ; ρ  ― плотность, 
3/кг м ; 0T  ― начальная температура, 

К ; стT  ― температура стенки, К ; δ  ― половина толщины пластины, 

м . 
Обозначим 
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где Θ, ξ,  Fo  ― безразмерные температура, координата, время. 
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С учетом (5) находим (рис. 1) 
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Рис. 1. Схема изменения температуры 
 

Введём дополнительную функцию 

 (Fo) Θ(1,Fo).q   (10) 

Функция (Fo)q  описывает временно́е изменение температуры в 

точке 1.ξ   Температура в этой точке – искомая величина задачи (6)-

(9). Следовательно, её отдельное рассмотрение не вносит изменений 

в математическую постановку задачи, а лишь упрощает получение её 

решения. 

Аналитическое решение задачи. Решение задачи (6)-(9) разыс-

кивается в виде 

 
1

Θ(ξ,Fo) 1 ( ) (ξ) ,
n

k k

k

b q 


   (11) 

где ( )kb q  ― неизвестные функции; (ξ) sin( πξ / 2)k r  , )12(  kr  ―  

координатные функции. 

Формула (11) удовлетворяет условиям (8), (9). Неизвестные ( )kb q  

находятся из (10) и ДГУ, общие формулы для которых имеют вид [7] 
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Отметим, что ДГУ вида (12), (13) решением (11) выполняются в 

любом приближении. При их получении были использованы исход-

ные граничные условия (8), (9), дополнительная функция (10) и урав-

нение (6).  

Дифференцируя (8)-(10) и получаемые затем ДГУ по переменной 

Fo , а уравнение (6) по переменной ξ,  из сопоставления получаемых 

результатов находятся ДГУ (12)-(14), определённые лишь в гранич-

ных точках ξ 0  и ξ 1 . Следовательно, их выполнение искомым 

решением (11) эквивалентно выполнению уравнения (6) в указанных 

граничных точках.  

Учитывая, что ДГУ (12), (13) решением (11) удовлетворяются в 

любом приближении, независимо от величин неизвестных функций 

( )kb q , эти функции будем находить из ДГУ (14), представляющего 

математическую запись уравнения (6) применительно к граничной 

точке 1ξ   (при 1i  ) и производных различного порядка от левой 

(производная по времени) и правой (производная по ξ ) частей урав-

нения (6) (при 2,3,4,...i  ). Следовательно, выполнение ДГУ (14) эк-

вивалентно выполнению уравнения (6) в этой граничной точке. 

Решение в первом приближении. В первом приближении, под-

ставляя (11) в (10), для 1( )b q  будем иметь алгебраическое уравнение 

 1 11 ( )sin(πξ/2) (Fo).b q q    (15) 

Его решение  

 1( ) (Fo) 1.b q q   (16) 

Соотношение (11) принимает вид 

 (ξ, Fo) 1 ( (Fo) 1)sin(πξ/2)q    . (17) 

Для определения (Fo)q  потребуем, чтобы невязка уравнения (6) 

во всей области изменения пространственной переменной (0 1)   

была равна нулю 
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Подставляя (17) в (18), находим  

 
2(Fo)

sin( ) [ (Fo) 1]sin( ) 0
Fo 2 4 2

q
q

  
 


  


. (19) 

Очевидно, что в точке ξ 0  соотношение (19) удовлетворяется в 

предельном смысле (каждое его слагаемое равно нулю). Примени-

тельно к любой другой точке оно приводится к следующему обыкно-

венному дифференциальному уравнению относительно функции 

(Fo)q  

 
2(Fo)

[ (Fo) 1] 0
Fo 4

q
q


  


. (20) 

Отметим, что получение уравнения (20) не связано с непосред-

ственным интегрированием уравнения (6) по пространственной пе-

ременной. Не требуется также и выполнение осредненного уравнения 

(6) – интеграла теплового баланса, применяемого в [3 – 11]. 

Решение уравнения (20) имеет вид  

),Foνexp(1)Fo( 11  Cq                                 (21) 

где 1C  ― постоянная интегрирования; 2

1ν π / 4  ― первое собствен-

ное число, совпадающее с точным его значением [1, 2]. 

В классических методах собственные функции и собственные 

числа находятся из решения краевой задачи Штурма – Лиувилля, 

включающей уравнение второго порядка относительно простран-

ственной переменной. Следовательно, в данном случае реализуется 

другой подход к определению собственных чисел – через решение 

временно́го обыкновенного дифференциального уравнения относи-

тельно дополнительной функции. 

Подстановкой (21) в (17) получаем 

  1 1( ,Fo) 1 exp Fo sin( )
2

C


      . (21) 

Соотношение (22) удовлетворяет уравнению (6) во всём диапа-

зоне пространственной переменной (0 1)   при любых значениях 

постоянной интегрирования 1C . Следовательно, уравнение (6) вы-

полнено, минуя процесс его непосредственного интегрирования по 

переменной ξ , что оказалось возможным благодаря выполнению ре-

шением (11) ДГУ (12) – (14), приводящему к выполнению уравнения 

на границах. 
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Постоянная 1C , находится из условия (7). Потребуем его выпол-

нения в 10 точках области 0,1;  0, 2;  0,3;  ;  1,0(  , 1,10).i   Точка 

ξ 0  исключается, ввиду невозможности одновременного выполне-

ния условий (7) и (8) в начальный момент времени ( Fo 0 ). Подстав-

ляя (22) в (7), положив Fo 0  и записывая полученное соотношение 

в указанных точках пространственной переменной, относительно 1C  

будем иметь переопределённую систему, включающую десять алгеб-

раических линейных уравнений. Найдём решение этой системы в 

смысле наименьшего квадратичного уклонения, то есть найдём ми-

нимум следующего функционала 

 
10

2

i 1

[ ( ,0)]iI 


  . (22) 

Подставляя (22) в (23), получаем  
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2

1

i 1

[1 sin( )]
2

iI C




  . (23) 

Определяя производную от I  по 1C  и приравнивая полученное 

соотношение к нулю, относительно 1C  получаем алгебраическое 

уравнение. Его решение 

 

10

10
1

1 10
2 1

1

sin( )
12

sin( )sin ( )
22

i

i

iii

i

С










   





. (24) 

Найденная по формуле (25) 1C  ( 1 1,3C   ) незначительно отлича-

ется от точного её значения [1, 2] 

2732,1
4

1 


C . 

Увеличивая число точек аппроксимации начального условия, 

точность определения 1C  можно увеличить, например, при 20 точках 

аппроксимации получаем 

 1 1, 286931C   . (25) 

Однако, точность уже полученной её величины вполне достаточ-

на для решения задачи (6) – (9) в первом приближении, то есть при 

использовании лишь одного члена ряда (11). 

Отличие расчётов по формуле (22) от точного решения [1, 2] не 

более 5 % (для 0,1 Fo   ) (рис. 2). 
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Рис. 2. Распределение температуры 

 ~ ― 1-ое приближение; × ― 2-ое приближение (n = 2); 

Δ ― 3-е приближение (n = 3);  

□ ― по формуле (34) при n = 1000; ∘ ― точное решение 

 

Решение во втором приближении. Во втором приближении, 

подставив (11) в (10), (14) ( 1i  ) для 1( )b q  и 2 ( )b q , определяемых из 

системы двух алгебраических уравнений, имеем 

 2 2

1( ) (4 9 ( 1)) / (8 )b q q q     ; 

 
2 2

2 ( ) (4 ( 1)) / (8 )b q q q    ; 

 Foq dq d  . 

C их учётом соотношение (11) будет 

 

2 2

2

(4 9 ( 1)sin( ) (4 ( 1)sin(3 )
2 2( ,Fo) 1

8

q q q q
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 




     

   .(26) 

Подставляя (26) в (6), применительно к любой точке простран-

ственной переменной   ( )0  получаем 

 
3

4 10 3
'' ' ( 1) 0

3 3 4
q q q



 
    , (27) 

где 2 2'' Foq d q d . 

Интеграл уравнения (27) будет  

 

0,7

0                   0,2                   0,4                  0,6                  0,8                 1,0

1,0

0,8

0,6

0,4

0,2



Fo 1,0Θ

0,5

0,3

0, 2

0,1
0,040,02



Метод дополнительных граничных условий в краевых задачах теплопроводности 

ММЧМ 2025 № 2 (46)                                                    75 

 1 1 2 2(Fo) 1 exp( Fo) ( Fo)q C C      , (28) 

где 1C , 2C  ― постоянные интегрирования, а 

 2

1 / 4  , 2

2 9 / 4   

― первое и второе собственные числа, равные точным их значениям 

[1, 2]. 

Подставим (28) в (26) 

    1 1 2 2

π 3π
( ,Fo) 1 exp Fo sin ξ exp Fo sin ξ .

2 2
C C  

   
        

   
(29) 

Постоянные 1C , 2C  находятся из начального условия (7) с ис-

пользованием метода наименьших квадратов. Требуя выполнения 
условия (7) в 10 точках области ( 0,1;  0, 2;  0,3;  ;  1,0  , 

1,  2,  3,  ,  10i   ), относительно 1C , 2C  получаем систему 10 алгеб-

раических уравнений. 
Подставляя (29) в (23), находим 

 
10

2

1 2

1

3
[1 sin( ) sin( )] .

2 2
i i

i

I C C
 
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

    (30) 

Вычисляя производные от I  по 1C  и 2C  и приравнивая получен-

ные соотношения к нулю, для 1C  и 2C  имеем систему двух алгебраи-

ческих уравнений, из которой находим 

 1 –1,252381C  ; 2 0, 434768C  . 

Точные значения 1C  и 2C  [10, 11] 

 1 –1,27324C  ; 2 0, 424413C  . 

Выполняя начальное условие в 20 точках области (исключая точ-

ку 1  ), получаем 

 1 –1,264259C  ; 2 0, 430773C  . 

Как видно, произошло уточнение констант интегрирования. Та-

ким путём, увеличивая число точек аппроксимации начального усло-

вия, можно получить значения 1C  и 2C  практически с заданной точ-

ностью. Из расчётов по (29) следует, что для 0,02 Fo )    отличие 

от точного решения [1, 2] не превышает 2 % (см. рис. 2). 

Решение в третьем приближении. В третьем приближении под-

ставляя (11) в (10), (14) (при 1;2i  ) для ( )kb q  имеем систему трёх 

алгебраических уравнений. Подставляя найденные ( )kb q  в (11) и тре-
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буя выполнения уравнения (6) в любой из точек пространственной 

переменной  0  , относительно (Fo)q  получаем обыкновенное 

дифференциальное уравнение 

 
5 3

4 7 259 15
''' '' ' π( 1) 0

15π 3π 60π 16
q q q q     , (31) 

где 3 3''' Foq d q d . 

Интегрируя уравнение (31) и подставляя полученное выражение 

в (11), получаем решение в третьем приближении 

 

   

 

1 1 2 2

3 3

π 3π
( ,Fo) 1 exp Fo sin ξ exp Fo sin ξ

2 2

5π
exp Fo sin ξ ,

2

С С

С

  



   
         

   

 
   

 

(32) 

где 
2

1
4


  , 

2

2

9

4


  , 

2

3

25

4


   ― первое, второе и третье соб-

ственные числа, равные точным их значениям [1, 2]; 1 2 3,  ,  C C C  ― 

постоянные интегрирования. 
Для определения постоянных интегрирования, принимая 10 точек 

аппроксимации начального условия (7), подставим (32) в (23) 

 
10

2

1 2 3

1

3 5
[1 sin( ) sin( ) sin( )] .

2 2 2
i i i

i

I C C C
  
  



     (33) 

Приравнивая к нулю производные от I  по 1C , 2C , 3C , получаем 

систему трёх алгебраических уравнений. Её решение:  

 1 –1,284265C  ; 2 0, 4244132C  ; 3 –0,255065C  . 

Точные их значения [10, 11]:  

 1 –1,278555C  ; 2 0, 41647C  ; 3 –0,257337C  . 

Принимая 20 точек аппроксимации, имеем:  

1 –1,278555C  ; 2 0, 41647C  ; 3 –0,257337C  . 

Как видно, полученные значения 1C , 2C  и 3C отличаются от точ-

ных лишь в третьем знаке. Отметим, что полученная точность посто-
янных интегрирования для третьего приближения решения (11) 
вполне достаточна. 

Из (32) следует, что при 0,01 Fo    расхождение с точным 

решением [1, 2] не более 1 %.  

Используя (22), (29), (32), можно получить общую формулу ре-

шения 
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  
1

π
( ,Fo) 1 exp  ν Fo sin ξ ,

2

n

k k

k

r
A



 
     

 
  (34) 

где 14( 1) ( π)k

kA r  , 2 2 ν 4k r  , ( 2 1; 1, )r k k n   . 

В решении (34) формулы для kA  и k  совпадают с точными их 

формулами [1, 2]. Приближение к точной формуле для kA  выполня-

ется уточнением констант интегрирования методом наименьших 

квадратов путём увеличения числа точек аппроксимации начального 

условия. 

Обсуждение результатов. Полученные выше результаты, свя-

занные с нахождением точного аналитического решения задачи теп-

лопроводности для бесконечной пластины, позволяют заключить, что 

выполнение исходного дифференциального уравнения во всей обла-

сти изменения пространственной переменной можно обеспечить его 

выполнением лишь в граничных точках путём выполнения искомым 

решением дополнительных граничных условий. Выполнение в гра-

ничных точках ДГУ эквивалентно выполнению в них исходного 

дифференциального уравнения, что приводит к его выполнению и 

внутри рассматриваемой области, не прибегая к его непосредствен-

ному интегрированию по пространственной переменной.  

В данном случае также нет необходимости определения интегра-

ла теплового баланса – осредненного по пространственной перемен-

ной исходного дифференциального уравнения (реализация инте-

грального метода теплового баланса), что позволяет избежать опре-

деление сложных интегралов по пространственной переменной и 

значительно упростить процесс получения временно́го обыкновенно-

го дифференциального уравнения относительно дополнительной 

функции. Эта функция вводится в одной из граничных точек (при 

1  ) и представляет изменение температуры во времени в этой точ-

ке. Её использование позволяет свести решение исходного диффе-

ренциального уравнения в частных производных к интегрированию 

временно́го обыкновенного дифференциального уравнения, из кото-

рого находятся собственные числа краевой задачи.  

Отметим, что в классических методах собственные числа нахо-

дятся из решения краевой задачи штурма Штурма – Лиувилля, опре-

делённой в области пространственных переменных. Следовательно, в 

данном случае рассматривается другое направление определения 

собственных чисел, основанное на решении обыкновенного диффе-

ренциального уравнения относительно дополнительной функции. 

Константы интегрирования этого уравнения с заданной точностью 

находятся из выполнения начального условия методом наименьших 

квадратов, позволяющим избежать определения сложных интегралов 
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по пространственной переменной при сохранении аналитической 

формы получаемого решения. 

Выводы и рекомендации  

1. Путём использования дополнительной функции и дополни-

тельных граничных условий получено точное аналитическое реше-

ние задачи теплопроводности для пластины с симметричными гра-

ничными условиями первого рода. Применение ДГУ позволяет вы-

полнить исходное уравнение во всей области изменения простран-

ственной переменной  0 1   без проведения непосредственного 

интегрирования по ней. В связи с чем, процесс получения аналитиче-

ского решения сводится лишь к интегрированию обыкновенного 

дифференциального уравнения относительно дополнительной функ-

ции, изменяющейся лишь во времени. Из его решения находятся соб-

ственные числа, получаемые в классических методах из решения за-

дачи Штурма – Лиувилля, определённой в пространственных пере-

менных. Следовательно, в настоящей работе приводится другой спо-

соб определения собственных чисел, основанный на решении вре-

менного уравнения для дополнительной функции. 

2. Постоянные интегрирования находятся путём выполнения 

начального условия методом наименьших квадратов, позволяющим 

находить их значения, практически с заданной точностью. Преиму-

щество такого способа их определения заключается в отсутствии 

необходимости нахождения интегралов в пределах области измене-

ния пространственной переменной при сохранении аналитического 

вида решения. 

3. Ввиду отсутствия необходимости разделения переменных в 

исходном дифференциальном уравнении рассмотренный метод мо-

жет быть применен к решению краевых задач, не допускающих при-

менения классических точных аналитических методов (нелинейные, 

с переменными физическими свойствами среды, с нелинейными ис-

точниками теплоты и др.).  
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Method of additional boundary conditions in boundary 

value problems of thermal conductivity 
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A method has been developed for obtaining exact analytical solutions to boundary value 

problems of mathematical physics, based on determining additional boundary infor-

mation that allows the original differential equation to satisfy the required solution at 

boundary points. Execution of the equation on the boundaries leads to its execution in-
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side the region under consideration, excluding its direct integration over the spatial vari-

able. The eigenvalues are found from the solution of a time ordinary differential equation 

with respect to an additional function defined at one of the boundary points. Note that in 

classical methods for obtaining exact analytical solutions, the eigenvalues are found from 

the Sturm-Liouville boundary value problem defined in the domain of spatial coordinates. 

Consequently, in this work we consider another direction in determining eigenvalues that 

coincide with their exact values. The integration constants of an ordinary differential 

equation with respect to an additional function are found from the initial condition using 

the least squares method, which makes it possible to eliminate the determination of com-

plex integrals over a spatial variable. 

 

Keywords: boundary value problem, exact solution, additional boundary information, least 

squares method 
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