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Рассматривается алгоритм идентификации параметров математической модели 

на основе экспериментальных данных, образующих матрицу независимых перемен-

ных и вектор исследуемых откликов эксперимента. Математическая модель нели-

нейна, алгоритм ее решения неустойчив. Рассматриваемые условия характерны 

для обратных задач математической физики. К необходимости решения анало-

гичных задач приводят результаты натурных экспериментов или информация, 

хранящаяся в базах характеристик производственных процессов машинострои-

тельного завода, которую используют для оптимального проектирования нового 

или модернизации существующего производства. Математическая модель, ап-

проксимирующая независимые переменные и исследуемые отклики представлена 

модифицированным дробно-степенным рядом от нескольких переменных. Разра-

ботан алгоритм поиска коэффициентов и степеней дробно – степенного ряда. 

Использован итерационный метод, содержащий блоки случайного поиска, глобаль-

ной оптимизации, основанной на условии Липшица и решения системы линейных 

алгебраических уравнений. Выполнено тестирование алгоритма. Эффективность 

оценивалась по максимальной относительной погрешности расчета исследуемых 

откликов и по времени выполнения расчетов. 
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Введение. На машиностроительных заводах формируются базы 

показателей производственных процессов, характеризующие условия 

производства деталей. В этих базах «характеристик производства» 

ценная информация для проектирования нового или модернизации 

существующего производства. Они содержат фактические данные, 

полученные в результате длительной эксплуатации оборудования в 

сложившихся производственных условиях.  

Базы характеристик производства сформированы в виде таблицы, 

по строкам которой для каждой изготавливаемой детали записаны 

характеристики технологического процесса и результаты эксплуата-

ции оборудования. Если в каждой строке выделить множества «неза-

висимых переменных» и вектор «исследуемых откликов», получим 

задачу идентификации параметров математической модели. Постав-

ленная задача соответствует обратным задачам математической фи-

зики, решение которых заключается в определении параметров неко-
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торой математической модели по известным входным переменными 

и выходным исследуемым откликам.  

Представим модель в виде дробно-степенного ряда от нескольких 

независимых переменных, у которого требуется определить коэффи-

циенты и степени, т. е. как задачу математического программирова-

ния. Целевая функция задачи составлена из рассогласований между 

результатами расчета по дробно-степенному ряду исследуемых от-

кликов и значениями этих-же исследуемых откликов из базы харак-

теристик производства. Задача многопараметрическая и многокрите-

риальная: рассматривается большое количество параметров (коэф-

фициентов и степеней дробно-степенного ряда), при изменении кото-

рых в заданных пределах, целевая функция задачи, составленная из 

конечного числа критериев, стремится к минимуму.  

Проблема состоит в выборе наилучшего решения некорректно 

поставленной задачи, когда независимые переменные по столбцам 

матрицы заданы с неравномерной дискретизацией, присутствуют 

разнонаправленные их изменения, а значения меняются в широких 

пределах. Гиперповерхность, задаваемая целевой функцией, образо-

вана несколькими локальными минимумами (мультимодальность). 

При этом один из минимумов глобальный, соответствует решению 

задачи и существует вероятность определения одного из локальных 

минимумов как глобального.  

Среди методов решения многопараметрических, многокритери-

альных и мультимодальных задач наиболее эффективны численные 

методы, выполняемые по алгоритмам многомерной глобальной оп-

тимизации. Алгоритмы содержат блоки, исследующие пространство 

поиска и определяющие направление изменения варьируемых пара-

метров, преобразующие нелинейную математическую модель в си-

стему линейных алгебраических уравнений (СЛАУ) и выполняющие 

варьирование параметров случайным поиском, или его модификаци-

ями в виде генетических алгоритмов, методов пчелиного роя (роя ча-

стиц) и др. Решение такой задачи, поставленной применительно к 

проектированию машиностроительного производства, предоставляет 

информацию о оптимальных направлениях проектирования. 

Постановка задачи. Статья продолжает исследования, начатые в 

работе [1] на случай некорректной обратной задачи глобальной оп-

тимизации. Разрабатывается алгоритм идентификации параметров 

математической модели  ,i jW x  от матрицы независимых перемен-

ных 

  , 1, 1

n m

i j i j
x R



 
  

и вектора исследуемых откликов iF R  (рис. 1).  
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Модель нелинейна. Шаг в пределах каждого j – го столбца мат-

рицы 
1, ,i i j i jx x x    и шаг между исследуемыми откликами  

 1i i iF F F     1, 1i n   

может быть положительный  , 0, 0i j ix F    , отрицательный 

 , 0, 0i j ix F     либо равный нулю  , 0, 0i j ix F    , причем су-

ществуют равнонаправленные, разнонаправленные и нулевые вариа-

ции шага с неравномерной дискретизацией. 
 

  
 

Рис. 1. Схема нелинейного объекта исследования с матрицей входных пере-

менных и вектором выходных исследуемых откликов 
 

Установить взаимосвязь исследуемых откликов с независимыми 

переменными не является конечной целью. Успех идентификации 

определяет величина относительной погрешности  

  i i i iF W F   . 

Когда независимые переменные по столбцам матрицы заданы с 

неравномерной дискретизацией, наблюдаются разнонаправленные их 

изменения и значения меняются в широких пределах  

 

max

min
1

j

j j

j

x
D M

x
    , 1,j m , 

где min

jx  и max

jx  минимальное и максимальное значения, 1jM  , зада-

ча некорректно поставлена, алгоритм ее решения неустойчив, а в 

случае корректного окончания расчета относительная погрешность, 

как правило, недопустима для прикладного использования модели. 

Численные методы решения некорректной обратной задачи 

глобальной оптимизации. Построение вычислительного процесса 

поиска глобального экстремума многоэкстремальной функции на ос-

нове условия Липшица приносит множество преимуществ алгорит-

1

1

1

1

1

1
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мам оптимизации [2]. Использование этих констант обеспечивает 

простой способ контроля ограничений, уменьшает эффект неопреде-

ленности исходных данных, что обеспечивает значительное повыше-

ние производительности вычислений. 

Исследованы схемы решения задач глобальной оптимизации с 

адаптивной редукцией (уменьшением) размерности методом кривых 

Пеано (заполняющая пространство кривая) и рекурсивной (вычисли-

мой) оптимизации с алгоритмом глобального поиска [3]. Использо-

вание этих методов, когда выполняется условие Липшица, позволяет 

свести решение многомерной задачи к решению эквивалентной ей 

одномерной. Вычислительные эксперименты на серии тестовых за-

дач показывают, что использование адаптивной схемы редукции раз-

мерности может значительно сократить число итераций, необходи-

мое для решения задачи с заданной точностью. 

1) Решение задачи многомерной глобальной оптимизации с це-

левой функцией, заданной как «черный ящик» и удовлетворяющей 

условию Липшица выполнено объединением алгоритма глобального 

поиска с методом Хука – Дживса [4].  

На подготовительном шаге алгоритма проводятся предваритель-

ные вычисления целевой функции в произвольных точках простран-

ства поиска, для которых вычисляются нижние оценки констант 

Гельдера: 

‒ образуются интервалы поиска; 

‒ вычисляются «характеристики» интервала, определяемые его 

длиной, значениями целевой функции на границах интервала, кон-

стантами Гельдера и размерностью пространства поиска; 

‒ выбирается интервал с наибольшей характеристикой и рассчи-

тывается координата, доставляющая целевой функции минимальное 

значение;  

‒ по результатам итераций поиска строится дерево решений; 

‒ определяется необходимость запускать локальный метод по-

иска и, если необходимость существует, из рассчитанной таким обра-

зом координаты, выполняется поиск глобального минимума целевой 

функции методом Хука-Дживса.  

Предложенный алгоритм позволяет выявить и обойти области 

притяжения локальных минимумов. Вычислительные эксперименты, 

выполненные решением сотен тестовых многоэкстремальных задач 

оптимизации [5], показали уменьшение числа необходимых итераций 

в сравнении с известными методами глобального поиска экстремума.  

2) Двухточечный диагональный метод DIRECT липшицевой гло-

бальной оптимизации в гиперинтервале [6] не использует значения 

константы Липшица L для вычисления нижней оценки значений це-

левой функции S¯. Значение L считается неизвестным и может быть 

любым числом из диапазона [0, ∞).  
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Метод DIRECT принципиально отличается от других методов 

липшицевой оптимизации именно отказом от использования кон-

кретных значений константы L. Используется адаптивное разбиение 

пространства поиска на гиперинтервалы, в центральных точках кото-

рых проводятся расчеты S¯. Поскольку значение L считается неиз-

вестным, разбиение пространства поиска основано на двух принци-

пах: недоминируемости гиперинтервалов и достаточного улучшения 

достигнутого минимального значения S¯.  

Недоминируемость гиперинтервалов означает, что существует 

такое L ∈ [0, ∞), которое доставляет S¯ минимальное значение, рас-

считанное на всех итерациях по всем гиперинтервалам пространства 

поиска, а достаточная улучшение - что хотя бы при некоторых значе-

ниях L и заданных η > 0 должно выполняться условие: 

   * *, min : 1, ,k k iS S S S x i n     , 

где xi ― точки, в которых выполнены расчеты, n ― их число. 

Гиперинтервалы, удовлетворяющие этим условиям, называют 

потенциально оптимальными. Именно такие гиперинтервалы выби-

раются для деления на очередной итерации.  

3) В методе ExDIR-diag используется двухточечное диагональ-

ное обобщение метода DIRECT. Учитывается два дополнительных 

фактора: наличия функциональных ограничений и расчет функций в 

гиперинтервале в двух точках на концах специально ориентируемых 

главных диагоналей. Поскольку метод ExDIR-diag не оценивает кон-

станты Липшица, то несмотря на разрывы пространства поиска не 

происходит остановка вычислений. 

4) Решение задач глобальной оптимизации, целевая функция ко-

торых определяется как «черный ящик», может быть, недифференци-

руемой и многоэкстремальной требует больших вычислительных за-

трат [7, 8]. Для определения областей притяжения локальных мини-

мумов используется алгоритм дерева решений.  

Основная идея заключается в том, что целевая функция рассмат-

ривается как реализация некоторого случайного процесса. Решающие 

правило алгоритма построения сетки: следующая точка сетки соот-

ветствует точке минимума математического ожидания значений це-

левой функции. Для поиска минимума по параллельному алгоритму 

используется две оценки константы Липшица, одна из которых зна-

чительно больше другой. На каждой итерации определяются интер-

валы пространства поиска, в которых параллельно проводятся вы-

числения значений целевой функции (потоки вычислений).  

На суперкомпьютере «Лобачевский» проведены вычислительные 

эксперименты, показавшие ускорение сходимости алгоритма. Тесто-

вые многоэкстремальные задачи были усложнены дополнительными 
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вычислениями, не меняющими точку ее глобального минимума. Чис-

ло итераций, требующихся для решения этих задач с помощью по-

следовательного алгоритма с двойной оценкой константы Липшица, 

сократилось более чем в 3.7 раза по сравнению с базовым последова-

тельным алгоритмом глобального поиска. Ускорение вычислений 

наблюдалось при использовании небольшого (до 32) числа потоков 

вычислений. Дальнейшее увеличение числа потоков вычислений 

снижает эффективность распараллеливания. 

Предварительное численное моделирование. Решение обрат-

ной задачи вычислительной диагностики потока теплоносителя в за-

мкнутом циркуляционном контуре выполнено методами оптимиза-

ции [9 - 11]. Частные критерии эффективности представлены непре-

рывными, липшицевыми, не всюду дифференцируемыми, многоэкс-

тремальными функциями.  

Математическая модель описывается операторным уравнением 

 , ,Ax y x X y Y   , 

где X, Y — гильбертовы пространства; A ― линейный оператор.  

Правая часть операторного уравнения представляет исследуемые 

отклики. Предполагается, что погрешность δ задания входной ин-

формации известна и имеет место неравенство 

 y y   . 

Требуется определить устойчивые приближенные решения по за-

данной приближенной информации y
δ
. Разработаны новые гибрид-

ные алгоритмы, содержащие блоки стохастического сканирования 

пространства поиска и детерминированные методы градиентного ло-

кального поиска. Показана возможность идентификации аномалий 

фазового состава теплоносителя в контуре реакторной установки с 

достаточной для приложений точностью. 

На основе вычислительных экспериментов c использованием те-

стовых функций проведено сравнение алгоритмов метода   ― пре-

образования и метода «роя частиц» [12]. Предложена модификация 

алгоритма метода   ― преобразования. Показано, что при одном и 

том же количестве вычислений погрешность найденных исследуе-

мых откликов тестовых функций относительно теоретических, полу-

ченная с помощью модифицированного метода   ― преобразова-

ния, меньше полученной методом роя частиц. При выполнении вы-

числительных экспериментов наблюдалась погрешность около 35 %. 

Идентификация на основе интегростепенных рядов Вольтерры 

[13] соответствует отображению нелинейного динамического про-

цесса типа «вход–выход» и является обратной, некорректно постав-

ленной задачей, где входные и выходные параметры представлены 
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векторами со случайной величиной компонентов. Исследованы вы-

числительные качества идентификации на примерах модели из двух 

интегральных уравнений, редуцированных в СЛАУ. Полустатистиче-

ский методом решения интегральных уравнений обеспечил среднюю 

относительную погрешность в узлах сетки первого интегрального 

уравнения 1 5,3 %  , второго 2 9,7 %  . Метод центральных пря-

моугольников уменьшает погрешность решения до 1 3,4 %  , 

2 4,8 %  , а методом Гаусса до 1 0,34 %  , 2 0,4 %  . 

Идентификация параметров движения при их регистрации в экс-

перименте с большой дискретностью выполнена пошаговыми вычис-

лениями над последовательностями данных с интервалами (марше-

вый метод [14, 15]). В пределах интервала выполнялась кусочно-

полиномиальная аппроксимация данных, позволявшая составить и 

решить СЛАУ. Показана несостоятельность такой схемы вычисле-

ний: образуется лавинообразный процесс накопления погрешности.  

Практически значимые результаты получены минимизацией 

функционала, представляющего рассогласование между «точной» 

правой частью СЛАУ и приближенной правой частью СЛАУ, но да-

ющей удовлетворительное решение. 

Модификация случайного поиска в виде генетических алгорит-

мов и алгоритмов, дублирующих поведение пчелиного роя [16 – 18] 

позволяет получать аппроксимацию Парето-оптимальных множеств с 

лучшей производительностью и одновременно меньшими вычисли-

тельными затратами. 

Математическая модель. Математическая модель представлена 

модифицированным дробно-степенным рядом 

 

1 1 1 1

1 2 1 1 2 2 1 2
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где вектор параметров идентификации 

  , , , , , ,j j j j j jp A B C     , 

Общее количество параметров идентификации 6 1k m  . 

Алгоритм идентификации. Разработанный алгоритм идентифи-

кации параметров математической модели содержит блок случайного 

поиска и блок решения СЛАУ. В общей постановке, задача может 

быть сформулирована следующим образом: 
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  * * *, min , , kp r d r d R  , 

где глобальное решение задачи представлено вектором * * *p r d  , 

объединенным из вектора коэффициентов 

  * * * *, ,j jr A B C  

и вектора степеней  

  * * * * *, , ,j j j jd     , 1,j m , 

дробно-степенного ряда, для которого относительная погрешность 

минимальна  min max ,  1,i i n   . 

Одним из важных в прикладном значении допущений является 

предположение об ограниченном пространстве поиска целевой 

функции 

  1 S p    

и условий - ограничений на вектора 

 1 , 1L Rp p   , 

где Lp  левый и Rp  правый пределы интервала неопределенности. 

Оно связано с тем, что отношения приращений функций к соответ-

ствующим приращениям аргументов не превышает положительной 

константы  0,  L   из условия Липшица 

    L R L RS p S p L p p   . 

Коэффициенты rl  1, 2 1l m   и степени dt  1, 4t m  дробно-

степенного ряда назначаются генерированием случайных чисел η и ζ 

в пределах 1.0 , 1.0    , из которых формируется два вектора 

pL и pR.  

Целевая функция  

 
cos

1.0S


   ,  
2

1

n

i i

i

F W


   , 
 ,

cos
i i

i i

F W

F W
  , 

где  ,i iF W  ― скалярное произведение векторов, 
iF  и 

iW  ― мо-

дули векторов, iW  ― исследуемые отклики, рассчитанные по дробно 

― степенному ряду. 

Константа Липшица определяется из условия 
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p p





, 

где  LS p  и  RS p  значения целевой функции, рассчитанные по ле-

вому и правому пределам интервала неопределенности. 

Компоненты вектора p  на итерациях поиска u , для которых 

  1.0S p   

 
   , ,

2 2

R u L u L R

u

p p S p S p
p

L

 
  . 

Изменение целевой функции S(p) удовлетворяет условию Лип-

шица на интервале  ,L Rp p , когда оно ограничено областью, образу-

емой четырьмя линиями с угловыми коэффициентами L  и L  (рис. 

2а) и одновременно выполняются неравенства, 

 
   

   

L

R

S p S p

S p S p






 (1) 

достигаемые циклическим увеличением константы Липшица L  (рис. 

2б) на постоянную величину   (рис. 3). Когда число циклов i N , а 

хотя-бы одно из неравенств (1) не выполняется, генерируется новый 

вектор коэффициентов и степеней дробно-степенного ряда и поиск 

продолжается. Вычисления случайным поиском прекращаются, когда 

целевая функция   1S p   , где 1 .  

По результатам случайного поиска рассчитанные степени дробно 

― степенного ряда 
*d d  фиксируются как оптимальные, а опти-

мальные значения коэффициентов 
*r r , доставляющих минимум 

относительной погрешности ε, определяются решением СЛАУ  
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где: 

 2 1v m  ; 1, 2 1f m  ; 
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Рис. 2. Схема (а) и результаты (б) вычисления целевой функции  LS p ,  S p  

и  RS p  в точках Lp , p  и Rp  пространства поиска 
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Рис. 3. Алгоритм идентификации коэффициентов и степеней дробно – степен-

ного ряда: N  ― предельное число циклов;   ― шаг, на который увеличивается 

константа Липшица; 1 ,   ― относительная погрешность идентификации 
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граммная реализация выполнена на языке программирования C#, 

расчеты - на компьютере с процессором 11th Gen Intel(R) Core(TM) 

i7-1165G7 @ 2.80GHz.  
Задача №1 (m = 1). Экспериментальное измерение величины 

упругого проскальзывания F валков и ленты в валковых подающих 

механизмах  2 2в л вF R L R   , где лL  ― перемещение ленты за 

один оборот приводного валка, радиусом вR  [19]. Толщина подавае-

мой ленты b влияет на длину линии контакта a между валком и лен-
той. Для тестирования использованы результаты измерения F от от-
ношения /x b a  (рис. 4а и рис. 5).  

Задача №2 ( 2m  ). Экспериментальные измерения скорости ре-

зания F  (мм/мин) стального листа, на машине для плазменной резки 

в зависимости от толщины листа x1, мм и тока прожига x2, А (рис. 4б 

и рис. 5).  

Задача №3 ( 4m  ). Из базы характеристик производства выбра-

ны количества деталей, в оптимальных партиях обработки на опера-

циях листовой штамповки. Уменьшение партии обработки относи-

тельно оптимальной увеличивает время на переналадку и связанные с 

ним затраты, увеличение — увеличивает затраты на хранение дета-

лей на складах [20]. Оптимальную партию обработки F , шт. опреде-

ляют 1x  — годовая программа выпуска детали, шт.; 2x  — основное 

время изготовления детали, час; 3x  — вспомогательное время, час; 

4x  — время переналадки оборудования, час. (рис. 4в и рис. 5). 

Задача №4 ( 8m  ). Из базы характеристик производства выбрана 
годовая технологическая станкоемкость, F  (станко-час, рис. 4г и 
рис. 5) изготовления деталей из листа на операциях листовой штам-

повки в зависимости от количества деталей в год ( 1x , шт.), массы де-

тали ( 2x , кг), толщины листа ( 3x , мм), периметра вырубки ( 4x , мм), 

предела прочности материала листа при растяжении ( 5x , Н/мм
2
), 

усилия пресса ( 7x , кН), длительности операции ( 7x , мин) и вспомога-

тельного времени ( 8x , час.). 
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б) 

 

 
в) 

 

 
г) 

 

Рис. 4. Результаты тестирования алгоритма идентификации параметров дроб-

но-степенного ряда: а – экспериментальное измерение величины упругого про-

скальзывания; б – экспериментальное измерение скорости резания; в – количество 

деталей в оптимальных партиях обработки; г – годовая технологическая станкоем-

кость (результаты, отмеченные красными точками, использовались для идентифи-

кации параметров дробно-степенного ряда) 

 

 
Рис. 5. Относительная погрешность ( i , %) расчета исследуемых откликов в 

зависимости от размера v матрицы коэффициентов СЛАУ 
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Таблица 1 

 

Числовые характеристики задач и оценки эффективности алгоритма, 

max
ΔD – максимальные пределы изменения независимых переменных 

№ задачи m  k    max
ΔD  maxε , % T , сек 

1 1 7 3 6,5 9,7∙10-6 9 

2 2 13 7 26,7 3,9∙10-12 20 

3 4 25 13 2992,0 1,06∙10-11 11 

4 8 49 17 5891,0 8,2∙10-9 6 

 

Выводы. Моделирование результатов экспериментов и характе-

ристик, полученных в процессе эксплуатации машиностроительного 

производства с целью использования в проектировании нового про-

изводства или его модернизации приводит к обратным задачам гло-

бальной оптимизации. На входе математической модели матрица не-

зависимых переменных и на выходе исследуемые отклики. Незави-

симые переменные в пределах столбца матрицы записаны с неравно-

мерной дискретизацией, уменьшаются, увеличиваются или остаются 

постоянными. Целевая функция глобальной оптимизации многопа-

раметрическая, многокритериальная и мультимодальная, что значи-

тельно усложняет идентификацию параметров математической моде-

ли. 

Математическая модель в виде дробно-степенного ряда от не-

скольких независимых переменных позволяет найти численное ре-

шение некорректной обратной задачи глобальной оптимизации. Из-

менение целевой функции должно удовлетворять условию Липшица. 

Алгоритм решения содержит блок случайного поиска, работой кото-

рого назначаются коэффициенты и степени и блок решения СЛАУ, 

уточняющий коэффициенты дробно – степенного ряда. Тестирование 

алгоритма на задачах, сформированных из результатов эксперимен-

тов и эксплуатации машиностроительного производства показало до-

пустимые для прикладного использования точность и время выпол-

нения расчетов. 
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Application of Bethe energy approximation to determine 

the numerical characteristics of codes on a graph 

structures 
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An algorithm for identifying the parameters of a mathematical model using experimental 
data in the form of a matrix of independent variables and a vector of the studied experi-
mental responses is considered. The mathematical model is nonlinear, and the algorithm 
for solving it is unstable. The conditions under consideration are typical for inverse prob-
lems of mathematical physics. The need to solve similar problems is caused by the results 
of field experiments or information stored in the databases of the characteristics of the 
production processes of a machine-building plant, which is used for optimal design of a 
new or modernization of existing production. The mathematical model approximating the 
independent variables and the studied responses is represented by a modified fractional 
power series of several variables. An algorithm for searching for coefficients and degrees 
of a fractional power series has been developed. An iterative method containing blocks of 
random search, global optimization based on the Lipschitz condition and solving a sys-
tem of linear algebraic equations is used. The algorithm has been tested. The effective-
ness was assessed by the maximum relative error in calculating the studied responses 
and by the time of calculations. 
 
Keywords:  inverse problem, fractional power series, global optimization, identification, 
Lipschitz condition, search space, uncertainty interval, goal function 
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