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В статье рассмотрены дисперсионные волновые процессы в симметричной трех-
слойной пластине. Каждый из слоев пластины предполагается упругим и изотроп-
ным. Приведен численный и асимптотический анализ дисперсионного соотношения. 
Построенные численные решения дисперсионного соотношения анализируются  
в коротковолновой области, с выводом соответствующих асимптотик. Полученные 
приближенные решения сравниваются с точными решениями, демонстрируя весьма 
широкую область применимости, значительно превосходящую ожидаемую. Полу-
ченные асимптотические решения могут найти применение в оценках погрешности 
при вычислении интегралов по волновому числу, в связи с чем представляется воз-
можным развитие соответствующих гибридных численно-асимптотических мето-
дов для нестационарных волновых полей, возникающих при ударных воздействиях. 
 
Ключевые слова: трехслойная пластина, дисперсионное соотношение, коротко-
волновые асимптотики.  

 
Введение. Материалы, имеющие слоистую структуру, уже давно 

используются в инженерных конструкциях. Одной из наиболее попу-
лярных областей применения является аэрокосмическая отрасль, где 
существенным фактором является способность материала обеспечить 
высокий показатель прочность — масса. В последнее время это каче-
ство приобретает все большее значение для производителей, пытаю-
щихся изготовить более легкие и эффективные летательные аппараты 
(ЛА). Следует отметить, что круг возможных приложений данного ис-
следования не ограничивается аэрокосмической отраслью. Так, на-
пример, земная кора имеет слоистую структуру. Еще одним важным 
приложением является моделирование биомеханических свойств сте-
нок артериальных сосудов, при котором обычно выделяют три слоя: 
внешний (адвентиция), средний (медия) и внутренний (интима). 

Целью настоящей работы является исследование дисперсионных 
волновых процессов в симметричной трехслойной упругой пластине. 
Каждый из слоев предполагается линейно-изотропным. Проблема 
дисперсии волн в пластине имеет долгую историю [1, 2]. В моногра-
фии [1] представлена классификация соответствующих длинновол-
новых и коротковолновых асимптотических теорий. Расширению ме-
тодологии [1] для анизотропных и предварительно деформированных 
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однослойных пластин, а также других типов граничных условий по-
священы работы [3–6]. Основной акцент в большинстве исследова-
ний, опирающихся на асимптотические методы, был сделан на длин-
новолновом приближении. Среди немногих работ, анализирующих 
коротковолновый предел, следует выделить [7]. Исследованию раз-
личных аспектов дисперсии волн в трехслойных пластинах в длинно-
волновой области посвящены работы [8–10].  

В данной работе построены коротковолновые асимптотики для 
дисперсионного соотношения в трехслойной пластине. Используя 
основные соотношения теории упругости, с помощью стандартной 
техники выводятся дисперсионные соотношения для симметричной и 
антисимметричной задач, являющихся аналогами классических задач 
растяжения-cжатия и изгиба для однослойной пластины. Затем при-
водятся результаты численных расчетов, после чего строятся асим-
птотические приближения в коротковолновом пределе. Установлено, 
что пределом фундаментальной моды для фазовой скорости является 
скорость соответствующей поверхностной или интерфейсной волны. 
Также получены приближения для высокочастотных гармоник. 
Сравнение полученных асимптотик с точным решением иллюстриру-
ет их эффективность. Полученные асимптотические приближения 
могут быть использованы в оценках погрешности при вычислении 
соответствующих интегралов по волновому числу. В связи с этим 
представляется возможным развитие численно-аналитических мето-
дов анализа нестационарных волновых полей, возникающих в слои-
стых конструкциях при ударном воздействии. 

Основные соотношения. Рассмотрим упругую трехслойную 
пластину симметричного строения, имеющую два идентичных внеш-
них слоя h , а также внутренний слой толщиной 2d  (каждый из сло-
ев предполагается изотропным). Зададим декартову систему коорди-
нат 1 2 3Ox x x  следующим образом: расположим начало координат на 

срединной плоскости, а ось 2Ox  направим по нормали к срединной 

плоскости. В этом случае внутренний слой занимает область 

2d x d   , а верхний и нижний внешние слои задаются соответст-

венно неравенствами 2d x d h    и 2h d x d     . С целью уп-

рощения анализа примем допущение плоского деформированного 
состояния, т. е. предположим, что перемещения 1u  и 2u  не зависят от 

переменной 3x , а также 3 0u  . Уравнения движения упругого слоя:  

   1,11 1,22 2,21 12 ;u u u         u                      (1) 

   1,12 2,11 2,22 22 ,u u u         u
                   

(2) 
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где   и   — параметры Ламэ;   — объемная плотность. Ввиду ко-
нечной толщины слоя решение находят в форме 

2 1( )
1 2( , ) ( , ) ,kqx ik x vtu u U V e e                                   (3) 

где k  — волновое число; v  — фазовая скорость, а величина q  под-
лежит определению. Из подстановки (3) в уравнения движения (1), 
(2) из условия существования нетривиальных решений получим би-
квадратное характеристическое уравнение для q , из которого  

2 2
2 2
1 2

2
, .

2

v v
q q

    
 

   
                                (4) 

Следовательно, собственные функции U  и V  можно записать  
в виде 

1 2 1 2 2 2 2 2(1) (2) (3) (4) ;kq x kq x kq x kq xU U e U e U e U e                  (5) 

1 2 1 2 2 2 2 2(1) (2) (3) (4) ,kq x kq x kq x kq xV V e V e V e V e                   (6) 

где  iU  и  iV  — произвольные постоянные, i = 1, …, 4.  Выражая 

постоянные  iV  через  iU  и используя уравнения движения (1), (2), 
перепишем решения (5), (6) следующим образом:  

1 2 1 2 2 2 2 2(1) (2) (3) (4) ;kq x kq x kq x kq xU U e U e U e U e                  (7) 

1 2 1 2 2 2 2 2(1) (2) (3) (4)
2 2

1 1

.kq x kq x kq x kq xi i
V U e U e iq U e iq U e

q q
 

         (8) 

Соответствующие выражения для двух компонент тензора на-
пряжений имеют вид: 

1 2 1 2 2 2 2 2(1) (2) (3) (4)1
1 2

1

1
{( ){ } 2 { }} ;kq x kq x kq x kq xq U e U e q U e U e

k q
 

       (9) 

1 2 1 2 2 2 2 2(1) (2) 2 (3) (4)2 2 { } (2 ){ }.kq x kq x kq x kq xU e U e v U e U e
ik

 
        (10) 

Вывод дисперсионного соотношения. Приведем вывод диспер-
сионного соотношения, соответствующего свободным граничным 
условиям на внешних поверхностях с учетом условий неразрывности 
на интерфейсах:  

1 2 20 ( );при x d h                                 (11) 

1 1 2 2 1 1 1 1 2; ; ; .приU U V V x d                           (12) 
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Здесь и далее величины с тильдой соответствуют внутреннему 

слою, а параметры 2
1p  и 2

2p  соответствуют 2
1q  и 2

2q . Используя усло-

вия (11), (12), получим в общем случае систему линейных алгебраи-
ческих уравнений из 12 уравнений с 12-ю неизвестными, условие 
существования нетривиальных решений которой дает дисперсионное 
соотношение. В то же время, с учетом симметрии задачи, система 
может быть разделена на две подсистемы из шести уравнений с ше-
стью неизвестными, т. е. на так называемые симметричную и анти-
симметричную задачи. 

Дисперсионное соотношение для симметричного случая прини-
мает вид 

1 1 2 2 2 2

1 1 1 1 2 2

2 2

2 2

1 1 1 2

1 1 1 2

2 2 0 0

2 2 0 0

0 0 2 2
0,

0 1 0 1

2 0 0 2

0 1 0

S C q S q C

q C q S C S

q p

q p

q p T T

q p T T

   
   

   


   

 

 
 

        (13) 

где  sinh ;m mS kq h   cosh ;m mC kq h   tanh ;m mT kp d     
22 ;v    22 .v      Полученное соотношение (13) связывает 

между собой фазовую скорость и волновое число. Дисперсионное 
соотношение для антисимметричного случая имеет вид 

1 1 2 2 2 2

1 1 1 1 2 2

2 1 2 2

2 1 2 2

1 1

1 1

2 2 0 0

2 2 0 0

0 0 2 2
0.

0 1 0

2 0 0 2

0 1 0 1

S C q S q C

q C q S C S

q T p T

q T p T

q p

q p

   
   

   


   

  
 



      (14) 

Численные результаты. Приведем численные результаты, ил-
люстрирующие полученные дисперсионные соотношения. При рас-
четах было использовано два набора материальных параметров:  

        

Вариант 1 ……………………….. 1,0 1,5 1,5 3,5 
Вариант 2 ……………………….. 1,5 3,5 1,0 1,5 

 
На рис. 1 представлены 20 первых мод зависимости масштабиро-

ванной скорости v v   от безразмерного волнового числа kh , со-

ответствующих дисперсионному соотношению. 
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Рис. 1. График зависимости масштабированной скорости v   

от безразмерного волнового числа kh  (
2v    

в коротковолновом пределе) 

 
Дисперсионные кривые для уравнений (13) и (14) показаны соот-

ветственно прерывистыми и непрерывными линиями. Основной це-
лью данной работы является анализ в коротковолновой области  
( ,kh dh  ). Из рис. 1 видно, что обе фундаментальные моды и все 
убывающие гармоники стремятся к постоянному значению, равному 
скорости сдвиговой волны во внутреннем слое. Результаты числен-
ных расчетов показывают, что величины 1 2,p p  и 2q  являются дейст-

вительными, а величина 1q  — чисто мнимой. Более того, можно за-

метить, что в пределе ( ,kh dh  ) амплитуда 1q  стремится к нулю,  

а значит, коротковолновый предел фазовой скорости следует из (4). 
Таким образом, случай 1 соответствует 1 1ˆ ,q iq  2 1 2, ,  q p p R  при 

, ,kh dh    2
1̂ 0,   .q v     

Заметим, что коротковолновый предел всех гармоник также име-

ет вид 2 ,v    связанный со скоростью поперечной волны во внут-
реннем слое. Стоит отметить, что аналогичный случай для скорости 

продольной волны, когда 2 0,q   а 2 2 ,v      не может быть реа-

лизован на практике, поскольку предельная скорость совпадает с ми-
нимальной из соответствующих скоростей. 
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На рис. 2 приведены результаты расчетов, аналогичных показан-
ным на рис. 1, с той лишь разницей, что параметры внутреннего  
и внешних слоев поменялись местами. В длинноволновом пределе 
фундаментальных мод для симметричного и антисимметричного 
случаев результаты идентичны предыдущим. В то же время можно 
отметить весьма серьезное различие между рисунками, состоящее  
в следующем: существует значение скорости, для которого кривые на 
рис. 2, соответствующие симметричным (прерывистые) и антисим-
метричным (непрерывные линии) модам, сливаются (начиная с неко-
торого значения волнового числа). В случае, показанном на рис. 1, 
симметричные и антисимметричные дисперсионные кривые не пере-
секаются, сближаясь и снова расходясь. Также заметим, что в корот-
коволновом пределе ( ,kh dh  ) кривые на рис. 2 стремятся к зна-
чению скорости поверхностной волны для материала внешних слоев. 
При этом на рис. 1 соответствующие значения скоростей поверхно-
стной и сдвиговой волн настолько близки, что практически неотли-
чимы на графике. Здесь и далее под случаем 2 понимаем 2 2ˆ ,q iq  

1 1 2, ,  q p p R  при , ,kh dh    2
2 0,   .q v      

 

Рис. 2. График дисперсионной зависимости фазовой скорости v  
от безразмерного волнового числа kh  

 
Асимптотический анализ антисимметричного дисперсионного 

соотношения в коротковолновой области. Получим приближения 
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для фазовой скорости для больших значений волнового числа, соот-
ветствующие антисимметричному дисперсионному соотношению. 

Коротковолновый анализ гармоник ( ,kh dh  ). Рассмотрим 

случай 1 ( 2v  , причем μ   ): значение 1 1q̂ iq  является чисто 

мнимым, значения 2 1 2, ,  q p p  действительны, а также 1̂ 0q   при 

, .kh dh   Раскладывая слагаемые антисимметричного дисперсион-

ного соотношения в ряд по малому параметру 1̂q , получим 

 2 2 2
1 1 2 2 2 1 2

2 2 2
2 2 2 1 1

ˆ ˆtan( ) [4 (2 ) 4 ]

ˆ[4 ( ) ] ( ),

kq h q p q q p p

p p q p O q

         

       

  

 
        (15) 

где чертой обозначены величины порядка единицы. Анализ ведущего 
порядка разложения (15) дает  

1
1

1
ˆtan( ) .

ˆ
kq h O

q

 
  

 
                                          (16) 

Следовательно, 1 1̂tan(ˆ 0,  ) kqq h  , откуда 

1

1
2ˆ .

n
q

kh

   
                                              (17) 

Используя соотношения (4), (17), получим следующее асимпто-
тическое разложение для фазовой скорости n-й гармоники в коротко-
волновом пределе: 

2 2
2

2

1
1 …, 1, 2, 3, …

2 ( )
nv n n

kh

             
             (18) 

Соответствующие разложения для величин 2 1 2, ,  q p p  могут быть 

записаны как 

2 2 2
2 2 1 1 1 1 2 2 1ˆ ˆ ˆ( ); ( ); ( ),q q O q p p O q p p O q               (19) 

в которых величины порядка единицы 2 1,  q p и 2p  имеют вид 

2 1 2
(2 )

; ; .
2 (2 )

q p p
         

  
       

  
 

      (20) 

Следует отметить, что величины, определенные в соотношениях 
(20), всегда действительны в коротковолновой области. Из условий 
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мнимости 1q  и действительности 2 1 2, ,  q p p  вытекает неравенство 

2v 
 


 


. 

Приближение следующего порядка может получено с помощью 
представления 

1
1 12

1

1
2ˆ ˆ; tan( ) ,

( )

n
kh

q kq h
kh kh

        


                    (21) 

где величина 1  подлежит определению.  

Подставив (21) в (15), найдем 

1
1

1

1
,

2
n

        
                                        (22) 

где 1  и 1  — величины порядка единицы, имеющие вид 

2 2 2
1 2 2 2 1 2[4 (2 ) 4 ];p q q p p                           (23) 

2 2
1 2 2 2 1[4 ( ) ] .p p q p                                (24) 

Подставляя соотношение (22) в (21) и используя (18), находим 
2 2

2 1
2

1

21
1 1 ..., 1, 2, 3, ...

2 ( )
nv n n

khkh

                  
.     (25) 

На рис. 3 приведено сравнительное поведение первых пяти гар-
моник антисимметричного дисперсионного соотношения (14) с уточ-
ненными асимптотическими приближениями (25) для тех же пара-
метров материала, которые были использованы для рис. 1. Из рис. 3 
видно, что полученные приближения 3-го порядка аппроксимируют 
точное решение в коротковолновой области.  

Приведем аналогичные рассуждения для случая 2 ( 2v   , при-

чем    ) величина 1 1p̂ ip  является чисто мнимой, значения 2 ,p

1 2,q q  действительны, причем 1ˆ 0p   при ,kh dh  . Разлагая анти-

симметричное дисперсионное соотношение в ряд по малому пара-
метру 1p̂ , имеем 

2
1 2 1 2 2 2 1ˆ ˆ ˆtan( ){ } {4 } ( ),kp d p p O p                       (26) 

где величины порядка единицы 2  и 2   заданы в виде 

2 2 2
2 1 2 1 2 (4 ( ) );q p q q                               (27) 

2 2 2
2 1 2 2 2 2(4 (2 ) 4 ) .q q p p q                            (28) 
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Рис. 3. Поведение первых пяти гармоник дисперсионного соотношения (14) 
и его коротковолновых асимптотических приближений (25) 

в случае 1 0q   

 
Из асимптотического анализа ведущего порядка получим 

1 1ˆ ˆtan( ) ( ),kp d O p                                      (29) 

откуда 1ˆ 0p   при 1an( ) 0ˆt pk d  . Следовательно, в ведущем порядке 

1ˆ .
n

p
kd


                                              (30) 

Подставляя полученные результаты в уравнение (4), получим 

2
2 1 , 1, 2, 3,n

n
v n

kd

            
     .                  (31) 

Аналогичные разложения для величин 2 1 2, ,p q q  имеют вид 

2 2 2
1 1 1 2 2 1 2 2 1ˆ ˆ ˆ( ); ( ); ( ).q q O p q q O p p p O p                 (32) 

Здесь величины порядка единицы 2 1,p q  и 2q  определены соот-

ношениями 

2 1 2
(2 )

; ; .
2 (2 )

q q p
         

  
       

  
 

        (33) 
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Уточненные асимптотические разложения принимают вид 

32 2
1 12

ˆ ˆ; tan( ) ( ) ,
( )

n
p kp d O kh

kd kdkd
 

                     (34) 

где значение 2  может быть найдено с помощью подстановки (34) в 

(26) в виде 

2 2 2
2

2

(4 )
.

n p  
 


                                   (35) 

Используя соотношения (34), (35), можно уточнить разложение (31): 

2 2
2 2 2 2

3
2

(4 )2( )
1 , 1, 2, 3,

( )
n

pn n
v n

kd kd

               
    .    (36) 

Эффективность уточненных высокочастотных коротковолновых 
приближений (36) проиллюстрирована на рис. 4. 

 

Рис. 4. Сравнение численного решения дисперсионного соотношения (14) 

и его коротковолновых асимптотических приближений (36) для 1 0p   

 
Коротковолновый анализ фундаментальных мод: скорости по-

верхностных и интерфейсных волн. Приведем основные результаты 
асимптотического анализа фундаментальных мод в коротковолновом 
пределе , .kh dh   Можно показать, что в этом пределе для обоих 
дисперсионных соотношений (13), (14) справедливо 
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( ) ( ) 0,R v S v                                               (37) 

где 
2 4 2 2 4

1 2( ) { 4 4 4 };R v v v p p                               (38) 

4 2 2
1 2 1 2 2 2 1 1

2 2 2 2
1 2 1 2 1 1

( ) 2 {(4 ( ) ) (4 ( ) )}

{(4 (2 ) 4 ) ( (2 ) )}.

S v p q v p p f f f f

p p f f f f

           

        

  

 
 

Соотношения (38) соответствуют уравнениям для скоростей по-
верхностной волны Рэлея [11, 12] и интерфейсной волны Стоунли 
[13, 14] соответственно. 

Асимптотический анализ симметричного дисперсионного со-
отношения в коротковолновой области. Рассмотрим построение 
коротковолновых асимптотических приближений ( ,kh dh  ) для 
симметричного дисперсионного соотношения (13). 

Случай 1 ( 2 ,v   причем μ   ): значение 1 1q̂ iq  является 

чисто мнимым, а величины 2 1 2, ,  q p p  являются действительными  

( 1̂ 0q   при ,kh dh  ). Используя разложение по малому парамет-

ру 1̂q , получим 

 2
1 3 1 3 1ˆ ˆtan( ) ( ),kq h q O q                                  (39) 

где величины порядка единицы 3  и 3  заданы в виде  

2 2
3 1 2 2 1(4 ( ) ) ;p p q p                               (40) 

2 2
3 2 2 2 1 2( ) (4 (2 ) 4 ).p q q p p                        (41) 

В ведущем порядке из (39) получим 

1 1ˆ ˆtan( ) ( ),kq h O q                                    (42) 

откуда вытекает 1̂ 0,q    1̂tan 0,kq h   т. е. в главном 

1̂ .
n

q
kh


                                            (43) 

Используя соотношения (4) и (43), получим  

2
2 1 …, 1, 2, 3, …n

n
v n

kh

            
 .                  (44) 

Соответствующие приближения для величин 2 1 2, ,  q p p  имеют вид 

2 2 2
2 2 1 1 1 1 2 2 1ˆ ˆ ˆ( ); ( ); ( ).q q O q p p O q p p O q                (45) 
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Уточним результат (43), полагая 

3 3
1 12

ˆ ˆ; tan( ) ,
( )

n
q kq h

kh khkh

 
                             (46) 

где 3  подлежит определению. Подставляя (46) в (39) и приравния 

слагамые при соответствующих степенях ,kh  получим 

3
3

3

.n


  


                                              (47) 

Используя результаты (46), (47), получим уточненное приближе-
ние для фазовой скорости (44) в виде 

2 2
2 3

3
3

( )
1 2 …, 1, 2, 3, … 

( )
n

nn
v n

kh kh

              
 .         (48) 

На примере первых пяти гармоник (рис. 5) для сравнения показа-
но численное решение дисперсионного соотношения (13) с получен-
ными асимптотическими приближениями 3-го порядка (48). 

 

Рис. 5. Построения для дисперсионного соотношения (13) 

и его коротковолновых асимптотических приближений (48) для 1 0q   

 

Случай 2 ( 2 ,v    причем    ): величина 1 1p̂ ip  является 

чисто мнимой, а значения 2 1 2, ,p q q  действительны, при этом 1ˆ 0p   
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при , .kh dh   Используя 1p̂  в качестве малого параметра, имеем 

следующее разложение для дисперсионного соотношения (13): 

2
1 1 2 4 4 1ˆ ˆ ˆtan( ) (4 ) ( ),kp d p p O p                           (49) 

в котором 

2 2
4 1 2 1 2

2 2
4 1 2 2 2 2

(4 ( ) );

(4 (2 ) 4 ) ( ).

q p q q

q q p p q

       

       

  

  
                 (50) 

Анализ ведущего порядка дает 

1 1ˆ ˆtan( ) ~ ( ),kp d O p                                    (51) 

откуда 1ˆ 0,p   1tan( ) 0,p̂k d   т. е. 

1ˆ .
n

p
kd


                                             (52) 

Из последнего соотношения вместе с формулами (4) следует 

2
2 1 , 1, 2, 3,n

n
v n

kd

            
    .                 (53) 

Аналогичные разложения для 2 1 2, ,p q q  имеют вид 

2 2 2
1 1 1 2 2 1 2 2 1ˆ ˆ ˆ( ); ( ); ( ).q q O p q q O p p p O p             (54) 

Из анализа следующего порядка имеем 

4 4
1 12

ˆ ˆ; tan( ) ,
( )

n
p kp d

kd kdkd

 
                       (55) 

где  

2 4 4
4

4

(4 )
.

n p  
 


                              (56) 

Используя (55), (56), можно уточнить разложение (53). Получим  

2 2
2 2 4 4

3
4

(4 )2( )
1 , 1, 2, 3,

( )
n

pn n
v n

kd kd

               
    .    (57) 

Эффективность полученных приближений (57) проиллюстриро-
вана на рис. 6. 
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Рис. 6. Построения для дисперсионного соотношения (13) 

и асимптотических приближений 3-го порядка (57) для 1 0p   

 
Заключение. В данной работе приведены результаты асимптоти-

ческого анализа дисперсионного соотношения в трехслойной пла-
стине в коротковолновой области. В частности, установлено, что 
пределом фундаментальной моды для фазовой скорости в случае ан-
тисимметричного дисперсионного уравнения является скорость соот-
ветствующей поверхностной или интерфейсной волны. Также полу-
чены коротковолновые приближения для фазовой скорости в случае 
высокочастотных гармоник. Результаты могут быть применены в 
оценках погрешности при вычислении соответствующих интегралов 
по волновому числу. 
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A short wave asymptotic analysis of the dispersion 
relation for a symmetric three-layered elastic plate 

@ M.I. Lashab1, G.A. Rogerson2, K.J. Sandiford3 
1Faculty of Science, Alasmarya University, Zliten, Libya 
2School of Computing and Mathematics, Keele University, UK 
3The University of Salford, UK 

 
The dispersion relation for a symmetric 3-layered elastic plate is derived and analysed, 
both numerically and asymptotically. Each layer is assumed to be composed of a linear 
isotropic elastic material. Numerical solutions of the relation are first presented. After 
presentation of these numerical solutions, particular focus is applied to the short wave 
regime, within which appropriate asymptotic approximations are established. These are 
shown to provide excellent agreement with the numerical solution over a surprisingly 
larger than might be expected wave number regime. It is envisaged that these solutions 
might offer some potential for estimation of truncation error for wave number integrals 
and thereby enable the development of hybrid numerical-asymptotic methods to deter-
mine transient structural response to impact.  
 
Keywords: 3-layered plate, dispersion relation, short-wave asymptotics.  
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