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В работе рассматривается применение Бете-аппроксимации энергии Гиббса для 

определения перманента матрицы. Проведен анализ зарубежной литературы, 

включая известные аналитические и численные методы оценки Бете-перманента. 

Предложен комбинаторный метод определения Бете-перманента при помощи 

циклического индекса группы симметрии. Также предложен вероятностный метод 

определения Бете-перманента на основе Якоби-аппроксимации (normalized min-

sum) метода распространения доверия (Belief Propagation), позволяющий вычис-

лять перманент с линейной сложностью. Предложен способ применения Бете-

перманента для определения псевдокодовых слов протоматрицы низкоплотност-

ного кода. 

 

Ключевые слова: Бете перманент, перманент, псевдокодовое слово, низкоплот-
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Введение. В последние годы исследователи в области теории 

информации все чаще обращаются к моделям статистической физики 

как в поиске метрик оценки качества, так и для построения моделей 

[1,2]. Сама идея связи теории информации и статистической физики 

не нова: определение информационной энтропии К. Шеннона тесно 

связано с статистической энтропией Л. Больцмана [2,3]. Современ-

ные исследователи используют, например, модель Исинга спиновых 

стекол для улучшения метрик в теории кодирования [4,5,6].  

Актуальность вычисления Бете-перманента обусловлена его 

практической значимостью для решения важных задач статистиче-

ской физики, машинного обучения и теории информации. В теории 

кодирования Бете-перманент представляет собой эффективный метод 

для анализа структурных свойств кодов на графах, позволяя оцени-

вать их дистантные характеристики [7, 8].  

Методы вычисления Бете-перманента можно разделить на два 

класса. Первый использует комбинаторные подходы, основанные на 

поиске идеальных совпадений (perfect matchings) в двудольных гра-

фах и анализе структурных свойств матриц [9 – 15]. Второй класс со-

ставляют вероятностные методы, такие как алгоритм Belief 

Propagation (sum-product BP), которые используют итеративные про-

цедуры для приближенной оценки перманента через распространение 

локальных сообщений в графовой структуре [16 - 18]. 
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Предложенные в рамках этих двух подходов методы имеют су-

щественные недостатки. Комбинаторные методы показывают высо-

кую точность, но при этом характеризуются экспоненциальным ро-

стом вычислительной сложности   !O n  и применимы лишь к мат-

рицам специального вида. Предложенные вероятностные методы 

имеют полиномиальный рост сложности   2O n . Несмотря на 

меньшую сложность известные вероятностные методы все еще не 

позволяют вычислять Бете-перманента для матриц используемых на 

практике длинных кодов на графах. 

Данное исследование посвящено разработке новых комбинатор-

ных и вероятностных методов вычисления Бете-перманента как для 

плотных, так и для разреженных матриц, обладающих меньшей вы-

числительной сложностью. 

Основные понятия Бете-перманента. Для того, чтоб говорить о 

понятии Бете-перманента, для начала нужно ввести определение 

перманента матрицы [14], которое неразрывно связано с определени-

ем детерминанта матрицы. 

Пусть    ~ijH H m m   - квадратная матрица, тогда перма-

нент матрицы H  определяется как [14], [19]: 

    
 m

i i
S i m

perm H H


 

  , (1) 

где mS  ― множество всех возможных перестановок над множеством 

 m .  

Соотношение (1) отличается от определения детерминанта мат-

рицы только отсутствием знакочередования и тем, что может быть 

расширено на неквадратные матрицы. 

Так, для матрицы вида 
1 1

1 1
H

 
  
 

 перманент определяется как 

  1 1 1 1 2perm H      . 

Аппроксимацией перманента матрицы являются М-перманент 

Бете и перманент Бете. Они определяются для P-расширенной мат-

рицы. Для матрицы, рассмотренной выше, P-расширенной матрицей 

будет 

 
11 12

21 22

MP
P P

H
P P

  
  
 

, (2) 

здесь   ,~ ,  ij ij m MP M M P    ― перестановочные матрицы (перму-

танты) из ,m M  ― множества всех перестановочных матриц размера 
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 M M . Матрица перестановок получается из единичной матрицы 

изменением порядка расположения строк. Иначе говоря, квадратная 

матрица, в каждой строке и в каждом столбце которой только один 

элемент отличен от нуля и равен единице, называется матрицей пере-

становок. 

Важными в рамках данной работы являются следующие свойство 

и утверждения для матриц перестановок [19]. 

Свойство 1: 

 
T TPP P P I  . (3) 

Утверждение 1. Произведение матриц перестановок одного и то-

го же порядка есть матрица перестановок [14, 19].  

Утверждение 2. Матрица перестановок порядка n может быть 

представлена в виде произведения (n - 1) элементарных матриц пере-

становок [9, 19]. 

Утверждение 3. Квадрат элементарной матрицы перестановок 

есть единичная матрица [19]. 

На основе этого М-перманент Бете матрицы Н определяется сле-

дующим образом [9]: 

    
,

M

m M

P
M

BMperm H perm H



 , (4) 

где угловые скобки означают среднее по всем элементам множества 
ψ. Непосредственное использование формулы (4) приводит к слож-

ным вычислениям: вместо одного перманента матрицы  2 2  необ-

ходимо посчитать !M  перманентов матриц размера 2 2M M .  

Вычисление М-перманента Бете можно упростить путем следу-

ющего преобразования матрицы MP
H


, полученного с использовани-

ем свойства 1 и утверждения 1: 

 

11 12 11 11 12 11

21 22 21 21 22 21

12 12 12

22 22 12

22

.

M

T T

P

T T

T
T

T
T

P P P P P P
H

P P P P P P

I P II P P

I P II P P

I I

I P


  

    
   

  
    

      

 
   
 

 (5) 

В результате в матрице остался всего один блок-пермутант раз-

мера  M M . 

Приведем два важных примера для 2M   и 3M  .  
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В случае 2M  , согласно (5), имеются две матрицы 2P
H

 : 

 2 2

1 2

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1
;   .

1 0 1 0 1 0 0 1

0 1 0 1 0 1 1 0

P P
H H

 

   
   
    
   
   
   

 (6) 

Определим идеальные совпадения (perfect matchings) [12] в дву-

дольном графе. Положим граф  ,G V E , где V  ― множество вер-

шин, E  ― множество ребер. Тогда определим E E  , такое, что ни-

какая пара ребер из E  не имеет общей конечной вершины. Такие 

ребра представляют собой идеальные совпадения на графе. Мощ-

ность подмножества E  является числом идеальных совпадений. 

Рассмотрим двудольные графы для вышеприведенных матриц 

(рис. 1): 
 

  
 

Рис. 1. Двудольные графы для матриц 2

1

P
H


 и 2

2

P
H

  

 

Посчитаем теперь идеальные совпадения на графах. Для матрицы 
2

1

P
H


 имеем 4 варианта идеальных совпадений [12-13]: 

 

1 1 1 1 1 2 1 2

1 1 1 2 1 1 1 2
;  ;  ;  

2 2 2 2 2 1 2 1

2 2 2 1 2 2 2 1

                 
                        
                 
       
                 

 (7) 

для матрицы 2

2

P
H


, соответственно, имеем 2 варианта идеальных 

совпадений [13]: 

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2
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1 1 1 2

1 1 1 2
;  ;

2 2 2 1

2 2 2 1

       
          
       
   
       

 (8) 

Теперь можно определить Бете-перманент порядка 2M   ис-

ходной матрицы следующим образом [9]: 

  , 2

1

1 1
4 2

! 2

M

M
B M i

i

perm E
M





   . (9) 

Рассмотрим теперь матрицу 3P
H

  (M = 3). Легко убедиться, что 

для такой матрицы существует 1 набор из 3 совпадений, 3 набора из 2 

совпадений и 1 набор с 1 совпадением, иными словами: 

    3 3 2 1
3

, 3

1

1 1
2 3 2 2 2

! 6

M
P

M
B M i

i

perm H E
M







      . (10) 

Взяв предел М-перманента при M  , получим выражение для 

Бете-перманента [10]: 

    ,lim MP

B B M
M

perm H perm H



 . (11) 

Для матриц вида (2), (6) известно точное значение Бете-

перманента [13]: 

 
1 1

lim 1 1
1 1

M

B
M

perm M


 
   

 
. (12) 

Однако, вычисление Бете-перманента всюду плотной матрицы с 

протографом  2 2  с использованием описанного метода (12) оста-

ется слишком сложным для практически важных случаев.  

Метод оценки Бете-перманента с использованием теории 

групп. М-перманент Бете матрицы можно определить из соображе-

ний теории групп. Авторами предлагается оригинальный метод 

определения Бете-перманента при помощи циклического индекса 

группы симметрии: 

    
,

M

m M

P
M

BM Mperm H Z S



 , (13) 

где  MZ S  ― циклический индекс группы симметрии. 

Циклический индекс группы симметрии может быть определен в 

терминах полиномов Бэлла: 
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  
 1 20! ,1! ,..., ( 1)!

!

M M

M

B a a n a
Z S

M


 , (14) 

где  1 20! ,1! ,..., ( 1)!M MB a a n a  ― полином Бэлла, 2c

la   ― перемен-

ные Бэлла,  ~ 1;c M  ― количество циклов, образуемых рассматри-

ваемой подстановкой.  

Вычисление индекса группы сводится к применению рекурсив-

ного соотношения 

 
       

 

1

1 1

1

0

1
1 ! ! ;

!

1.

M
M

M l l M

l

Z S C l a M l Z S
M

Z S



 



  




 (15) 

Для достаточно больших значений М с учетом неравенства

   B BMperm A perm A , можно считать, что получена достаточно 

точная оценка Бете-перманента матрицы.  

Однако при увеличении M рекурсивно растет сложность вычис-

лений. Такой рост сложности ограничивает применение предлагае-

мого комбинаторного метода матрицами кодов на графах небольшой 

длины.  

Метод распространения доверия (Belief Propagation). Вероят-

ностный подход к определению Бете-перманента рассматривается в 

работах [16 - 18]. Известен [16, 17] метод для локальной минимиза-

ции свободной энергии Бете – распространение доверия (Belief Prop-

agation, BP). Метод распространения доверия предусматривает ите-

ративную пересылку сообщений между узлами графа, описывающего 

матрицу. В [17] предлагается использовать sum-product реализацию 

BP-метода для оценки Бете-перманента. Рассмотрим подробнее этот 

метод.  

Положим, что  
lx jm y  ― сообщение между вершинами графа ix  

и jy , тогда величины правдоподобия определяются через сообщения, 

как [17]: 

 

           

           

, ~ ,

, ~ ;  ~

k l

k l

i j i j i j y i x j

k j l i

i i y i j j x j

k j l i

b x y x y x y m x m y

b x x m x b y y m y

  

 

 

 

 

 
 (16) 

где ,   ― односимвольный и двусимвольный потенциалы [16]. 

На каждой итерации сообщения обновляются согласно правилу: 

        ,
k

i

new

xi j i i j y i

x k j

m y x x y m x 


 
  

 
  . (17) 
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Амплитуды доверия сообщений уменьшаются при помощи мас-
штабирующего множителя 0 1   для обеспечения более плавной 
оптимизации в логарифмическом пространстве: 

        ln ln ln lnnew

xi j xi j xi j xi jm y m y m y m y    
 

. (18) 

Реализация sum-product BP-метода вычислительно сложна 

  2O n . Вместо этого, авторы предлагают использовать normalized 

min-sum реализацию (Якоби-аппроксимацию) BP-метода. Ниже дано 
описание этого предлагаемого метода. 

Редуцируем все возможные сообщения до двух вариантов: когда 

сообщения между переменными не совпадают и когда они совпада-

ют: 

  
, ,

:

;
i j xi i k i

i i

j

not match not

x y j y x y x

x j k j k x

y i

m x m m
  



 
 (19) 

  

:

.
i j k i

j

match not

x y i y x

k j

y i

m x j m




  
 (20) 

Нормировав по 
k i

not

y xm  , получим: 

  

 

1;

.

i j

i j

k i

not

x y

imatch

x y match

i y xk j

m

x j
m

x k m













 (21) 

Определим быстрое правило обновления сообщений, исходя из 
того, что необходимо обновить только одно значение между каждой 
парой переменных: 

    
1

/ .
i j k ix y i i y xk j

m x j x k m
Z
 


    (22) 

Перепишем формулы для обновления значений, используя новые 

значения для сообщений: 

 

     

     

   

   

1
, ;

1
, ;

1
;

1
.

x i y ji j

x ii

y jj

i j i j

ij

i j i j y x x y

ij

i i y x

i j x y

b x j y i x y
Z

b x j y i x y m m
Z

b x x m
Z

b x y m
Z

 

 





  

  





 (23) 
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Соотношения (23) представляют собой Якоби-аппроксимацию 

BP-метода, позволяющую вычислять перманент матрицы с линейным 

ростом сложности   O n . 

Пример определения числовых характеристик низкоплот-

ностного кода. Важным следствием вычисления перманента Бете 

является возможность определения псевдокодовых слов для разре-

женных матриц проверки четности. Рассмотрим матрицу

 ~ ,H m n m n  , выделим в ней все подматрицы  ~ 1iH m m    

размера. Всего таких матриц 1

n

mC  . Определив векторы β ~ n, приняв 

позиции, не вошедшие в отдельно взятую матрицу H  , равными ну-

лю, будем вычислять бете-перманент матрицы  ~H m m   , полу-

ченной из исходной путем вычеркивания k-го столбца. Таким обра-

зом, 

    /k B i B kperm H k perm H    . (24) 

Рассмотрим теперь матрицу вида:  

 

1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 1

0 0 0 1 0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0 1 1 0 0

0 0 0 0 0 1 1 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 1 0

0 0 0 0 1 0 1 0 0 0 0 1

0 0 0 0 0 1 0 1 0 1 0 0

H

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. (25) 

Определим для данной матрицы вектор-перманенты и Бете-

аппроксимацию вектор-перманентов (для данной матрицы существу-

ет 66 вектор-перманентов, рассмотрим случайную выборку 5 векто-

ров). 

Полученные результаты соответствуют приведенным в [14,15] 

результатам. Для чистоты эксперимента не применялся искусствен-

ный порог отсечения чисел, близких к нулю, однако, он вполне мо-

жет применяться, пропорционально изменяясь в зависимости от раз-

мера матрицы. 
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Таблица 1 

 

Сравнительные оценки значений перманентов и 

Бетеперманентов для матрицы Н 
 

Номер 

вектора 
Номер узла 1 2 3 4 5 6 7 8 9 10 11 12 

 

1 

перманент 6 4 4 2 2 2 2 2 2 2 0 0 

Бете 

перманент 
2.3703 1.6875 1.6875 1 1 1 1 1 1 1 0 0 

 

2 

перманент 4 6 4 2 2 2 2 2 2 0 2 0 

Бете 

перманент 
1.6875 2.3703 1.6875 1 1 1 1 1 1 0 1 0 

 

3 

перманент 4 4 6 2 2 2 2 2 2 0 0 2 

Бете 

перманент 
1.6875 1.6875 2.3703 1 1 1 1 1 1 0 0 1 

 

4 

перманент 6 6 2 2 2 2 2 2 0 2 2 0 

Бете 

перманент 
2.2143 2.2143 1 1 1 1 1 1 0 1 1 0 

 

5 

перманент 4 4 4 0 2 2 2 2 0 2 0 2 

Бете 

перманент 
1.6875 1.6875 1.6875 0.0201 1 1 1 1 0 1 0 1 

 

Заключение. Рассмотрены основные аспекты вычисления Бете-

перманента матрицы. Полученные комбинаторные соотношения ((13) 

- (15)) вместе с аналитическими оценками для плотных матриц ((11), 

(12)) обеспечивают асимптотическую оценку Бете-перманента, поз-

воляющую приближённо вычислять перманент матрицы, что согла-

суется с соотношениями, предложенными в [10, 12].  

Предложен комбинаторный метод определения Бете-перманента 

при помощи циклического индекса группы симметрии, позволяющий 

уменьшить вычислительную сложность.  

Также предложен вероятностный метод определения Бете-

перманента на основе Якоби-аппроксимации (normalized min-sum) 

метода распространения доверия (Belief Propagation), позволяющий 

вычислять перманент с линейной сложностью.  

Предложен способ применения Бете-перманента для определе-

ния псевдокодовых слов протоматрицы низкоплотностного кода. В 

таблице приведены результаты моделирования вектор-перманентов 

Бете матрицы в сравнении с ее Бете-аппроксимациями. Полученные 

отношения этих величин согласуются с соотношениями (10) - (12). В 

дальнейших работах авторы планируют изучить возможность опре-

деления Бете-аппроксимации гессиана матрицы и связи энергии Бете 

с температурой Нишимури. 

 



Применение аппроксимации энергии Бете для определения числовых … 

ММЧМ 2025 № 1 (45)                                                    113 

ЛИТЕРАТУРА 

 Usatyuk V.S., Egorov S.I. Hyper neural network as the diffeomorphic domain 

for short code soft decision beyound belief propagation decoding problem, 2020 

2020 IEEE East-West Design & Test Symposium (EWDTS), pp. 1-6. 

 Mézard M., Montanari A. Information, Physics, and Computation. Oxford, Ox-

ford University Press, 2009, 569 p.  

 Shannon C. E. A Mathematical Theory of Communication. Bell System Tech-

nical Journal, 1948, vol. 27, no. 4, pp. 623–656. 

 Усатюк В.С. Построение квазициклических недвоичных низкоплотност-

ных кодов на основе совместной оценки их дистантных свойств и спектров 

связности. Телекоммуникации, 2016, № 8, c. 32-40. 

 Usatyuk V. S. Low error floor QC-LDPC codes construction using modified 

cole's trapping sets enumerating. IEEE, 2023, pp. 1-6. DOI: 

10.1109/DSPA57594.2023.10113442 

 Усатюк В.С., Егоров С.И. Построение LDPC-кодов с использованием мо-

дифицированного метода выборки по значимости Коула. Известия Юго-

Западного государственного университета, 2023, т. 27, № 1, с. 92-110.  

 Usatyuk V., Egorov. S., Svistunov G. Construction of length and rate adaptive 

met QC-LDPC codes by cyclic group decomposition. IEEE East-West Design & 

Test Symposium (EWDTS), 2019, pp. 1-5 

 Усатюк В.С. Определение кодового расстояния недвоичного LDPC-кода 

блочным методом Коркина-Золотарева. Известия Юго-Западного государ-

ственного университета. Серия: Управление, вычислительная техника, 

информатика. Медицинское приборостроение, 2015, т. 3, № 16, с. 76-85. 

 Vontobel P. O. The Bethe permanent of a non-negative matrix. IEEE Transac-

tions on Information Theory, 2013, vol. 59, pp. 1866–1901. 

 Huang Y., Vontobel P.O. Bounding the Permanent of a Non-negative Matrix via 

its Degree- M Bethe and Sinkhorn Permanents. IEEE International Symposium 

on Information Theory (ISIT), 2023, pp. 2774-2779. 

 Vontobel P. O. Connecting the Bethe entropy and the edge zeta function of a cy-

cle code. IEEE International Symposium on Information Theory, 2010, pp. 704-

708. DOI: 10.1109/ISIT.2010.5513594. 

 Huang Y., Vontobel P.O. On the Relationship Between the Minimum of the Be-

the Free Energy Function of a Factor Graph and Sum-Product Algorithm Fixed 

Points, IEEE Information Theory Workshop (ITW), 2022, pp. 666-671. DOI: 

10.1109/ITW54588.2022.9965874. 

 Kit Shing NG, Vontobel P.O. Double-cover-based analysis of the Bethe perma-

nent of non-negative matrices. IEEE Information Theory Workshop (ITW), 2022, 

pp.672-677. 

 Roxana Smarandache. Pseudocodewords from Bethe permanents. IEEE Interna-

tional Symposium on Information Theory, 2013. 

 Roxana Smarandache. Pseudocodewords from Bethe permanents. ISIT, 2013, 

pp. 2059-2063 

 Huang B., Jebara T. Approximating the permanent with Belief propagation.  

Journal of machine learning research, 2013, vol. 14, pp. 2029-2066. 

 Straszak D., Vishnoi N.K. Belief Propagation, Bethe Approximation and Poly-

nomials. IEEE Transactions on Information Theory, 2019, vol. 65, no. 7, pp. 

4353-4363. DOI:10.1109/ALLERTON.2017.8262801. 

 Anari N., Rezaei A. A Tight Analysis of Bethe Approximation for Permanent. 

SIAM Journal on Computing, 2021. https://doi.org/10.1137/19M1306142 

 Гантмахер Ф. Р. Теория матриц. Изд. 2-е, доп. Москва, Наука, 1966, 577 с. 



С.И. Егоров, Д.А. Сапожников, В.С. Усатюк 

114                                                       ММЧМ 2025 № 1 (45) 

Статья поступила в редакцию 28.01.2024 

Ссылку на эту статью просим оформлять следующим образом:  
Егоров С.И., Сапожников Д.А., Усатюк В.С. Применение аппроксимации 

энергии Бете для определения числовых характеристик кодов на графе. Матема-
тическое моделирование и численные методы, 2025, № 1, с. 104–115. 

 
Егоров Сергей Иванович – д-р техн. наук, доцент, профессор кафедры вычисли-
тельной техники Юго-Западного государственного университета. 
 
Сапожников Денис Алексеевич – исследователь, преподаватель-исследователь, 
ведущий инженер научной группы департамента исследований и разработок, ООО 
«Т8». e-mail: sapozhnikov@t8.ru 
 
Усатюк Василий Станиславович – канд. техн. наук, главный инженер научной 
группы департамента исследований и разработок, ООО «Т8». e-mail: usatiuk@t8.ru 
 
 

Application of Bethe energy approximation to determine 

the numerical characteristics of codes on a graph 

structures 
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The paper considers the application of the Bethe approximation of the Gibbs energy to 
determine the matrix permanent. An analysis of foreign literature in the area under con-
sideration was carried out. A combinatorial method for determining the Bethe permanent 
using the cyclic index of the symmetry group is proposed. A probabilistic method for de-
termining the Bethe permanent is also proposed based on the Jacobi approximation 
(normalized min-sum) of the Belief Propagation method, which allows calculating the 
permanent with linear complexity. A method for using the Bethe permanent to determine 
pseudocode words of the protomatrix of a low-density code is proposed. 
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