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Рассматривается задача двумерного течения вязкой слабосжимаемой жидкости в 

квадратной ячейке при возбуждении периодической в пространстве статической 

внешней силой (течение Колмогорова) и наличии трения о дно. Численно исследу-

ется влияние наличия и отсутствия момента внешней силы (подкрутки) на фор-

мирование течения. Показано, что наличие момента внешней силы при определен-

ных значениях амплитуды силы и коэффициента трения о дно приводит к возник-

новению одной когерентной структуры, занимающей всю исследуемую область 

квадратной ячейки. Отсутствие момента возбуждающей силы формирует в ячей-

ке вихревой диполь. 
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Введение. Работа посвящена исследованию широко распростра-

ненного в природе явления — турбулентного течения вязкой жидко-

сти под воздействием внешней силы. 

Для трехмерной турбулентности характерен прямой каскад энер-

гии [1-2]. В этом случае энергия переносится от масштаба генерации 

течения на более мелкие масштабы, вплоть до диссипативного, где за 

счет вязкости энергия переходит в тепло. 

В настоящей работе рассматривается класс вихревых течений, 

возникающих в двумерном случае. Они наблюдаются в системах, го-

ризонтальные размеры которых значительно превосходят вертикаль-

ные. Первые теоретические работы по двумерной турбулентности 

выявили её принципиальные отличия от трехмерной [3-7]. В плоском 

случае существуют два квадратичных интеграла движения — энергия 

и энстрофия, которые сохраняются в отсутствии возбуждающей силы 

и диссипации. При наличии возбуждающей силы эти величины изме-

няются, но диссипируют на разных масштабах: энстрофия диссипи-

рует на малых масштабах за счет вязкости, тогда как энергия дисси-

пирует на больших масштабах за счет трения о дно. В результате воз-

никают прямой каскад энстрофии на малых масштабах, и обратный 

каскад энергии на больших масштабах. 
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Существование обратного каскада энергии приводит к ее накоп-

лению, что вызывает интенсивное крупномасштабное движение, 

включая образование крупных вихрей [4, 6, 8]. Данное явление под-

тверждено как экспериментально [9], так и численно [10-12]. Коге-

рентные вихри при численном моделировании были получены в [13-

16]. Похожая вихревая структура наблюдалась в лабораторных усло-

виях для квадратной кюветы [17-19]. Крупные вихри были получены 

при численном моделировании течений со статической накачкой и 

различными типами крупномасштабной диссипации [20, 21]. 

Изучению свойств когерентного вихря посвящена целая серия 

теоретических и вычислительных работ [22-25]. В работе [22] была 

предпринята первая попытка установить профиль средней скорости 

когерентного вихря, при этом использовались периодические гранич-

ные условия и кратковременная коррелированная во времени накачка. 

Авторами показано возникновение устойчивого вихревого диполя. В 

[23] для аналогичной [22] постановки задачи численно найден про-

филь средней скорости когерентного вихря. При этом существенное 

влияние на формирование подобного вида вихревых течений оказы-

вает наличие трения о дно, которое вводится в систему исследуемых 

уравнений путем добавления слагаемого с некоторым коэффициен-

том трения. В работе [25] было изучено влияние этого коэффициента 

на процесс формирования когерентного вихря. 

В данной работе продолжаются исследования двумерного тече-

ния вязкой слабосжимаемой жидкости в квадратной ячейке под дей-

ствием внешней силы, характерный масштаб которой меньше мас-

штаба ячейки [26-28]. Рассматривается два типа вынуждающей силы. 

Первый характеризуется наличием ненулевого суммарного момента 

силы относительно центра расчетной области, а второй – нулевым 

суммарным моментом. Показано, что они приводят к возникновению 

различных режимов вихревого течения жидкости. 

Постановка задачи. Моделирование течения жидкости в дву-

мерной квадратной области основано на построении численного ре-

шения системы уравнений Навье-Стокса при наличии вынуждающей 

силы и учете трения о дно. Для замыкания системы используется 

уравнение слабой сжимаемости. Ниже представлен конкретный вид 

используемых уравнений: неразрывности, движения для двумерного 

случая и слабой сжимаемости: 

 ( ) 0V
t





 


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 ( ) x

u p
uV F u u

t x
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  

 
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v p
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
  

 
      
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0

d
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



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Здесь: 
  ― плотность жидкости; 

( , )TV u v  ― вектор скорости, компоненты которого в декарто-

вых координатах  ,x y  равны, соответственно, u  и v ; 

  ― динамическая вязкость жидкости; 

p  ― давление; 

  ― коэффициент трения о дно; 

,x yF F  – проекции внешней силы F на горизонтальную и верти-

кальную оси; 

c  ― скорость звука; 

  ― набла-оператор, записанный в декартовых координатах  
,x y , 

  ― оператор Лапласа, также записанный в координатах ,x y , 

  ― скалярное произведение. 

В правой части уравнений движения присутствуют слагаемые 

u  и v , моделирующие силу трения о дно кюветы. Эта сила 

пропорциональна скорости жидкости и направлена против ее движе-

ния.  

Расчетная область представляет собой квадратную ячейку разме-

ром 2 2 
2м . В качестве граничных условий выбрано условие 

прилипания. 

Физические характеристики жидкости следующие: 0 1000 
3

кг

м
, 

0.01  Па с . Начальное поле скорости равно нулю, а условие на 

давление - 
5

0( 0) 10p t p   Па . 

При численном моделировании использовались два различных 

способа задания вынуждающей силы: 

 1 sin( )xF G ky , 1 sin( )yF G kx  , (1) 

 
2 cos( )xF G ky , 2 cos( )yF G kx  . (2) 

Здесь: 

G  ― амплитуда внешней силы; 

k  ― пространственная частота внешней силы, 
1

5 
м

k  . 
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Сила 
1F  имеет ненулевой суммарный момент 1M  относительно 

центра расчетной области (наличие подкрутки), в то время как для 

силы 
2F  суммарный момент 2M  равен 0 (без подкрутки): 

 

2 2

1 1

1

0 0

1
(( ) ( ) ) 0.4y xM x F y F dxdy G

S

 

           , 

 

2 2

2 2

2

0 0

1
(( ) ( ) ) 0y xM x F y F dxdy

S

 

         . 

Здесь S  обозначает площадь расчетной области. 

Численная методика. Численное решение уравнений Навье-

Стокса основано на методе искусственной сжимаемости [29]. При 

этом гиперболическая часть уравнений решается явным методом 

Мак-Кормака [30], а параболическая часть стандартным методом ко-

нечных разностей. Схема Мак-Кормака имеет второй порядок точно-

сти по пространству и времени.  

Каждый этап расчета на каждом временном шаге разделен на 4 

шага: разности вперед и разности назад у предиктора вдоль направ-

ления Ox, а также разности вперед и назад у предиктора по направле-

нию Oy.  

На этапе корректора аналогично, за исключением того, что шаг 

«вперед» меняется на «назад» и, наоборот. Эти шаги циклически 

сменяют друг друга с каждым временным шагом. Метод Мак-

Кормака хорошо зарекомендовал себя при решении гиперболических 

уравнений газо- и гидродинамики. 

В настоящей работе для анализа полученных течений строится 

спектр их кинетической энергии в зависимости от волнового числа 

k . Опишем алгоритм его получения.  

Рассмотрим компоненты вектора скорости ( , )u x y  и ( , )v x y . Вос-

пользуемся разложением в двумерный интеграл Фурье. 

Двумерная функция ( , )x y  может быть расширена в ряд ортого-

нальных гармонических функций: 

 

(1)

(2)

(3) (4)

( , ) [ ( , ) cos( ) cos( )

( , ) cos( ) sin( )

( , ) sin( ) cos( ) ( , ) sin( ) sin( )]

y x

x y x y

k k

x y x y

x y x y x y x y

x y k k k x k y

k k k x k y

k k k x k y k k k x k y

 



 

   

   

     



 

где ,x yk k  — компоненты волнового вектора вдоль Ox  и Oy  соответ-

ственно. Функции ( ) ( , ), 1, 2,3,4i

x yk k i   — коэффициенты Фурье: 
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2 2

(1)

0 0

1
( , ) ( , ) cos( ) cos( )x y x yk k x y k x k y dxdy

 

 


     

 

2 2

(2)

0 0

1
( , ) ( , ) cos( ) sin( )x y x yk k x y k x k y dxdy

 

 


    , 

 

2 2

(3)

0 0

1
( , ) ( , ) sin( ) cos( )x y x yk k x y k x k y dxdy

 

 


    , 

 

2 2

(4)

0 0

1
( , ) ( , ) sin( ) sin( )x y x yk k x y k x k y dxdy

 

 


    . 

Подставляя компоненты скорости в фиксированный момент вре-

мени вместо ( , )x y , получим их образы ( , )t

x yu k k  и ( , )t

x yv k k . Тогда 

образ кинетической энергии ( , )E x y  в пространстве волновых чисел в 

данный момент времени можно получить: 

  
   

2 2

, ,
,

2

t t

x y x yt

x y

u k k v k k
E k k


 . 

Далее необходимо усреднить по времени: 

  
1

1
( , ) ,

T
t

x y x y

t

E k k E k k
T 

  . 

Перебирая все ,x yk k , получим спектр кинетической энергии те-

чения жидкости в зависимости от волнового числа k . 

Результаты численного моделирования. В работе [28] были 

получены три основных режима течения для задачи Колмогорова в 

квадратной ячейке: ламинарный, при котором картина движения жид-

кости сохраняет свою начальную форму и практически не меняется 

со временем; хаотический (или турбулентный режим), характеризу-

ющийся наличием в течении случайно перемещающихся вихрей раз-

личного размера и времени жизни; и вихревой, при котором возника-

ет один крупный когерентный вихрь, занимающий большую часть 

расчетной области и существующий продолжительное время. Также 

была построена фазовая диаграмма типов течений, которая показыва-

ет, при каких значениях амплитуды вынуждающей силы и коэффици-

ентах трения о дно реализуются указанные режимы течения. В дан-

ной работе мы изучаем влияние формы вынуждающей силы на вид 

течения в ламинарном, хаотическом и вихревом случаях. 

В соответствии с фазовой диаграммой [28], выберем следующие 

параметры моделирования: 
2

0.05
м

G
с

 , 10.2с





   (ламинарный 
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режим), 
10.01с   (хаотический режим), 

10.0001с   (вихревой 

режим). В дальнейшем для получения определенных типов течений 

будем использовать именно эти значения. 
Поля завихренности для различных режимов течения при зада-

нии силы уравнениями (1) представлены на Рис. 1. Отрицательной 
завихренности (синий цвет) соответствует вектор угловой скорости, 
направленный на наблюдателя. В данном случае вынуждающая сила 
имеет ненулевой суммарный момент, закручивающий течение против 
часовой стрелки. Соответственно, в вихревом режиме мы наблюдаем 
один крупный вихрь, вращающийся против часовой стрелки (рис. 1 
(в)). Отметим, что данный вихрь существует длительное время. В ха-
отическом режиме мы наблюдаем большое количество разномас-
штабных, быстро сменяющих друг друга вихрей (рис. 1 (б)). Поле за-
вихренности в ламинарном режиме представлено на Рис. 1 (а). 

 

  
 

Рис. 1. Поля завихренности для ламинарного (а), хаотического (б) и вихревого 

(в) режимов течения при задании вынуждающей силы с подкруткой 
 

Поле завихренности различных режимов течения, возникающих 
при использовании вынуждающей силы без суммарного момента (2) 
представлены на рис. 2. Ламинарный и хаотический режимы выгля-
дят аналогично случаю с подкруткой (рис. 2 (а), (б)). В вихревом ре-
жиме формируются два противоположно вращающихся долго живу-
щих вихря – вихревой диполь (рис. 2 (в)). 

В теории двумерной турбулентности [4] известно существование 
двух квадратичных интегралов — энергии и энстрофии. Их генерация 
происходит на масштабе накачки течения путем воздействия внешней 

силы. В нашем случае пространственная частота накачки 
15k м . 

Далее энергия течения переносится на крупные масштабы с законом 
«-5/3» [4] и диссипирует за счет трения о дно. Энстрофия при этом 
переносится на мелкие масштабы и диссипирует за счет вязкости с 
законом «-3» [4].  Построенные в ходе анализа формирующихся тече-
ний энергетические спектры кинетической энергии для хаотического 
и вихревого режимов течения (рис. 3) подтверждают эти законы. 

б

Rotor

a в

-8.0e+00 0 8.0e+00
Rotor
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Z
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Рис. 2. Поля завихренности для ламинарного (а), хаотического (б) и вихревого (в) 

режимов течения при задании вынуждающей силы без подкрутки 

 
Можно заметить, что на масштабе накачки 5k   графики спек-

тров изменяют угол наклона (рис. 3). При 5k   реализуется обратный 

каскад энергии, теоретическая зависимость для которого 
5

3~E k


 

представлена на графике синей прямой (рис. 3). На масштабах мень-

ше накачки ( 5k  ) реализуется прямой каскад 
3~E k 
, теоретическая 

зависимость для которого показана голубой прямой. Обратим внима-
ние, что спектры для течений с подкруткой и без принципиально не 
отличаются друг от друга. На крупных масштабах угол наклона спек-
тра энергии при рассмотрении вихревых режимов течения ближе к 
теоретическому обратному каскаду энергии, чем при хаотических 
режимах. 

 

 
а) б) 

 

Рис. 3. Спектр кинетической энергии для хаотического и вихревого режимов 

течения при задании силы накачки с подкруткой (а) и без подкрутки (б). 

Прямыми показаны теоретические зависимости 
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нарного, хаотического и вихревого. Ламинарный и хаотический ре-

жимы течения при рассмотренных способах задания силы не имеют 

принципиальных различий, в то время как структура вихревых режи-

мов различна. При наличии суммарного момента в вихревом режиме 

формируется один крупный вихрь. При задании вынуждающей силы 

с нулевым суммарным моментом в вихревом режиме формируются 

два вихря, вращающихся в противоположных направлениях (вихре-

вой диполь). Построенные для вихревого и хаотического режимов 

спектры кинетической энергии близки к теоретическим, и незначи-

тельно отличаются для разных способов задания силы. 
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The problem of two-dimensional flow of a viscous weakly compressible fluid in a square 
cell under excitation of a spatially periodic static external force (Kolmogorov flow) and 
the presence of friction on the bottom is considered. The influence of the presence and 
absence of an external force torque (twist) on the flow formation is studied numerically. 
It is shown that the presence of a moment of external force at certain values of the force 
amplitude and the coefficient of friction on the bottom leads to the emergence of one co-
herent structure that occupies the entire studied area of the square cell. The absence of a 
moment of exciting force forms a vortex dipole in the cell. 
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