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В работе описана методика обобщения разработанной ранее одномерной численной 

схемы WENO-SM-MP 9-го порядка точности и процедуры её полной симметризации 

относительно пространственного направления. Проведена верификация численной 

схемы для задач идеальной газовой динамики. Показано, что двумерный вариант 

схемы обладает сравнительно низкой диссипацией и хорошим разрешением двумер-

ных тестов, при этом являясь более эффективным, чем соответствующие схемы 

WENO-M, WENO-ZM или WENO-FM того же порядка с MP ограничителем. 

 

Ключевые слова: WENO, вычислительная гидродинамика, ударные волны, схемы, 

сохраняющие симметрию, нарушение симметрии, схемы с низкой диссипацией, 

неустойчивость Рэлея — Тейлора 

  

Введение. Разработка и реализация новых численных методов 

для нелинейных гиперболических задач, возникающих в вычисли-

тельной механике сплошных сред, является актуальной проблемой. 

От таких методов требуется аппроксимация максимально высокого 

порядка на гладких решениях для разрешения мелкомасштабных 

структур и при этом минимизация влияния численных артефактов на 

разрывах в решении. 

К этому есть разные подходы. Популярные, примерами которых 

служат разрывные методы Галёркина [1] с подходом на основе ко-

нечных элементов и существенно не осциллирующие схемы [2, 3], о 

которых речь пойдёт ниже. И инновационные, как, например, CWA 

(Compact high order Weak Approximation) схема [4] с повышенным 

порядком разрешения соотношений Ранкина — Гюгонио на разры-

вах, но большими осцилляциями. 

В работе [2] был выбран и протестирован набор модификаций 

взвешенной существенно не осциллирующей (WENO) схемы, удо-

влетворительно разрешающий в одном пространственном измерении 

области сильных разрывов. Данный вариант схемы применим для си-

стемы уравнений Эйлера со сложным уравнением состояния, что яв-

ляется важным преимуществом при решении задач с ударными вол-

нами. Класс методов WENO-SM-MP, разработанный в работе [2], 

продемонстрировал свою работоспособность на одномерных задачах, 

что приводит к естественному его расширению на двумерные случаи. 

В данной работе представлено обобщение численной схемы WENO-
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SM-MP 9-го порядка на двумерный случай. Проверка работы схемы 

проведена на ряде стандартных двумерных тестов. Дано сравнение 

результатов с другими схемами подобного класса точности — 

WENO9-FM-MP, WENO5-FM-MP и WENO5-FM. 

Существенно не осциллирующие методы высокого порядка ап-

проксимации претендуют на достаточную универсальность в задачах 

вычислительной гидрогазодинамики и механики сплошных сред. Это 

следует из того, что они способны разрешать задачи, содержащие как 

крупные, так и мелкие масштабы явлений. Схемы этого типа воспро-

изводят мелкие структуры решения даже на грубых сетках и подав-

ляют или ослабляют большинство нефизичных осцилляций, прису-

щих разностным схемам высокого порядка на разрывах решения, ге-

нерируемых гиперболическими уравнениями. Это свойство универ-

сальности вкупе с более конкретными свойствами метода, обозна-

ченными в предшествующем абзаце, мотивируют проявление к нему 

интереса и его валидацию в двумерном случае. 

Работа имеет следующую структуру. В начале работы идут раз-

делы, описывающие основные использованные элементы WENO 

схем и дающие краткий литературный обзор. Это разделы: Общая 

характеристика численных методов типа WENO; Стандартная 

WENO реконструкция; WENO-FM и WENO-ZM реконструкция; MP 

ограничитель Суреша и Хюиня в модификации Балсары и Шу (MP-

M4X); Индикаторы гладкости WENO-S и веса WENO-SM. Далее идёт 

раздел с описанием алгоритма разрабатываемой схемы под названи-

ем Схема c расщеплённым глобальным потоком Русанова — Лакса — 

Фридрихса и реконструкцией WENO9-SM c ограничителем потока и 

SSP интегрированием во времени РК(10, 4) (Метод (Г)ЛФ WENO9-

SM MP & SSP РК(10, 4)). В последующих разделах рассматриваются 

тесты: Тесты для уравнений Эйлера; Тесты на сходимость и её поря-

док на гладких решениях; Тест Сода в 2D; Тест 2D взрыва Торо; 

Сильная диагональная ударная волна Торо; Задача 2D имплозии Хуэя 

и др.; Разрешение неустойчивости Рэлея — Тейлора. Завершается 

статья Заключением и списком литературы. 

Общая характеристика численных методов типа WENO. Схе-

мы типа WENO базируются на идее Лиу и др. [3] модификации ли-

нейных разностных схем высокого порядка с многоточечным шабло-

ном. Для исключения осцилляций, присущих таким схемам, произво-

дится разбиение интерполяционного шаблона на несколько меньших 

подшаблонов. Составляется взвешенная сумма интерполяций на этих 

подшаблонах с занижением веса подшаблонов, содержащих разрывы 

решения. 

Кроме стандартных численных схем типа WENO с MP ограничи-

телем Суреша и Хюиня [5] из работы Балсары и Шу [6] с дополни-

тельным отображением [7] для снижения диссипации на разрывах и 
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восстановлением порядка схемы в экстремумах, в данной работе ис-

пользуется комбинация этого отображения и ограничителя со схема-

ми WENO-SM с новыми тригонометрическими весами [8]. Приведём 

общие сведения об этих модификациях WENO схем. 
Шаг сетки в одном направлении предполагается постоянным, 

сетка — прямоугольной декартовой, состоящей из точек с 

координатами 0i x xx i   , 0i y xy j   , 1, , xi N  , 1, , yj N  . Без 

потери общности мы рассматриваем 9 порядок реконструкции для 
иллюстрации процедуры WENO схем. 

Стандартная WENO реконструкция. Схемы WENO-JS / 

WENO-BS [6, 9] являются стандартом, развившим идеи Лиу и др. [3], 

но при этом продолжают сами постоянно улучшаться различными 

модификациями. Реконструкция с подавлением возможных 

осцилляций в решении состоит в замене линейной разностной схемы 

9 порядка аппроксимации с 9-точечным шаблоном взвешенной 

суммой интерполяций на более мелких r -точечных подшаблонах (
5r   для схемы 9 порядка). Для реконструкции значения на границе 

ячейки расчётной сетки внутри 9-точечного шаблона выбираются все 

пятиточечные подшаблоны, содержащие эту границу: всего их 5r  . 

На каждом из них считается интерполяция на границе. Cумма 

интерполяций взвешивается с нелинейными весами. Идея, описанная 

в [9], предполагает обычную полиномиальную интерполяцию для 

подшаблонов и нормированные нелинейные веса, основанные на 

ненормированных индикаторах гладкости 1, 0, ,k k r    Цзяня и 

Шу. Их индикаторы представляют из себя суммы квадратов 2L -норм 

производных интерполяционных полиномов, нормированные на шаг 

сетки для независимости от него. Индикаторы [9] показывают, 

насколько резко функция меняет свои значения на соответствующих 

подшаблонах. 

Для постоянной регулярной сетки мы можем записать явные 

выражения для этих индикаторов через значения реконструируемой 

функции в ячейках сетки. Однако прямая запись этих коэффициентов 

для индикаторов k  для схем высокого порядка является не 

оптимальной в нескольких отношениях. Применение весов [6] в 

явном виде приводит к численным неустойчивостям вследствие 

громоздкости формул. Прямая запись формул также не оптимальна 

по числу арифметических операций [8]. В нашей работе 

используются индикаторы гладкости WENO-S из работы [8] (см. 

ниже). 

Сами веса итоговой WENO-BS схемы имеют вид: 

 
1

0

, , 1, ,4.0 2, 0,JS k k
k k p

k

JS

kr

j j

d
p k


   

 




     


 (1) 
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Здесь и далее kd  представляет собой соответствующий вес в 

линейной разностной схеме: если сложить все интерполяции по r -

точечным подшаблонам с весами k kd , получится линейная 

разностная схема 2 1r   порядка. Приводим для справки эти веса в 

случае разностной схемы 9 порядка: 0 1/126d  , 1 10 / 63d  , 

2 10 / 21d  , 3 20 / 63d  , 4 5 /126d  . Параметр   вводится, чтобы 

избежать деления на ноль в формулах весов. Он должен быть много 

меньше индикаторов гладкости; и в данной работе берётся равным 
4010

 для схемы пятого порядка и 
10010

 для схем девятого порядка. 

Изначальные WENO-BS схемы сильно диссипируют на разрывах 

и теряют несколько порядков точности в точках решения с 

исчезающими n  первыми производными (далее называемых 

критическими точками n-го порядка), даже при 1n  : теряя в 

обычных экстремумах уже около двух порядков [10]. 

WENO-FM и WENO-ZM реконструкция. Улучшить 

диссипативные характеристики WENO-BS, изменить дисперсионные 

и сохранить порядок реконструкции в критических точках позволяет 

нормировка самих индикаторов гладкости между собой, а также 

применение к выше заданным весам или к их составляющим 

нелинейного отображения. Первое такое отображение, ,HAP dg , 

предложенное Хенриком, Асламом и Пауэрсом [10], представляется 

оптимальным. Оно не делает схему слишком малодиссипативной на 

разрывах и восстанавливает порядок в критических точках. Для схем 

9 порядка отображение ,HAP dg  уже при однократном применении 

восстанавливает точность в критических точках первого и второго 

порядка [10]. 

Запишем это отображение в информативной форме с выделением 

линейного веса: 

 
 

   

3

2, ,:
1

HAP dg
d

d
d




  



 
  (2) 

где на место d  ставится линейный вес соответствующего 

подшаблона kd , а отображение по изначальной задумке авторов 

применяется прямо к итоговым весам k , рассчитанным по формуле 

(1). 

Методика Хонга и др. [7] состоит в применении отображения к 

весам, не нормированным с множителями оптимальных линейных 

коэффициентов, и последующей нормировке на эти коэффициенты 

уже образов этих весов. В случае WENO-FM [7] отображаются веса  
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   

,
1 1FM

k p p
jk j


    

   (3) 

т. е. фактически индикаторы гладкости, нормированные с 

множителем, обратным их сумме. Как уже отмечалось, их отдельная 

нормировка очень важна. И вместо весов линейной схемы kd  мы 

подставляем в отображение (2) параметр 1d r , одинаковый для 

всех подшаблонов. При следовании этой методике нет асимметрии 

решения на больших временах, искажающей, а затем разрушающей 

решение [2, 7]. 

Схема WENO-ZM [7] использует изменённые веса схемы WENO-

Z из работы [11, 12], применяя отображение к 

 

2

2 11 ,ZM r
k

k




 


 
   

 
 (4) 

где 2 1r  — дополнительный глобальный индикатор гладкости 

(нормирующая комбинация других), обычно 12 1 0 rr     . Его 

введение фактически вводит нормировку индикаторов гладкости 

решения относительно друг друга, выполняя ту же функцию, что 

формула (3). 

Итоговые веса у схем WENO-FM и WENO-ZM имеют вид: 

  1 1/

0

,, ,   , 1 4,0,M Mk
k k k HAP rr k

M

k

jj

d g rk


   






   


 (5) 

где на место M

k  подставляется соответственно формула (3) или (4).  

MP ограничитель Суреша и Хюиня в модификации Балсары 

и Шу (MP-M4X). Применение различных ограничителей также 

позволяет дополнительно подавить осцилляции численных схем. Их 

использование или понижение порядка схемы на разрывах 

необходимо для WENO схем порядка выше пятого [8], а для 

определённых задач уже и для пятого порядка [2]. 

Рассматриваемый ограничитель [2, 5, 6] практически подавляет 

осцилляции схем высокого порядка на разрывах. Однако при этом он 

понижает порядок на решении с критическими точками до третьего 

или четвёртого. 

Приведём формулы для ограничителя. В представленном виде 

они могут быть применены к любой интерполяции или 

реконструкции функции с высоким порядком. MP ограничитель 

основан на оценке локальной кривизны ограничиваемой функции, 

используя  



Ф.А. Белолуцкий, В.В. Шепелев, С.В. Фортова 

8                                                       ММЧМ 2025 № 1 (45) 

  1 2 4

min ,

minmod , , , , , max

если 0

, если 0

в противном случае0, ,

k k

k k k

x

x k x

x k

x x x x




   






 (6) 

    1median , , minmod ,x y x z xy z x    (7) 

и собственно оценки кривизны для ограничиваемой функции f  

 1 1,   1, , 1, 2.2j jj jd f f f j k k k k         (8) 

Тогда ограничитель выглядит следующим образом: 

 
 

 
ограниченная

min max

1/2 1/2 21/ 1/2median ,, ,k k k kf f f f     (9) 

где  

     min MD UL LC

1/2 1 1/2 1/2 1/2max min ,min ,, , , ,k k k k k k kf ff f f f f      (10) 

     max MD UL LC

1/2 1 1/2 1/2 1/2min max ,max ,, , , ,k k k k kk kf ff f f f f      (11) 

  
UL

1/2 12 ,k k k kf f f f     (12)     

  1/2 1 1 1

M4X

1 2minmod 4 ,4 , , , , ,kk k kkk kk kd d dd d d d d d         (13) 

  
MD

1/2 1 1/

4X

2

M1
,

2
k kkkf f df     (14) 

   /

L

2

C M4X

1/2 1 1

4
.

1

2 3
k kkk kf f f f d      (15) 

Использование ограничителя ставит свои рамки для применения 

числа Куранта [6]. В наших расчётах CFL будет равен 1 для 10-

этапного SSP (TVD) метода 4 порядка интегрирования во времени 

[13]. Численный эксперимент показал, что с этим CFL наши WENO 

схемы хорошо работают на всех рассмотренных задачах.  

Индикаторы гладкости WENO-S и веса WENO-SM. 

Индикаторы гладкости WENO-S [8] можно назвать 

«тригонометрическими», так как они строятся на основе идеи 

постоянства на синусоиде (архетипичной гладкой функции). Они 

имеют следующий вид: 

                  2 3S
2

2 1 ,
m mr

h

mr r

k h h k khkhxf f fx x          (16) 

где h  — центральноразностный оператор 
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   
2 2

x

x x
f x f x f x

    
      

   
, 

h  — аналогичный оператор со знаком плюс 

   
2 2

x

x x
f x f x f x

    
      

   
, 

а вместо 
 m

kx  следует подставлять центры подшаблонов WENO 

схемы. Для случая регулярной сетки эта процедура сводится к 

построению трёх коэффициентов , ,S S S

k k ka b c  

 2( )S S S S

k k k kb a c  , 

состоящих из линейной комбинации значений функции на 

подшаблонах и приходящихся на каждый индикатор для схемы, что 

для схемы 9-го порядка имеет вид: 

  
2

0 2 4 0 1 3 4 0 1 2 3 41 2 1 2 2 1 1 4 6 4 1 ,1S

k f f f f f f f f f ff f             

где значения функции нумеруются от начала соответствующего (k-

ого) подшаблона (нулевое) и до конца (четвёртое). Последний 

множитель обозначим: 

 0 1 2 3 41 4 6 4 1S

kc f f f f f     . 

Также вводится глобальный индикатор гладкости, наподобие WENO-

Z: 

 
 

2

0 2 4

0 1 3 4 0 1 2 3 4

1 2 1

2 2 1 1 4 6 4 1 ,1

S S S S

S S S S S S S S S

c c c

c c c c c c c c c

   

 



      
 

где цифры нумеруют уже сами подшаблоны в шаблоне. 

Итоговые веса WENO-S выглядят следующим образом: 

 
1

0

, ,  , 1 4.1 0,
S

S k
k k k S

kj

S

kr

j

d k r
 

  
 





 
   


  





 (17) 

Для весов WENO-SM [2] применяется аналогичная процедура: 

 

2

,1/1

0

, ,  , 41 .0,
S

SM

k k HAP r S

SM
SMk
kr SM

jj
k

d g k
 

 
 





  
   




  







 (18) 



Ф.А. Белолуцкий, В.В. Шепелев, С.В. Фортова 

10                                                       ММЧМ 2025 № 1 (45) 

Как отмечают авторы схемы WENO-S, большие значения для 

степени p приводят к неустойчивостям в методе и не дают хороших 

результатов. Для схемы WENO-SM [2] мы используем p=2. 

Схема c расщеплённым глобальным потоком Русанова — 

Лакса — Фридрихса и реконструкцией WENO9-SM c 

ограничителем потока и SSP интегрированием во времени РК(10, 

4) (Метод (Г)ЛФ WENO9-SM MP & SSP РК(10, 4)). Решается 

двумерная система законов сохранения (возможно, с применением 

источниковых членов). В нашем случае это система уравнений 

Эйлера (см. формулу (26) ниже) с вектором консервативных 

переменных  , , ,
T

u v Ef      размерности 4.M   На каждом 

временном шаге ( n ) для подсчёта разностного оператора 
nS S , 

аппроксимирующего производную по пространству, проводится 

следующая процедура. 

1. Рассматривается двумерный массив векторов значений на 

текущем временном этапе вдоль одного направления D  

(например, вдоль оси абсцисс 0D  , каждая j-ая строка 

массива рассматривается как одномерная задача). 

2. Находится максимальная скорость волны 

 в напр. в напр. y

, , ,
,

, , ,

max

{ , , , },max

ˆ ˆ ˆ,

n n n n n n

j k j k j k j
k

n n n

x

j
k j k j ku c u v c v

  










 

как максимальное собственное значение системы для всех 

ячеек сетки на данном временном этапе n  (мы приводим 

формулу для уравнений Эйлера, где ,j kc  есть скорость 

звука в соответствующей пространственной точке). Она 

понадобится в последующем для вычисления шага по 

времени. На данном этапе мы используем её для 

нахождения глобального расщеплённого потока Русанова 

— Лакса — Фридрихса ((Г)ЛФ). Считаются и 

запоминаются расщеплённые потоки первого порядка 

аппроксимации  

  ˆ n
k D k kfFF f


   

и  

  ˆ n
k D k kfFF f


   

во всех точках массива для каждой l -ой консервативной 

переменной 1, 0, ,l Mf f l    . 

3. Для каждого значения координаты вдоль другого 

направления задача свелась к одномерной. Далее мы 
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проходим по всем точкам выбранного направления 

(скажем, по всем k=i для каждого j, если 0D  ). Для k-ой 

точки вдоль выбранного направления реконструируем 

поток высокого порядка на правой границе (в k+1/2). 

Выбираем шаблон, соответствующий:  

[k-4, k-3, k-2, k-1, k, k+1, k+2, k+3, k+4, k+5] (на одну 

точку справа больше, чем шаблон для WENO 

реконструкции). 

4. Так как мы используем реконструкцию высокого порядка 

с системами связанных между собой законов сохранения, 

чтобы избежать осцилляций от взаимодействия различных 

характеристических полей, мы переходим к 

характеристическим переменным [1, 14, 15] в каждой 

пространственной точке шаблона схемы, относящегося к 

точке реконструкции. Для этого векторы расщеплённых 

потоков консервативных переменных в точках шаблона 

умножаются на матрицу 1

1/2jR

  строк левых собственных 

векторов системы уравнений для выбранного направления 

слева. Матрица пересчитывается на данном временном 

шаге для каждого шаблона отдельно в его точке 

реконструкции, т. е. на границе ячеек сетки (i+1/2, j) (или 

(i, j+1/2) для второго направления). Для этого можно взять 

простое среднее собственных векторов для значений в 

ячейках по обе стороны границы, но мы используем 

среднее по Роу в качестве несколько более надёжного и 

устойчивого варианта. 

5. Для потока 1

1/2jG R F





  вычисляется реконструкция 

против потока для первых 9 выбранных точек с 

использованием интерполяции максимального порядка на 

5 подшаблонах [k-4, k-3, k-2, k-1, k], [k-3, k-2, k-1, k, k+1], 

[k-2, k-1, k, k+1, k+2], [k-1, k, k+1, k+2, k+3], [k, k+1, k+2, 

k+3, k+4] по формулам: 
   0

1/2 4 3 2 163 112 / 60,63 137j k k k k kG G G G G G          (19) 

   1

1/2 3 2 1 1 ,17 43 / 603 77 12j k k k k kG G G G G G           (20) 

   2

1/2 2 1 1 213 47 22 / 60,7 3j k k k k kG G G G G G          (21) 

   3

1/2 1 1 2 33 / 60,27 13j k k k k kG G G G G G           (22) 

   4

1/2 1 2 3 477 4 .112 / 63 7 0j k k k k kG G G G G G          (23) 

6. После подсчёта интерполяций, для каждой отдельной 

переменной lG  в векторах G  вычисляются индикаторы 
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гладкости S

k  для каждого подшаблона, глобальный 

индикатор гладкости шаблона и веса по формулам (18), 

векторы весов сохраняются. Вычисляем взвешенную 

сумму полученных пяти интерполяций с пятью весами для 

каждой переменной. На данном этапе описана 

реконструкция 1/2kG


  потока вправо (или вверх). 

7. К 1/2kG


  применяется ограничитель потока MP по формуле 

(9), используя значения 2kG  , 1kG  , kG , 1kG  , 2kG  , 3kG  . 

8. Аналогичная процедура применяется для потока влево 

(или вниз) /
1

1/21 2 jkG G R F




  . Он вычисляется по 

развёрнутому (отзеркаленному) десятиточечному 

шаблону, т. е. шаги 5-7 проводятся для шаблона [k+5, k+4, 

k+3, k+2, k+1, k, k-1, k-2, k-3, k-4] с подшаблонами [k+5, 

k+4, k+3, k+2, k+1], [k+4, k+3, k+2, k+1, k+2] и т. д. или с 

соответствующей сменой индексов в формулах на 

симметричные относительно центра десятиточечного 

шаблона и сдвигом индексов на один вправо. 

9. Складываем 1/2 1/2k kG G
 

  . 

10. Проецируем полученные величины в физические 

переменные, умножая слева на матрицу столбцов правых 

векторов 1/2kR  . Результат обозначается 1/2kI  . 

11. Вычисляем 

   1/2 1/2, /D k Dk kf I IS dx    . 

Таким образом получен расщеплённый поток и, как 

следствие, разностный оператор в нужном направлении в 

каждой k-ой точке. 

12. Поступаем аналогично для второго направления. 

13. Складываем в каждой точке полученные выражения для 

двух направлений:  

0 1, , ,ij ij ijS f S f S f              . 

Чтобы получить значения пространственного оператора на 

границах расчётной области, для шаблонов там используются по r=5 

дополнительных фиктивных ячеек на каждой границе, значения в 

которых обновляются отдельно согласно граничным условиям. 

Итак, описан полный алгоритм расчёта разностного оператора 

S для пространственной части уравнения.  
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Такая разностная аппроксимация позволяет избавиться от 

пространственных производных и получить систему обыкновенных 

дифференциальных уравнений относительно времени. Она решается 

10-этапным методом Рунге-Кутты 4 порядка, SSP РК(10, 4), 

Кетчесона [13]. Он имеет следующий вид: 

 

 , , ,

, ,

0

,0 ,10

1

1

,

,

, ,

1,

, ,

10

n k n j n n j n n

k j k j k

j

n n n

j

n

t S c t

k

t t 







    



 

   



f f f

f f f f

 (24) 

где 
1n

f  соответствует значениям переменных на следующем 

временном шаге, 

 
в направлении в направлении 

CFL min ,
ˆ ˆ

n

n n

x y

x y
t

 

  
  

 

 




 , 

есть n -ый шагу по времени, подобранный, учитывая условие 

Куранта—Фридрихса—Леви,  

    
10

1
0,1,2,3,4,2,3,4,5,6 / 6k k

c

 , 

а остальные ненулевые коэффициенты равны 

 

 

 

, 1 10,4

, 1 5,0 10,0 10,4

1/ 6, 1,2,3,4,6,7,8,9
3

1

.

/15, 5
50

1/10, 10,

1, 1,2,3,4,6,7,8,9
3 1 9

2 / 5, 5
5 25 25

3 / 5, 10,

,

, ,

k k

k k

k

k

k

k

k

k

 

   








  
 




   






 

 (25) 

Подсчёт формул (24) с соответствующим разностным оператором 

S описывает один вычислительный шаг по времени.  

Заметим, что описанная процедура построения разностной схемы 

полностью симметризуема относительно пространственных 

направлений, несмотря на переход к характеристическим 

переменным в обоих направлениях, который может нарушить 

симметрию из-за нарушения ассоциативности сложения при расчётах 

с ограниченной точностью. Следуя [14] и [15], мы получаем 

симметричную схему для уравнений Эйлера. Для этого отдельно 

следует проследить, что в матрицах собственных векторов первыми 

идут соответствующие значениям u c , u c , а в векторах 

консервативных переменных первыми идут две проекции скорости, а 
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не плотность, как часто делают. В таком случае нам обеспечена 

симметрия метода, что делает его более устойчивым и позволяет 

получать симметричные решения для задач с симметрией без 

физической вязкости. 

Тесты для уравнений Эйлера. Далее все реконструкции 

проделываются в характеристических переменных, CFL везде будет 

равен единице, если не сказано обратное, а интегрирование по 

времени для всех методов будет проводится SSP РК(10, 4) (24)–(25). 

Все тесты проводятся для двумерных невязких уравнений Эйлера 

 

     

     

       

   

2

2

0

0

0

0,

t

t

t

t

x

x

y

x y

y

x y

u u p uv

v uv v p

E E p E p

u

v

v

u

  

  

  

  

   

   


  


  

   

   

    

  

 (26) 

замкнутых уравнением состояния совершенного газа с показателем 

адиабаты 1.4  (кроме последней задачи, где он равен 5/3). Здесь и 

далее   обозначает плотность, u , v  — проекции скорости на ось 

абсцисс и ординат соответственно, p  — плотность, а 

    2 21

2
1E p u v      , 

есть  полная энергия. Все задачи решаются в безразмерных 

переменных. Мы не приводим матриц собственных векторов системы 

(26) и направляем читателя, нуждающегося в их формулах, к любому 

хорошему учебнику по вычислительной гидродинамике и многим 

другим статьям (например, [16] и [1, 14, 15]). 
Тесты на сходимость и её порядок на гладких решениях. Это 

единственный раздел, где задачи полностью одномерные и 
непрерывные, т. е. мы решаем (26) с 0v   и любыми 
неоднородностями потока лишь вдоль оси абсцисс и без разрывов. 

Тесты подтверждают, что сходимость пространственной 

реконструкции (т. е. схем с шагом по времени  
9

4min ,t x y   ) в 

присутствии критических точек более высокого порядка, чем первый 
(чем обычный экстремум), как наблюдалось в [6], при добавлении 
MP ограничителя уже ухудшается с понижением порядка схемы. При 
этом наша схема, конечно, достигает 9 порядка для критической 
точки второго порядка в плотности для уравнений Эйлера, если 
ограничитель отключить. С ограничителем же порядок падает до 3, 
что всё ещё вполне приемлемо. 

Рассмотрим тест с двумя критическими точками второго порядка 
из [17] с начальными данными: 
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      3

, , , 1,1 0.1 sin ,0,1u v p x  , 

расчётной областью  1..1 , периодическими граничными условиями 

и конечным временем 0.5t  . На рис. 1 мы приводим сходимость 

всей схемы в том виде, в котором она используется на практике, а не 
только пространственной её части, т. е. делаем обычные шаги по 
времени с единичным CFL. Схемы девятого порядка в таком случае 
имеют примерно такую же сходимость, как WENO5-FM. 

 

  
 

а) 

 

 

б) 

 

  
 

в) 

 

 

г) 

 

 
Рис. 1. Логарифмический график ошибки численных методов как функции 

шага сетки х  для расщеплённого потока Лакса Фридрихса, интегрированного 10-

этапным SSP методом Рунге-Кутты 4 порядка с CFL=1, и реконструкциями 

WENO5-FM (а), WENO9-FM MP (б) , WENO9-S MP (в) , WENO9-SM MP (г) 
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Тест Сода в 2D. Здесь представлен одномерный тест Сода [16], 

обобщенный для двумерного случая с равномерным постоянным 

распределением параметров вдоль нового направления для проверки 

правильности кода. 

Тест ставится как одномерная задача Римана на расчётной 

области    0..1 0..1  и с расчётом до времени 0.25t   со 

следующими начальными условиями: 

  
 

 

0.5
, , ,

0

1.,0.,0.,1. , если 

0.125,0.,0. .5,0.1 , есл .и 
u v p

x

x



 



 (27) 

На Рис. 2 представлены профили решений с различными рекон-

струкциями и видами MP ограничителя для 51 51  точек внутренней 

расчётной области в пространстве и CFL=1 для времени. На Рис. 3 на 

примере профиля внутренней энергии показано, что применение раз-

личных видов ограничителей отличаются слабо. На этой задаче 

WENO девятого порядка ведёт себя явно лучше, чем WENO пятого 

порядка. Если бы мы нанесли ещё решение с WENO9-FM MP, оно бы 

было несколько лучше в двух-трёх точках вблизи разрывов, чем 

WENO9-SM MP, но больше бы ничем не отличалось. 

 
Рис. 2. Профили решения теста Сода вдоль 0.5y   для потока ЛФ, 

интегрированного SSP РК(10, 4) при CFL=1, с реконструкциями WENO9-SM 

MP (MM) (фиолетовый цвет), WENO9-SM MP(M4X) (розовый цвет) и WENO5-FM 

(оранжевый цвет) на 51 51  точках. Точное решение проведено пунктиром 
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Рис. 3. Профиль удельной внутренней энергии теста Сода вдоль 0.5y   для 

потока ЛФ, интегрированного SSP РК(10, 4) при CFL=1, с реконструкциями 

WENO9-SM MP (MM) (фиолетовый цвет), WENO9-SM MP(M4X) (розовый цвет) и 

WENO5-FM (оранжевый цвет) на 51 51  точках. 

Точное решение проведено пунктиром 

 

Тест 2D взрыва Торо. Тест [16, 18] с условиями, основанными 

на условии теста Сода из 1D, но с радиальной симметрией, позволяет 

оценить, насколько схемы сохраняют эту симметрию и сходятся с 

одномерным решением радиальной задачи (с соответствующими 

источниковыми членами). Начальные данные теперь задаются 

  
     
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1.,0.,0.,1. , если 1 1
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x y
u v p

y


    
 

   

 (28) 

Внутреннее постоянное состояние достигается внутри диска 

радиуса 0.4 с центром в точке (1, 1), а внешнее за его пределами. Мы 

не выполняем усреднение значений на разрыве. Расчётная область: 

   0..2 0..2 , а конечное время расчёта 0.25t  . Для нахождения 

референтного решения использовался одномерный радиальный код 

(для уравнений см., например, [16]) с ЛФ WENO5-FM & SSP РК(10, 

4) без ограничителя с CFL=2. Для всех рассматриваемых схем 

наблюдается сходимость. 

2.8

2.6

2.4

2.2

2.0

1.8

0.0              0.2              0.4              0.6              0.8              1.0

referenceWENO9-FM-MP(M4X) WENO9-SM-MP(MM) WENO9-SM-MP(M4X) WENO5-FM

 

x



Ф.А. Белолуцкий, В.В. Шепелев, С.В. Фортова 

18                                                       ММЧМ 2025 № 1 (45) 

Из Рис. 4–5 видно, что представленная в данной работе схема 

менее диссипативна по сравнению со схемой WENO5-FM. 

 

  
 

Рис. 4. Радиальные профили решения задачи о взрыве Торо, полученные с по-

мощью 1D ЛФ с реконструкцией WENO5-FM, интегрированным SSP РК(10, 4) с 

2CFL  на 20001 точке (пунктиром проведены профили в начальный момент вре-

мени), которые берутся нами за эталон 
 

Некоторый интерес представляет сравнение развития неустойчи-

вости на большом конечном времени 3.2t   в различных схемах. 

Рис. 6 показывает, как оно отличается для рассматриваемых здесь 

схем. Стоит отметить, что общий характер развития неустойчивости 

одинаков и согласуется с результатом без усреднения для схемы 

WAFT, полученным в [18], хотя некоторые детали и контуры отли-

чаются по виду у всех схем. 
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Рис. 5. Радиальные профили решения от точки (1, 1) вдоль 0.5y  для дву-

мерной задачи о взрыве Торо через ЛФ с интегрированием во времени SSP РК(10, 

4) с 1CFL   и реконструкциями WENO9-FM MP(M4X) (фиолетовый цвет), 

WENO9-SM MP(M4X) (розовый цвет) и WENO5-FM (оранжевый цвет) на 101 101  

точках. Пунктиром проведено эталонное решение, полученное с помощью 

WENO5-FM для одномерных радиальных уравнений на крайне мелкой сетке 
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в) г) 

Рис. 6. Развитие неустойчивости в решении теста взрыва Торо на большом 

конечном времени 3.2t   с 27 контурами плотности от 0.08 до 0.21 для 

реконструкции WENO5-FM (а), WENO9-FM MP (б), 

WENO9-S MP (в), WENO9-SM MP (г) 
 

Сильная диагональная ударная волна Торо. Для демонстрации 

возможности разрешения сильных ударных волн используется аналог 

одномерного теста Торо № 3 с распространением сильной ударной 

волны [16]. Модификация теста состоит в изменении угла наклона 

прохождения ударной волны, которую мы поворачиваем под 45 

градусов к нашей прямоугольной сетке со сменой расположения 

разрыва на центр диагонали квадратной области расчёта. 

Используется следующая постановка: 

  
 

 

1.,0.,0.,1000. , если 1

1.,0.,0.,0.01 , в противном случае
, , ,

.
primitive

x y
u v p

 
 






f  (29) 

Мы решаем задачу до 0.012t   на квадратной расчётной области 

   0..1 0..1  с граничными условиями f  в фиктивных ячейках  f

на границе . 

Профили давления численных решений вдоль диагонали с коор-

динатой 2 2yx   представлены на Рис. 7. Все схемы демонстри-

руют нефизичные осцилляции сравнимой величины. Схема WENO9-

FM MP производит заметно больший резкий провал около 0.55 , 

тогда как для WENO9-SM MP он почти такой же, как для WENO5-

FM. Диссипация, производимая на разрывах схемой WENO9-SM-MP, 

получается промежуточной между WENO5-FM и WENO9-FM MP. 
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а) б) 

 
Рис. 7. Профили давления вдоль диагонали сильной диагональной ударной 

волны Торо для реконструкций WENO9-FM MP(M4X) (фиолетовый цвет), 

WENO9-SM MP(M4X) (розовый цвет) и WENO5-FM (оранжевый цвет) на 

201 201  точках. Пунктиром проведено точное решение одномерной задачи. На 

выноске продемонстрирован горизонтальный участок от 0.52   до 1   

 

Задача 2D имплозии Хуэя и др. Тест [14, 18, 19] делит 

пространство на две области, но теперь центральная область 

отделена квадратной мембраной под углом 45 градусов и меньшие 

давление с плотностью уже внутри неё: 

  
 

 

0.125,0.,0.,0.1 , если 0.15 и 0.15

1.,0.,0.,1. , в противном сл .у
,

ча
,

е
,

x y x y
u v p

    
 


 (30) 

Тест на симметрию метода относительно пространственных 

измерений, где появляющиеся джеты смещаются относительно 

диагоналей без полностью симметричной процедуры вычисления 

пространственного оператора для обоих направлений. Расчётная 

область    1.5..1.5 1.5..1.5   или    0.3..0.3 0.3..0.3  , конечное 

время 2.5t  . Граничные условия: отражающие (стенки). Наша схема 

и WENO9-FM в целом производят схожие картины. Важным 

замечанием является то, что в данной задаче помимо диагональной 

симметрии присутствуют также осевые симметрии. Это диктует 

необходимость проведения тестовых расчетов во всей области, а не в 

одном из ее квадрантов, если встаёт вопрос, сохраняют ли схемы 

симметрию [14]. В нашем случае симметрию конечно-разностных 

методов без труда удаётся сохранить (см. Рис. 8–9). 

На Рис. 8г–9г видно, что схема WENO9-SM разрешает большое 

число мелких структур и даёт результат, схожий с WENO9-FM. 
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а) 
 

б) 
 

  
в) г) 

 
Рис. 8. Решения теста имплозии Хуэя и др. [18] имплозии в камере 

   0.3..0.3 0.3..0.3    ( 401 401 пространственная сетка) c 12 контурами плотности 

от 0.45 до 1.05, отображением плотности цветом и поля скоростей стрелками для 
реконструкций WENO5-FM (а), WENO9-FM MP (б), 

WENO9-S MP (в), WENO9-SM MP (г) 
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Рис. 9. Решения теста имплозии Хуэя и др. [18] имплозии в камере 

   0.3..0.3 0.3..0.3    ( 801 801 пространственная сетка) c 12 контурами плотности от 

0.45 до 1.05, отображением плотности цветом и поля скоростей стрелками для 

реконструкций WENO5-FM (а), WENO9-FM MP (б), 

WENO9-S MP (в), WENO9-SM MP (г). 

Цвет и контуры взяты такие же, как в работах [14] и [18] 

 

Разрешение неустойчивости Рэлея — Тейлора. Неустойчивость 

Рэлея — Тейлора является физическим явлением, наблюдаемым при 

воздействии гравитации на два слоя жидкостей различных 

плотностей, где гравитация вдавливает более плотную в менее, 

собственно, создавая неустойчивость. Неустойчивость численного 

решения управляется встроенной диссипацией соответствующего 

численного метода. Меньшая диссипативность метода обеспечивает 

возникновение большего числа мелких структур для той же сетки и 

конечного времени. Есть несколько популярных постановок теста, 

таких, как постановка, использованная в [18]. Мы же рассмотрим 

постановку из [20], которую чаще используют для анализа свойств 

существенно не осциллирующих схем. Она же рассмотрена, 

например, в [7, 8, 14]. 

В ней расчётная область — прямоугольник [ 0.25] ]0.. [0..1 . К 

уравнениям (26) добавляются источниковые члены, отвечающие за 

гравитацию: она направляется здесь вверх и придаёт единичное 

ускорение, т. е. ко второму уравнению системы (26) с вертикальной 

проекцией скорости добавляется 1    в правую часть, а в правую 

часть последнего уравнения, соответствующего закону сохранения 

энергии, добавляется 1 v   . Такая постановка требует размещения 

более тяжёлой жидкости снизу. Она будет иметь в начальный момент 

следующие параметры: 2 , 2 1p y  . Верхняя же жидкость — 
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1 , 
3

2
p y  . Граница раздела проходит по 1/ 2y  . Скорость 

жидкостей нулевая, но в её вертикальную компоненту вносится 

малое возмущение вида  c0.0 s 825 ov xc    , где c
p





 — 

скорость звука, как и раньше, но 5 / 3 . Слева и справа 

отражающие стенки, сверху 1 , 2.5p  , 0u v  , а снизу 2 , 

1p  , 0u v  . Итоговое время расчёта 1.95t  . Мы берём сетку 

129 513 . 

На Рис. 10 показаны поля плотности для схем WENO5-FM, 
WENO9-S MP, WENO9-SM MP и WENO9-FM MP (г). Количество 
мелких структур для WENO9-SM MP оказывается между WENO5-
FM и WENO9-FM MP, вновь подтверждая, что величина диссипации 
реконструкции WENO9-SM MP является промежуточной между 
WENO5-FM и WENO9-FM MP. 

 

 
 

а) б) в) г) 

 

Рис. 10. Разрешение поля плотностей теста с неустойчивостью Рэлея — 

Тейлора схемами с расщеплённым потоком ЛФ, интегрированием во времени SSP 

РК(10, 4) и реконструкциями WENO5-FM (а), WENO9-S MP (б), 

WENO9-SM MP (в), WENO9-FM MP (г) 

 
 

Заключение. В данной работе описан алгоритм двумерной ко-

нечно-разностной схемы ЛФ WENO9-SM-MP(M4X) & SSP РК(10, 4), 

а также показано, что она даёт удовлетворительные результаты по 
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сравнению с другими схемами подобного типа при разрешении задач 

с сильными разрывами. 

Это обнадёживающие результаты, учитывая, что вычисление ин-

дикаторов гладкости WENO-S требует меньше арифметических опе-

раций (см. [2, 8]), чем WENO-JS / WENO-BS, а в форме из [7] нели-

нейное отображение весов (2) можно легко дискретизировать для 

  
2

0..11
S

SM

k S

k




 
 



 
  
 

 

и сохранить в виде массива (см. [7]), исключая время, тратящееся на 

его перерасчёт. Таким образом, схема является более эффективной, 

чем другие WENO схемы девятого порядка с нелинейным 

отображением. 

Работа выполнена при финансовой поддержке Министерства 
науки и высшего образования РФ (госзадание 124022400174-3). 
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Two-dimensional method WENO9-SM-MP with a high 

Order of approximation for simulating flows with 

strong discontinuities 
 

 F.A. Belolutskiy, V.V. Shepelev, S.V. Fortova 

 
ICAD RAS, Moscow, 123056, Russia 

 

A generalization of the previously developed 9th-order WENO-SM-MP numerical scheme 

to two spatial dimensions is carried out with a procedure of its full symmetrization with 

respect to spatial dimensions. Verification of the scheme is conducted for problems of 

ideal gas dynamics. It is shown that the scheme is relatively low-dissipative and accepta-

bly resolves 2D tests while being more efficient than the corresponding WENO-M, 

WENO-FM or WENO-ZM schemes of the same order with an MP limiter. 

 

Keywords: WENO, computational fluid dynamics, shock waves, symmetry-preserving 

schemes, symmetry breaking, low dissipation schemes, Rayleigh—Taylor instability 
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