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Работа посвящена сравнительному изучению параметрических и непараметриче-

ских методов обнаружения разладки во временных рядах различной природы. Для 

решения задачи обнаружения аномалии в рядах с неизвестными статистическими 

характеристиками рассмотрена и реализована модель на основе оценки расхож-

дения Кульбака-Лейблера между законами распределения. Для вычисления пара-

метров линейной модели применена процедура оценки значимости Кульбака-

Лейблера (KLIEP). С помощью оригинального программного кода реализован двух-

этапный алгоритм решения полученной задачи условной оптимизации методом 

градиентного спуска, для оценки обучающей способности модели использован ме-

тод кросс-валидации. Проведен сравнительный анализ качества обнаружения мо-

мента разладки рассмотренным методом KLIEP и классической моделью кумуля-

тивных сумм (CUSUM). При работе с моделированными данными обнаружены 

незначительные вариации в таких характеристиках моделей KLIEP и CUSUM, как 

среднее время обнаружения момента разладки и уровень ложной тревоги. Для ре-

альной задачи обнаружения сбоя в режиме энергопотребления обе процедуры про-

демонстрировали 1-2 ложных тревоги, однако в KLIEP получилось более узкое вре-

менное окно (5 временных интервалов против 20), что в принципе позволяет зна-

чительно быстрее и без потери точности определять аномалию. При обнаруже-

нии разладок в ключевых показателях эффективности интернет сервиса получены 

схожие результаты.  В целом показано, что применение модели KLIEP не ухудша-

ет качество определения момента возникновения аномалии в сравнении с популяр-

ными моделями, использующими статистические характеристики ряда. На реаль-

ных данных продемонстрировано преимущество использования данного подхода, 

поскольку он не требует знания закона распределения временного ряда. 

 

Ключевые слова: статистическое моделирование, машинное обучение, временные 

ряды, задача о разладке, модель KLIEP 

  

Введение. Для реальных процессов, непрерывно генерирующих 

некоторые данные, существует необходимость в автоматическом от-

слеживании корректности работы программ и своевременном обна-

ружении разладки. Под разладкой понимается изменение статистиче-

ских свойств временного ряда, начиная с некоторого момента време-

ни. Приложения задачи о разладке весьма широки: обнаружение ха-

керских атак на интернет-сервисы, обнаружение аритмии и т.д. [1][2]. 

Основными требованиями к методам обнаружения аномалий системы 

являются скорость определения и полнота таких возникновений. 
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Временные ряды, порожденные реальными процессами, описывают-

ся сложными законами, статистические характеристики которых не 

всегда поддаются четкой структуризации [3,4]. В связи с этим, суще-

ствует острая необходимость в разработке моделей, способных выяв-

лять аномальное поведение системы без использования знаний о па-

раметрах распределения. В данной работе исследуются различия реа-

лизованной модели на основе оценки значимости расхождения Куль-

бака-Лейблера (KLIEP) и классической процедуры вычисления куму-

лятивного отношения правдоподобия (CUSUM) [5-7]. 
Классическая постановка задачи. Рассмотрим процессы, в ко-

торых в некоторый момент   происходит изменение статистических 
свойств временного ряда. 

Введем гипотезы 
0H  ― разладка произошла в момент наблюде-

ния   и H 
 ― разладка не произошла вовсе. Классическая поста-

новка задачи состоит в наблюдении бинарного статистического экс-
перимента [3] 

  0

0
, , ; ,n n
F F P P


 , 

где  , F  ― некоторое измеримое пространство; 

 
0n n

F


 ― фильтрация  -алгебр, 

                     0 0 1, , ...F F F F F       ; 

0P  ― распределение вероятностей, соответствующее гипотезе 
0H ; 

P
 ― распределение вероятностей, соответствующее гипотезе H


. 

Цель ― построить вероятностную модель P
. Причем мера P

 

должна удовлетворять свойству ( ) ( )P A P A   при 0     если 

nA F  и n  , а также естественному условию: 
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Таким образом мера P
 характеризует разладку в момент време-

ни   [5,6]. 

Опуская математические выкладки конструирования меры P
, 

запишем производную Радона-Никодима для момента времени   

0

0
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               (2) 

Вычисление функций правдоподобия, входящих в формулу (2), 
требует знаний о законе распределения временного ряда. 
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Модель KLIEP. Пусть 
dD   ― область определения случай-

ных величин. Пусть   , 1...tr

i trx i n  ― независимые одинаково рас-

пределенные случайные величины с плотностью распределения 

( ) 0trp x x D    и   , 1...te

i tex i n  ― независимые одинаково распре-

деленные случайные величины с плотностью распределения ( )tep x .  

Цель метода состоит в том, чтобы сразу, напрямую из данных, 

получить так называемую значимость Кульбака-Лейблера  

( )
( )

( )

te

tr

p x
w x

p x
 . 

Процедура оценки значимости строится на основе линейной модели 

^

1

( ) ( ),
b

l l
l

w x x 


   (3) 

где l  ― параметры обучения, 1,...l b ; 

( )l x  ― базисные функции такие, что ( ) 0 , 1,...l x x D l b     ; 

b  ― размерность пространства базисных функций. 

 Оценка плотности распределения тестовой выборки тогда 

имеет вид [6]: 

^ ^

( ) ( ) ( )trte
p x w x p x . 

Неизвестные параметры обучения l  определяются минимиза-

цией расстояния Кульбака-Лейблера между распределениями ( )tep x  и 

^

( )
te

p x  следующим образом: 
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Ввиду константности первого слагаемого, необходимо максими-

зировать второе слагаемое 

 
^ ^

1 1 1

1 1
log ( ) log ( ) log ( ) .

te ten n b
te te

te j l l j
j j lD te te

J p w x dx w x x
n n

 
  

        (4) 

Поскольку 
^

( )w x  ― оценка значимости ( )w x , являющейся поло-

жительной по определению, получаем ограничения на параметры 
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0, 1,...l l b   . Дополнительно, 
^

( )
te

p x  ― оценка плотности ( )tep x , 

нормирована на 1, что приводит к соотношению 

^ ^ ^ ^

1 1 1

1 1
1 ( ) ( ) ( ) ( )

tr trn n b
tr tr

i l l ite tr
i i lD D tr tr

p x dx w p x dx w x x
n n

 
  

       

Данная задача условной оптимизации называется процедурой 

оценки значимости Кульбака-Лейблера: 

 
1 1

1 1

log ( ) max,

1
( ) 1,

0, 1,... .

te

l

tr

n b
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l l j
j l

n b
tr

l l i
i l

tr

l

x

x
n

l b


 

 



 

 

 



 

 (5) 

Алгоритм численного решения задачи о разладке. Численное 

решение поставленной задачи достигается методом градиентного 

спуска [8,9], алгоритм которого представлен ниже: 

1. Положим  

, ( ), 1,... , 1,...te

j l l j teA x j n l b   . 

2. Положим  

               
1

1
( ), 1,... , 1,...

trn
tr

l l i tr
i

tr

b x i n l b
n




   . 

3. Выберем 0, 1,...l l b    и 0 1  ― скорость градиентного 

спуска. 

4. Шаг градиентного спуска  

                        
1TA

A
  


  . 

5. Условие сходимости  

(1 )T

T

b
b

b b
     , max(0, )  , 

Tb





 . 

6. Повторяем пункты 4-5 до сходимости  

prev    , 

где   ― некоторая константа. 

Для оценки обучающей способности модели используется метод 

кросс-валидации, в результате которого выбираются лучшие пара-

метры модели. Данный алгоритм, применительно к задаче оптимиза-

ции описан ниже: 
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1. Положим  

  ( )| ( )k

k k lM m m x   

 ― набор кандидатов, где k ― номер кандидата. 

2. Делим выборку   , 1...te

i tex i n  на R подвыборок  

  , 1,...te

i r
x r R . 

3. Для каждого кандидата km M выполняем пункты 4-5. 

4. Применяем KLIEP к каждой  te

i r
x  и считаем 

^

rJ  

5. Получаем усредненную оценку по всем подвыборкам                    

^ ^

1

1 R

r
r

J J
R 

  . 

6. Выбираем лучшую модель 
^ ^

arg max ( )km J m . 

7. Применяем KLIEP ко всей выборке  te

ix  результирующей мо-

делью 
^

m . 

В качестве базисных функций используются Гауссовские ядра с 

центрами [10-12]: 

'^
'

1

( ) ( , ),
ten

te

l l
l

w x K x x


   (6) 

где   

2

2

'
( , ') exp

2

x x
K x x



 
  
 
 

 

― Гауссовское ядро ширины  . 

Решение задачи обнаружения разладки реализуется в два этапа: 

обучение модели на исторических очищенных данных и ее последу-

ющее применение на входных данных. На этапе обнаружения для 

каждого момента времени   область наблюдения делится на два окна 

размерами ten  и trn , левое и правое соответственно (рис. 1). 

В моменты времени меньшие   предполагается отсутствие раз-

ладки. Данные из этого окна имеют плотность распределения ( )ip x , 

обозначаемую ( )te ip x . О распределении правого окна не делается ни-

каких предположений, но при отсутствии разладки должно выпол-

няться 
^

( ) ( ) ( )tr tep x w x p x . Задача таким образом сводится к проверке 

гипотезы об однородности распределения против его изменения. 
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где ( )te ip x  ― плотность распределения до аномалии; 

( )tr ip x  ― плотность распределения после аномалии. 

 

  
 

Рис. 1. Визуализация скользящих окон 
 

Согласно выведенному ранее отношению правдоподобия опреде-

лим накопленные за правое окно логарифмы этого отношения как 

функцию принятия решения 
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Тогда   будет считаться моментом разладки, если g  значимо 

отличается от усредненного значения статистик ig  из левого окна, где 

значимость определяется некоторой константой. Данное заключение 

записывается в виде условия следующим образом: 
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где 0T   ― некоторый порог значимости. 
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Для неизвестных T  и trn  строится сетка параметров, из которого 

выбирается пара, удовлетворяющая критериям: наименьшее число 

ложноположительных обнаружений разладки, минимальный уровень 

порога T  и минимальный размер окна trn . 

Сравнительный анализ модели KLIEP на синтетических 

данных. Перед применением модели к реальным данным полезно 

проверить гипотезу на синтетических данных и получить метрики, по 

которым можно сделать выводы о реальной применимости модели. В 

качестве базовой модели предлагается взять классический метод 

CUSUM [5]. Алгоритм генерации данных выражается в следующих 

шагах: 

1) Сгенерировать число разладок n; 

2) Для каждого { | 0 }i i n   сгенерировать траекторию из слу-

чайного закона распределения; 

3) Объединить полученные траектории в единый набор данных; 

4) Применить модель обнаружения разладок к полученному ряду. 

Таким образом будет эмулироваться изменение статистических 

свойств временного ряда и проверяться применимость модели 

KLIEP. На конкретном примере продемонстрируем применение мо-

делей. Сгенерируем 3 момента разладки, обозначаемые красными 

вертикальными линиями на рисунке ниже. 

 

 
 

Рис. 2. Траектория из последовательных N(100,2), U(95,105), 100+t(11) и N(101,3) 

законов распределения 

 

Применяя метод CUSUM к сгенерированной траектории получа-

ем следующие обнаружения разладок (рис. 3). 
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 Рис. 3. Результат обнаружения разладок методом CUSUM на смоделированной 

траектории 
 
В процессе обучения модели KLIEP были определены гиперпа-

раметры модели: 125   ― Гауссовская ширина, 17b   ― размер 
пространства базисных функций, 0.003T   ― порог значимости и 

25trn   ― размер окна определения аномалии. Применяя модель 

KLIEP с критерием (7) к аналогичному ряду, получаем результат   
(рис. 4). 

Согласно полученному результату видно, что модели требуется 

больше времени на определение аномалии, однако обнаружение бо-

лее полное, в отличие от метода CUSUM. Для более точного заклю-

чения смоделированы 25 различных траекторий данных и посчитаны 

метрики MAE и RMSE для временной задержки в обнаружении раз-

ладки и recall для определения полноты срабатываний. Результаты 

моделирования отражены в таблице ниже. 

 
Таблица 1 

 

Метрики MAE, RMSE и recall для методов CUSUM и KLIEP в задаче 

обнаружения разладок 

 
Метод MAE RMSE recall 

CUSUM 14.713 27.638 0.646 

KLIEP 23.925 43.086 0.781 
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Рис. 4. Результат обнаружения разладок по смоделированной траектории моделью 

KLIEP 
 

Из результатов можно сделать следующий вывод: метод CUSUM 

в среднем на 9.2 временных пункта быстрее обнаруживает разладку, 

однако полнота таких обнаружений ниже на 0.135. Задержка в обна-

ружении объясняется более комплексными аномалиями, которые 

смогла обнаружить модель KLIEP и на которые ей потребовалось 

больше времени. 

Обнаружение разладок в энергопотреблении. В качестве дан-

ных использованы показания энергопотребления электрической 

нагнетательной машины, измеряемые в кВт/ч. Соответствующий 

график потребления можно наблюдать на рисунке ниже (рис. 5). 

На рисунке видны частые всплески, характеризующие увеличе-

ние потребления энергии и пять резко выбивающихся скачков, в мо-

менты которых произошла разладка. Применяя к этим данным моде-

ли CUSUM и KLIEP получаем следующие картины (рис. 6) и (рис. 7) 

соответственно. 
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Рис. 5. График энергопотребления машины в течение некоторого времени 
 

  

  
 

 

Рис. 6. Результат обнаружения разладок в энергопотреблении методом 

CUSUM 
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Рис. 7. Результат обнаружения разладок в энергопотреблении моделью KLIEP 
 

Обе процедуры продемонстрировали 1-2 ложных обнаружения, 

однако KLIEP имеет более узкое временное окно (5 временных ин-

тервалов против 20), что позволяет ей значительно быстрее и без по-

тери точности определять аномалию. 

Обнаружение разладок в ключевых показателях эффективно-

сти интернет сервиса. С быстрым развитием интернета, особенно 

мобильного, веб-сервисы проникли во все сферы жизни общества. 

Поэтому обеспечение их стабильности становится все более важным. 

Персонал по эксплуатации отслеживает различные показатели эф-

фективности (KPI) для определения стабильности сервиса, поскольку, 

если KPI ненормальный, то это означает, что есть проблема со свя-

занными с ним приложениями. Основные трудности в обнаружении 

аномалий в KPI заключаются в низкой частотности реальных разла-

док и их разнообразии. 

В качестве данных взят набор реальных данных о KPI различных 

интернет компаний (рис. 8). В них содержится временная метка 

(timestamp), значение показателя (value), факт наличия аномалии в 

данный момент времени (label) и идентификатор компании (KPI ID). 
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Рис. 8. Данные о KPI интернет компаний 
 

Отображая на график данные об одной из компаний получаем 

следующий график (рис. 9). 

 

 
 

Рис. 9. KPI график с реальными разладками 
 

Сложность обнаружения аномалий в подобных данных заключа-

ется в наличии сезонности. Поскольку на сырых данных обнаружить 

разладку не представляется возможным, необходимо извлечь сезон-

ную компоненту. Результат извлечения периодичности можно увидеть 

на картине ниже (рис. 10). 
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Рис. 10. Тестовая часть KPI графика с извлеченной периодической компонентой 

 
Разделим преобразованные данные на тренировочные, без выяв-

ленной аномалии, и на тестовые, с присутствием реальной разладки. 
Затем обучим модель KLIEP на тренировочных данных. Лучшие ре-

зультаты показала модель со следующими параметрами: 5trn   ― 

размер окна, 0.3T   ― порог значимости, 1   ― ширина гауссов-

ского ядра, 210b   ― размер пространства базисных функций. На 
тестовых данных (рис. 11) модель обнаружила все разладки и не по-
казала ни одного ложноположительного срабатывания. 

Применяя метод CUSUM к тестовому набору получаем менее 
успешный результат (рис. 12). Параметры модели: размер окна 10, 
порог значимости 50. Метод так же обнаружил все разладки, однако 
после последней реальной разладки некоторое время метод показы-
вает ложно-положительные обнаружения. Дополнительно к этому 
есть одно ложное срабатывание перед рядом действительных разла-
док. 

Выводы. В ходе сравнительного анализа методов CUSUM и 
KLIEP было получено, что модель KLIEP предоставляет результаты 
не хуже классической статистической модели. При более точном 
сравнении на синтетических данных было обнаружено, что в сред-
нем, модели требуется на 9.212 единиц времени больше для обнару-
жения разладки. Однако полнота таких обнаружений больше на 
0.135, что означает, что модель чаще обнаруживает аномалию, чем не 
обнаруживает вовсе. На реальных данных было выявлено преимуще-
ство использования модели KLIEP, состоящее в более быстром и точ-
ном обнаружении разладки, без потери полноты. Дополнительно к 
этому, основное преимущество модели KLIEP состоит в том, что она 
не требует знания о статистических характеристиках исследуемого 
временного ряда. 
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Рис. 11. Результат обнаружения разладок в KPI моделью KLIEP 
 

 

 
Рис. 12. Результат обнаружения разладок в KPI моделью CUSUM 
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Таким образом, KLIEP позволяет получить результаты не хуже, а 

в реальных задачах лучше, классических статистических моделей и 

увеличивает число областей, в которых данный метод может быть 

применен. 
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Implementation of the Kullback-Leibler procedure to the 

change point problem to time series of various nature 
 

 T.V. Oblakova, E. Kasupovich
 

 
BMSTU, Moscow, 105005, Russia 

 

The paper is devoted to methods to the comparative study of parametric and nonpara-

metric methods for detecting anomaly in time series of various nature. To solve the prob-

lem of anomaly detection in series with unknown statistical characteristics, a model 

based on the estimation of Kulbak-Leibler divergence between distribution laws is con-

sidered and implemented. The Kullback-Leibler importance estimation procedure 

(KLIEP) is applied to calculate the parameters of the linear model. A two-stage algo-

rithm for solving the obtained conditional optimization problem by the gradient descent 

method was implemented using the original software code, and the cross-validation 

method was used to evaluate the model's learning ability. A comparative analysis of the 

quality of fault moment detection by the considered KLIEP method and the classical cu-

mulative sum model (CUSUM) was carried out. When working with simulated data, in-

significant variations in such characteristics of KLIEP and CUSUM models as the aver-

age time of fault detection and false alarm rate were found.  For the real power mode 

fault detection task, both procedures showed 1-2 false alarms, but KLIEP obtained a nar-

rower time window (5 time intervals vs. 20), which in principle allows much faster and 

without loss of accuracy anomaly detection. Similar results were obtained when detecting 

discrepancies in key performance indicators of Internet service.  In general, it is shown 

that the KLIEP model does not degrade the quality of anomaly detection compared to 

popular models that use statistical characteristics of the series. The advantage of using 

this approach is demonstrated on real data, since it does not require knowledge of the 

law of distribution of the time series. 

 

Keywords: statistical modeling, machine learning, time series, the problem of the change 

point detection, the KLIEP model 
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