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В данной работе исследуется задача об облучении алюминиевой мишени фемтосе-

кундным лазерным импульсом. Проведён расчёт задачи конечно-элементным ла-

гранжевым методом. Результаты сравниваются с расчётами методом типа Го-

дунова и методом молекулярной динамики. Гидродинамические расчёты показы-

вают практически полное соответствие. Использование метода с подвижной 

сеткой позволяет точно определить границу материала. В области волн разре-

жения методы гидродинамики показывают гораздо большую амплитуду отрица-

тельных давлений, чем расчёты методом молекулярной динамики. Предложена 

модель отрыва, позволяющая учитывать возможные разрывы материала. Ис-

пользование модели отрыва в расчетах улучшает соответствие с молекулярно-

динамическими моделями и предотвращает образование второй ударной волны. 
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Введение. Лазерные технологии нашли применение в различных 

областях, породив специализированные научные и технологические 

направления. Значительные исследования были посвящены лазерно-

му структурированию поверхности материалов, в особенности инду-

цированным лазером периодическим поверхностным структурам [1], 

выборочному лазерному плавлению в аддитивном производстве [2] и 

лазерной абляции в жидкости для производства наночастиц [3, 4]. 

Лазерное ударное упрочнение с помощью наносекундных лазерных 

импульсов [5] позволяет в несколько раз увеличить срок службы ме-

таллических деталей. 

Фемтосекундные (
151 фс 10 c) лазерные импульсы имеют ряд 

преимуществ, в сравнении с наносекундными импульсами. Ультра-

короткая длительность фемтосекундных импульсов позволяет до-

ставлять высокие пиковые мощности с минимальной тепловой диф-

фузией в окружающий материал. Эта характеристика делает фемто-

секундные лазеры предпочтительными для использования в обла-

стях, требующих высокой точности и минимальных зон теплового 

воздействия. 

В процессе лазерного упрочнения поверхность материала обра-

батывается лазерным импульсом, который создаёт интенсивную 

ударную волну внутри материала. Эта волна распространяется в ма-

териале и вызывает пластическую деформацию и пластическую пе-
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рестройку микроструктуры. В результате происходит сжатие поверх-

ностного слоя материала, улучшение его механических свойств, та-

ких как усталостная прочность и сопротивление трещинам. 
В последнее десятилетие использование фемтосекундных ла-

зерных импульсов для ударного упрочнения было предложено и 
опробовано [6-8], но лежащие в основе фемтосекундного упрочнения 
физические механизмы до конца не ясны и продолжают быть пред-
метом исследований. 

Эффект упрочнения напрямую связан с величиной напряже-
ний в подповерхностном слое, поэтому расчёт пространственной 
эволюции напряжений при индуцированной лазером ударной волне в 
металлах имеет первостепенное значение. 

В данной работе численное моделирование основано на ла-
гранжевом подходе, преимуществом которого является перемещение 
сетки вместе с веществом. Это позволяет отслеживать контактную 
границу естественным образом, без применения специальных моди-
фикацией методов. 

Постановка задачи. Выполняется гидродинамическое моделиро-
вание задачи распространения ударной волны в алюминиевой мише-
ни, облучаемой единичным ультракоротким лазерным импульсом. 

 

  
Рис. 1. Конфигурация задачи лазерного облучения объёмной алюминиевой  

мишени. xL  ― полуширина мишени, yL  ― толщина мишени, lR  ― радиус 

светового пятна, xd  ― глубина первоначального нагрева 

 
Начало координат связано с центром светового пятна на метал-

лической поверхности. Ось x направлено вправо вдоль поверхности, 
а ось y - вдоль оси лазерного луча, перпендикулярного поверхности. 

Полуширина мишени составляет 1280xL   нм, толщина ― 800yL   

нм. Все моделируемые процессы происходят в прямоугольнике 

 , ,0x x yL L L     . 

Rl = 200 nm

Laser

 

Vacuum

Aluminium

Lx = 1280 nm

dx = 80 nm



А.В. Буланов, В.В. Шепелев, С.В. Фортова 

68                                                       ММЧМ 2024 № 4 (44) 

Задача двухтемпературного нагрева облучаемого металла, вклю-

чающая распространение тепла от скин слоя в мишень за счёт элек-

тронной теплопроводности, выравнивание температур электронов и 

ионов благодаря электронно-ионному обмену и практически изохор-

ное формирование профиля давления изучена в работах [9-11]. 
В качестве начального условия давления выбрана прямоугольная 

ступенчатая функция, по параметрам близкая к итоговому типовому 
профилю сжатия. Температура и давление внутри прямоугольника 

2 l xR d  повышены, и равняются 20T  кК, 35.6p   ГПа. Это соот-

ветствует интенсивности падающего импульса порядка 15~ 10incI

Вт/см
2
 длительностью 0.1L   пс. В остальной области 0p  . Плот-

ность алюминия одинакова во всей мишени и равняется 0 2413 

кг/м
3
. 

Для алюминия используется полуэмпирическое уравнение состо-

яния в форме Ми-Грюнайзена. Уравнение имеет вид: 

 ( ) ( ) ( ( ))cold coldp p G e e        , (1) 

где 
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 (3) 

0 ( ) 1
g

p
a b

p
    . 

Алюминий хорошо описывается параметрами: 𝜌0 = 2750 кг/м, p0 

= 560.964 ГПа, pg = 15 ГПа, a = 1.12657, b = 0.975511. Параметр 

Грюнайзена G принимается постоянным и равным 1.2. Обоснование 

используемых коэффициентов дано в [12]. 

Математическая модель и описание численного метода. В ра-

боте используется конечно-элементный многофазный лагранжев ме-

тод [13]. 
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Решаются уравнения Эйлера в лагранжевой системе отсчёта: 

  
dx

v
dt

 , (4) 

- уравнение движения, 

 k
k

d

dt


 , (5) 

- уравнение изменения объемной доли, 

 
( )1

,k k

k k

d
v

dt

 

 
   (6) 

- закон сохранения массы, 

 
k k k k

k k

dv

dt
   

 
  

 
  , (7) 

-закон сохранения импульса, 

 :k k k k

de
v

dt
     , (8) 

-закон сохранения энергии. 

 ( , ) ,k k k kp e I    (9) 

- уравнение состояния,  

где x  ― радиус-вектор координат, v  ― вектор скорости,   ― объ-

ёмная доля,   ― скорость изменения объёмной доли,   ― плот-

ность, k  ― тензор напряжений, e  ― удельная внутренняя энергия, 

p  – давление, индекс k  определяет различные материалы, I  ― еди-

ничный тензор,   ― дифференциальный набла-оператор. В законе 

сохранения энергии оператор “:” означает  свертку тензоров. 

Метод конечных элементов основывается на слабой форме урав-

нений Эйлера [14]. Вариационная формулировка определяется двумя 

пространствами конечной размерности на начальной области 0 . 

Скорость материалов v  и радиус-вектор x  дискретизируются в ко-

нечно-элементном пространстве  1 0

d

V H     с базисом  i , 

удельные внутренние энергии ke  различных материалов k  в про-

странстве  2 0E L   дискретизируются с базисом  j .  

Плотность   вычисляется поточено от преобразования к исход-

ным позициям: для точки 
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  0 ,x x x t ,          0, 0 0, 0 0( ), , ,k k k kx t x x x t J x t      , 

где   ― объёмная доля, J  ― якобиан лагранжевого преобразования.  

В слабой формулировке используются матрицы масс VM  и ,E kM , 

а также матрица сил kF , определяемые как 

 
v k k

t
k



 
   

 


T
M ww

( )
, (10) 

 
( )

k k
t




  ε,kM φφ , (11) 

    
( )

:k k i jij t
w 


 F , (12) 

где w ― вектор-столбец кинематических базисных функций { }iw ,     

φ  ― вектор-столбец термодинамических базисных функций { }i . 

Уравнения (4)-(8) в слабой форме имеют вид: 

  
d

dt


x
v  (13) 

- уравнение движения, 

 k
k

d

dt


  (14) 

- уравнение изменения объемной доли, 

 1k

k

d

dt
  v

ν
M F  (15) 

-закон сохранения импульса, 

 kde

dt
 T

ε,k kM F v  (16) 

-закон сохранения энергии. 
Алгоритм реализован в виде программного кода на языке про-

граммирования С++. Для ускорения работы кода на многоядерных 
процессорах в код включена многопоточность с помощью библиоте-
ки OpenMP. 

Модель отрыва. Использование многофазного решателя позво-

ляет использовать объёмную долю k  в качестве инструмента для 

определения отрыва материала. 
В исследуемой задаче присутствует только один материал ‒ 

алюминий.  Изменение объёмной доли алюминия приводит к образо-

ванию пустого пространства. 
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Пусть в определённой точке происходит отрыв алюминия. 
Уменьшение объёмной доли алюминия приводит к увеличению его 
плотности, что позволяет повысить давление. Уравнение для измене-
ния объёмной доли алюминия имеет вид: 

  *1 Al
Al Al

Al

p p
k





   (17) 

где   ― время релаксации, *p  ― равновесное давление и 
2

Al Al Alk c   ― модуль всестороннего сжатия алюминия. Так как ва-

куум означает отсутствие вещества, равновесное давление *p  является 

постоянным и равным нулю. Время релаксации   определяется как: 

 
Al

h
C

c
  , (18) 

где C  ― произвольная константа, h  ― характерный размер ячейки. 

Цель времени релаксации ― уменьшить скорость изменения объём-
ной доли для обеспечения стабильности расчёта. 

Отрыв происходит при достижении давления отрыва 1sepp  

ГПа. 
Численные результаты. Проведён расчёт задачи облучения ла-

зерным импульсом алюминиевой мишени с использованием модели 
отрыва и без неё. Расчёт производился на процессоре Intel Core i7-
10700K на восьми ядрах. В качестве расчётной области взята полови-

на мишени  0,  1280 нмx . Условие на левой границе (оси симмет-

рии мишени) ― стенка со скольжением. Верхняя граница ― свобод-
ная, на правой и нижней стоит условие свободного вытекания. 

На рисунке 2 показано сравнение двумерных диаграмм давления, 
полученных лагранжевым конечно-элементным методом без модели 
отрыва на сетке 320 200 . Результаты сравниваются с расчётами ме-

тодом типа Годунова с решателем HLLC на сетке 640 400  и резуль-

татов метода молекулярной динамики взятыми из [12]. 
На рисунке 3 показаны профили давления в одномерном срезе 

мишени, сделанном по оси симметрии мишени 0x  . 

Расчёт методом конечных элементов практически полностью 

совпадает с расчётом метода типа Годунова. Использование метода с 

подвижной сеткой позволяет точно определить границу между алю-

минием и вакуумом. У гидродинамических расчётов наблюдается хо-

рошее соответствие распространения ударной волны до финального 

момента времени. Но в области волн разрежения методы гидродина-

мики показывают гораздо большую амплитуду отрицательных дав-

лений. Это приводит к последующему образованию второй ударной 

волны. 
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Рис. 2. Двумерные диаграммы давления в моменты времени 28.8t  пс (слева), 

57.6t   пс (центр), 105.6t   пс (справа). Диаграммы в первом ряду соответствуют 

расчёту лагранжевым конечно-элементным методом, во втором - методом типа 

Годунова, в третьем - методом молекулярной динамики 

 

 
Рис. 3. Профили давления в одномерном срезе мишени, сделанном по оси 

симметрии мишени ( 0x  ) 
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В расчётах с моделью отрыва для констант использовались сле-

дующие значения: давление отрыва 1sepp    ГПа, 1.0C  . 

На рисунке 4 представлено сравнение двух расчётов конечно-

элементным лагранжевым решателем, верхние диаграммы соответ-

ствуют расчётам с моделью отрыва, нижние ‒ без. 

 
 

 
 

Рис. 4. Двумерные диаграммы давления в моменты времени 28.8t  пс  

(слева), 57.6t   пс (центр), 105.6t   пс (справа). Диаграммы в первом ряду 

соответствуют расчёту лагранжевым конечно-элементным методом с модель 

ю отрыва, во втором – без модели отрыва 
 

Использование модели отрыва убирает область с большими 

амплитудами низкого давления.  Надо отметить, что модель отрыва 

не влияет на ударно-волновой фронт. Данная модель препятствует 

образованию второй ударной волны, из-за чего алюминий гораздо 

дальше распространяется в вакуум. 

На рисунке 5 показано сравнение профилей давления в срезе, 

сделанном по оси симметрии мишени ( 0x  ) расчётов с моделью от-

рыва и методом молекулярной динамики. Наблюдается хорошее со-

ответствие между методами как на ударном фронте, так и в области 

низкого давления. 
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Рис. 5. Профили давления в одномерном срезе мишени, сделанном по оси 
симметрии мишени ( 0x  ) 

 
Заключение. В данной работе рассмотрено применение лагран-

жевого метода для численного моделирования задачи об облучении 
алюминиевой мишени фемтосекундным лазерным импульсом. При-
ведено сравнение с расчетами по одножидкостной эйлеровой модели, 
основанной на методе типа Годунова и с молекулярно-
динамическими расчетами. Наблюдается хорошее соответствие в об-
ласти профиля индуцированной лазером ударной волны. В алгоритм 
включена полуэмпирическая модель отрыва. Ее применение обеспе-
чивает существенное уточнение расчета по одножидкостной модели 
в области отрицательных растягивающих напряжений в задней части 
профиля ударной волны. 

Работа выполнена при финансовой поддержке Министерства 
науки и высшего образования РФ (госзадание 124022400174-3). 
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Numerical modelling of shock wave processes induced by 

femtosecond laser pulses 
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In this paper, the problem of irradiating an aluminum target with a femtosecond laser 

pulse is investigated. The calculation of the problem is carried out using the finite ele-

ment Lagrangian method. The results are compared with calculations by the Godunov 
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type method and the molecular dynamics method. Hydrodynamic calculations show al-

most complete compliance. Using the method with movable mesh allows you to accurate-

ly determine the boundary of the material. In the field of rarefaction waves, hydrodynam-

ic methods show a much larger amplitude of negative pressures than calculations done 

with molecular dynamics method. A separation model is proposed, which takes into ac-

count possible ruptures of the material. The use of the separation model in calculations 

improves compliance with molecular dynamics models and prevents the formation of a 

second shock wave. 

 

Keywords: femtosecond laser pulse, shock wave, hydrodynamics simulation, separation 

model 
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