
ISSN 2309-3684 

Математическое 
моделирование
и численные методы

Одиноков В. И., Евстигнеев А. И., Дмитриев Э. А.,
Колошенко Ю. Б., Евстигнеева А. А., Петров В. В.
Моделирование стойкости литейных оболочечных форм,
находящихся под действием внешней силовой и тепловой
нагрузки. Математическое моделирование и численные методы,
2024, № 4, с. 31–51.

Источник: https://mmcm.bmstu.ru/articles/356/

Параметры загрузки:

IP: 216.73.216.47

16.02.2026 09:23:11



ММЧМ 2024 № 4 (44)                                                    31 

 УДК 539.5, 621.74                       DOI: 10.18698/2309-3684-2024-4-3151 

 

 

Моделирование стойкости литейных оболочечных 

форм, находящихся под действием внешней силовой и 

тепловой нагрузки  
 

© В. И. Одиноков, А. И. Евстигнеев, Э. А. Дмитриев,  

Ю. Б. Колошенко, А. А. Евстигнеева, В. В. Петров 
 

ФГБОУ ВО «КнАГУ», Хабаровский край, Комсомольск-на-Амуре, 681013, Россия 

 

Разработана численная схема и алгоритм расчета напряженно-деформированного 

состояния (НДС) оболочечной литейной формы, имеющей внутреннюю полость, и 

находящейся под действием внешней силовой и тепловой нагрузок. В основу рас-

чета положены уравнения линейной теории упругости, теплопроводности и апро-

бированный численный метод. Рассматривается литейная оболочечная форма 

(конструкция), ограниченная ортогональными семействами поверхностей. В каче-

стве примера приводится частная задача по получению литой заготовки сфериче-

ской формы в металлической оболочковой форме при отсутствии и наличии тем-

пературных выточек на поверхности соприкосновения формы с жидким металлом 

(сталью). Результаты вычислений приведены в виде эпюр полей нормальных 

напряжений, перемещений и температур по сечениям сферической формы. Дана 

оценка эффективности применения нанесенных выточек на внутреннюю поверх-

ность формы. 
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Введение. Оболочечные конструкции, имеющие как моно, так и 

многослойную структуру и подвергающиеся температурным и внеш-

ним силовым воздействиям, имеют широкое применение в машино-

строении и металлургии. К ним также относятся оболочечные кон-

струкции литейных форм для получения ответственных деталей. 

Процесс их расчета значительно усложняется при расчете напряжен-

но-деформированного состояния (НДС) в условиях многосвязной об-

ласти. В ранее опубликованных работах рассматриваются в основном 

односвязные области.  Нами предпринята попытка разработать об-

щую структурную схему расчета НДС таких конструкций, находя-

щихся в упругом состоянии в рамках многосвязной области. Основой 

расчета являются уравнения линейной теории упругости, уравнения 

теплопроводности и апробированный численный метод [1]. Выбор 

этого численного метода основывался на универсальности подхода 

независимо от геометрии рассматриваемой области и возможности 

удовлетворения всех граничных условий по напряжениям и переме-

щениям. Результат – поля напряжений и перемещений, определяемых 
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с одной точностью из решения сформулированной системы уравне-

ний. Ограничением применимости данного метода является необхо-

димость описания границ области системами ортогональных поверх-

ностей. 

Авторы имеют опыт применения указанного численного метода 

при исследовании самых различных функциональных технологиче-

ских процессов, представленных в диссертационных работах [2-7], а 

оптимизации свойств оболочковой многослойной литейной формы и 

её морфологической структуры в [8]. Подобными исследованиями 

занимаются и за рубежом [9-15]. 

В специальной научной и технической литературе проблема изго-

товления качественных шарообразных отливок не нашла широкого 

отражения, что послужило основанием для разработки принципиаль-

но нового технологического решения по производству таких отливок 

и его моделирования. 

 Математическая постановка. Будем полагать, что имеется глу-

ходонный стакан и вращающаяся огнеупорная рубашка, которые 

имеют одинаковое квадратное сечение. Тогда огнеупорная рубашка 

при вращении будет перемешивать жидкий металл в кристаллизаторе 

своими гранями. 

Строится математическая модель расчета НДС оболочечной кон-

струкции от действий внешней тепловой и силовой нагрузок, имею-

щей полые области и находящейся в упругом состоянии, например, 

литейные оболочечные формы. 

Решение этой проблемы основано на использовании уравнений 

теории упругости и уравнения теплопроводности, с использованием  

апробированного численного метода. 

Рассматриваемая конструкция находится в упругом состоянии. 

Ее решение связано со следующей системой уравнений (без учета 

массовых и инерционных сил): 
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где 𝜎𝑖𝑗 ― компоненты тензора напряжений, iU  ― перемещения; ij  

― компоненты тензора упругих деформаций;   ― гидростатическое 

напряжение pG  ― модуль сдвига оболочки p; ij  ― символ Кроне-

кера; pk , p ― соответственно коэффициент объемного сжатия и 
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коэффициент линейного расширения оболочки p; ( ) =  ― ко-

эффициент теплопроводности;   ― текущая температура;   ― 

плотность; p


 ― начальная температура в оболочке p, c ― удельная 

теплоемкость,   ― удельный вес. В (1) используется суммирование 

по повторяющимся индексам. 

Численный метод решения задачи. Для решения уравнений (1) 

и (2) при заданных начальных и граничных условиях использовался 

апробированный численный метод, описанный в работе [1]. Ограни-

чением применимости метода является область, описанная в систе-

мах ортогональных поверхностей. Такая область и рассматривается в 

данной работе. Системой ортогональных поверхностей рассматрива-

емая область разбивается на элементы конечных размеров.  

Для каждого элемента в принятой системе ортогональных коор-

динат ( ,  1i i = ) в разностной форме записывается система уравнений 

(1), (2), включающая средние значения напряжений и перемещений 

по граням элемента и длины дуг, ограничивающие его объем         

(рис. 1, а). 

 

 
а) б) 

 
Рис. 1. Схема обозначения дуг сетки: 

а) для расчета нормальных напряжений и перемещений в криволинейном элементе, 

б) для расчета касательных напряжений 
 

Применяемый численный метод использовался для исследования 

НДС во многих разноплановых работах [2÷12]. 

Перепишем уравнения равновесия и дифференциальные выраже-

ния 
ij  в разностной форме в соответствии с работой [1]: 
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Здесь суммирование по индексам ,  ,  i j k  отсутствует, а также вве-

дены обозначения 

 1 2 2 10,5( );  ,  ( , 1, 2,3)ij ij ij ij ij ij i j     = +  = + =  

где ( 1,2,3; 1,2)d
ii i d = =  ― нормальное напряжение, действующее на 

криволинейной поверхности « d » элемента (m), нормалью к которой 

является касательная к координате i ; ;  ( )d
ij i j   ― касательное 

напряжение в направлении j  по криволинейной поверхности  « d » 

элемента ( m ). 

Значения j
ik

S  вычисляются как среднее от значений длин дуг гра-

ницы граней (ребер) (рис.1), при этом введены обозначения 

 1 2
ij ij ijS S S= + ; 2 1

ij ij ijS S S = − . 

Для нормальных компонент тензора деформаций используем сле-

дующие формулы [1]: 

 

2 22
,
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U S U SU j ji k ki

S S S S Sji ji ij ki i

i

j

i
k

i i j k

i

k


  

= +  + 

=  

 (4) 

где  

 
1 2

i i iU U U= + ; 
2 1
i iiU U U= − . 

Сдвиговые деформации )(ij i j   по элементу ( m ) определяются 

как средние от значений ij  в узлах элемента 

 0 0 0 1 1 1 1 1( )
1

) (
8

ij m ij ij ij ij ij ij ij ij

a b c d a b c d
        = + + + + + + + . (5) 

Значения 0

ij  в узле (рис. 1,б) согласно [1] имеет вид 
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значения ( 1,2)
j

U ji =  вычисляются как средние от значений переме-

щений по граням элемента, примыкающих к данному ребру. 

Справедливость полученных выражений (3), (4) и (6) показана в 

работе [1] на примере выделенного элемента в цилиндрической си-

стеме координат. 

С учетом того, что 2 ( )ii jj p ii jjG   − = − , то для элемента (рис.1) 

алгебраическую систему уравнений перепишем в виде 
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 11 22 11 222 ( )pG   − = − ; (8) 

 
11 33 11 332 ( )pG   − = − ; 

 2 ;   , 1,2;   ij p ijG i j i j = =  ; (9) 

 *

11 22 33 3 3 ( ) 0p p pk      + + − − − = . (10) 

Полученную систему уравнений можно значительно сократить, 

перейдя к эквивалентной системе уравнений.  

Разобьём все неизвестные на два множества: зависимые и незави-

симые. Определим последовательность вычислений для зависимых 

неизвестных. Перейдем к системе уравнений относительно незави-

симых неизвестных. 

Пусть 

 *

*

0| ;   | , ( 1,2,3)
i i i

i iГ Г i  = =
=  

― поверхности, ограничивающие рассматриваемую область; 
*,   iu iuГ Г  ― поверхности, где заданы перемещения *;   ,   i i iU Г Г   ― 

поверхности, где заданы напряжения ii . При этом 
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 * * *;   i iu i i iu iГ Г Г Г Г Г = + = + ; 

Выразим из уравнения (10) 2

1U  с учетом (4): 

 2 1

1 1 1U U A= + , (11) 

где 
1A  ― оператор, не содержащий 2

1U . 

Если принять неизвестные 2 3,   ( 1, 2),   t tU U t =  независимыми, то 

получаем, что (1.11) является рекуррентным соотношением, опреде-

ляющим U1 по всем элементам исследуемой области от 
1 0 =  до 

*

1 1 = . 

На поверхностях *

iuГ  появляются новые уравнения: 

 *

2 *

1 1 1 1( ) | ( ) 0;   1,...,
iu

f f f

Г
F U U f f= − = =  (12) 

где *
1( ) fU  ― перемещения 1U , заданные граничными условиями на 

поверхности *

iuГ , а f  ― число элементов, примыкающих к поверх-

ности *

iuГ . 

Группу независимых переменных, число которых в точности со-

ответствует числу уравнений (12), образуют *11 |
iuГ

 . 

Как было сказано выше, конструкция имеет полости, ограничен-

ные системой ортогональных поверхностей. Имеем многосвязную 

область. 

Рассмотрим уравнения (7); выразим из них 1 ,   1, 2,3ii i =  

 1 2

2( )ii ii iA = + , (13) 

где 2( )iA  ― оператор, не содержащий 1 ,   1, 2,3ii i = . 

Данные рекуррентные соотношения будем удовлетворять от 
*

1 1 =  до 0i = . На поверхностях ,   ( 1,2)iГ i =  будут иметь место 

уравнения: 

 *

1 *

2 2( ) | ( ) 0;   1,..., ,   ( 1,2,3);
i

f f f

ii iiГ
F f f i



 = − = = =  (14) 

где *

ii  ― нормальные напряжения ii , заданные на поверхностях 

граничными условиями, 2f  ― количество элементов примыкающих 

к поверхностям ,   ( 1,2,3)iГ i = . 

Тогда следующую группу независимых переменных составят пе-

ременные | ,   ( 1, 2,3)
ii ГU i


= , число которых совпадает с числом 

уравнений (14). 
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При встрече с полой областью (рис.2), имеем уравнения: 

 2 2

* 1 *| | 0,   ( 1,2,3)
i i

i ii iis s
F P i= − = = , (15) 

где *

iiP  ― давление в полой области формы. 

 
Рис. 2. Элемент полой области литейной формы 

 

Уравнений (15) столько, сколько неизвестных значений 2|
i

i S
U , 
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Перепишем уравнения (1.8) в виде: 
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Направление обхода области по 1 2 3( ),  ( ),  ( )x x x   ; этих уравне-

ний столько, сколько внутренних перемещений 2 3,  U U  и неизвест-

ных 2 3,  U U  на границах * *
2 3,    . 

Число уравнений 

 3 11 22 33 0
1

( )
3

F    = + − =+  (17) 

соответствует числу элементов в рассматриваемой области. 
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Если положить за независимые переменные 

 *2 3 ,
, , , |

iu iu
ii Г Г

X U U  = , то, пробегая последовательность (11), 

(13), можно определить зависимые переменные через X . 

Таким образом, система, получаемая непосредственной аппрок-

симацией исходной системы дифференциальных уравнений в част-

ных производных конечными разностями, преобразуется в эквива-

лентную систему алгебраических уравнений. Число уравнений в эк-

вивалентной системе примерно на порядок меньше, чем в исходной.  

Если положить, что ,  ,  p p pk G const = , то система будет линей-

ной. 

Коэффициенты и свободные члены новой линейной эквивалент-

ной системы уравнений можно найти с помощью следующей проце-

дуры: 

Пусть эквивалентная система уравнений имеет вид: 

 0;  , 1,...i ij j ix b i j nF  + = == .  

Если положить все неизвестные равными нулю 0,  1,...,ix i n= = , 

то, пробегая выше приведенную последовательность, и, насчитывая 

iF  по формулам, найдем свободные члены новой системы 

 
0 ;  1,...,i iF b i n= = .  

Далее находим коэффициенты ij . Для этого положим 

1,  0,  ( ;  1... )k ix x i k i n= =  = . Опять, пробегая вышеуказанную по-

следовательность, находим 
k

iF  и ik  по формуле 

 
0

,  1,..., .
1

k
i i

ik
F F

i n
−

==  

Таким образом, определяется вся матрица ik  новой эквивалент-

ной системы. Решение этой системы осуществляем по стандартной 

программе методом Гаусса. 

Для решения уравнения теплопроводности используется числен-

ный метод, описанный в работе [1]. В соответствие с данным мето-

дом для каждого внутреннего «k»-го элемента (рис. 1,а) записывается 

тепловой баланс, из которого выводится уравнение теплопроводно-

сти в разностном виде и строится итерационная процедура [1]. 

 
*

12 1 11 1 22 2 21 2 32 3 31 3

12 11 22 21 32 311

k
k

t t t t t t

t t t t t t

      


+ − + − + −+ + + + + +
=

+ + + + + +
. (18) 
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Здесь 

1 21 1
11 1 12 1

21 21 21 21

1 21 2
21 2 22 2

12 12 12 12

1 23 1
31 3 32 3

13 13 23 23

12 13 21

2( ) 2( )
;   ;

2( ) 2( )
;   ;

2( ) 2( )
;   ;

;   ;   
8

k k

k k

k k

k
k k k

t F A t F A
S S S S

t F A t F A
S S S S

t F A t F A
S S S S

S S S
A V F

c V

   

   

   





− +

− +

− +

− +

+ +

− +

+ +
=  = 

+ +

+ +
=  = 

+ +

+ +
=  = 

+ +

 
= =

1 2 1 2 1 2

;  ( )

,   ,   ,  ( ,  ,  1, 2,3,  1);

j j j
i ipik

ij ij ij ij ij ij ij ij ij

S S i k p

S S S S S S S S S i k p j+ + + − − −

=   

= + = + = + = =

 (19) 

где 
*
k  ― средняя температура в k-м элементе в начале временного 

шага m ; ,  ,  k k kc V  ― соответственно удельная теплоемкость, 

удельный вес и объем k-го элемента; k , k  ― соответственно зна-

чения коэффициента теплопроводности и температуры в k-м элемен-

те в конце временного шага m ; i
−

, i
−  ― соответственно коэф-

фициент теплопроводности и температура в элементе, следующим за 

элементом k по координате 
i  в отрицательную сторону; i

+
, i

+
 ― 

аналогичные параметры в положительном направлении; 
p
ijS  ― сред-

ние значения от дуг ребер элементов. Так, например, 
1
21 0 0 1 10,5( )S a b a b= + , тогда 21 31S S=  и   ( )pi jiS S p j i=   . 

Выражение (18) может рассматриваться как система уравнений, 

1,....,k n= , где n  ― число элементов, на которые разбита область. 

Положим, что ,  ,  k k kc V const = . Тогда система (18) будет ли-

нейная и может быть решена итерационным методом. В работе [1] 

доказывается сходимость итерационной процедуры (18). 

Алгоритм численного решения. Предложен следующий алго-

ритм решения задачи. 

1. Время действия нагрузки *  разбивается на конечное число 

шагов: *
n =  , n  ― номер временного шага. 

2. Исследуемая область разбивается на конечное число ортого-

нальных элементов. 

3. Задаются начальные и граничные условия по элементам, обра-

зующих рассматриваемую область, и значения констант физико-

механических свойств материалов (первое приближение). 
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4. Вычисляются длины дуг элементов  ( ,  1, 2;  ;  1, 2)j
ikS i k i k j=  = . 

Задается матрица {KA}, определяющая местоположение полой обла-

сти. 

5. Определяется поле температур на временном шаге n  чис-

ленным решением уравнения теплопроводности с использованием 

итерационной формулы (18) при наличии начальных и граничных 

условий на данном временном шаге. 

6. Формируется и решается система уравнений (12), (14), (15), 

(16), и (17) с учетом разностных аналогов (5)-(7) и разработанной ме-

тодики, описанной выше для многосвязной области. Определяются 

поле напряжений ij  и перемещений iU . 

7. По заданным формулам вычисляются коэффициенты 

,  ,  p p pk G  и следует этап 4. Этап 5) - 7) повторятся до достижения 

необходимой точности вычислений. Далее идет этап 8. 

8. Производится шаг по времени. Если *
n   , то выполняет-

ся этап  5. Если *
n  =  ― процесс вычисления закончен 

В алгоритм могут быть внесены поправки и дополнения при ре-

шении частных задач. 

Осесимметричная задача. На базе построенной выше математи-

ческой модели рассмотрим частную задачу по заливке стали в метал-

лическую сферическую форму, при отсутствии и наличии на внут-

ренней поверхности литейной формы кольцевых выточек. 

На рис. 3 приведена схема меридианного сечения формы с учетом 

осевой симметрии. Рассматривается тело вращения, для него 

 31 32 13 23 30;  0,  0U   = = = = = , (20) 

 
3

0;iu

x


=


 3

3

0;  ( 1,2,3)i i
x


= =


. 

Кроме того, для тел вращения в формулах (4), (6), (7) имеет место 

 1 2
31 32

3 3

0;  0;  0;  0
U U

S S
S S

 
 =  = = = . (21) 

Для осесимметричной задачи тепловой поток по координате   ра-

вен нулю, поэтому итерационная формула (18) по определению тем-

пературного поля будет иметь вид 

 
*

12 1 11 1 22 2 21 2

12 11 22 211

k
k

t t t t

t t t t

    


+ − + −+ + + +
=

+ + + +
. (22) 
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Рис. 3. Схема меридианного сечения формы с учетом осевой симметрии 

 

Начальные условия задачи: 

0 0 = =  ― отсутствие твердой фазы металла. 

             0 0I  = =  ― температура разливаемого жидкого металла; 

* *
0III  = =  ― начальная температура формы; 

где II   ― температура кристаллизации металла. 

Граничные условия задачи: 

на оси симметрии: 

 2 210,  0,  0пU q= = = . 

где пq  ― нормальный тепловой поток; 

на поверхностях  
1 8S S : 

 

4

1 3

3 4

3

1 3

11 1 12 11 11

12 12 22

1 21

22 1

2

*

0; 0, ( 7,8); 0, ( 5,6); ;

0; 0, ( 4,5,6);

| ; | ;

| ; | 0, ( 1,7,8); | 0, | 0, ( 7,8);

| | | |

| 0; | |

i
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S S i

i

S m

S S S S

S

S

S S S

S

P i i

U

i

U

i P

i






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





 

 

 



 = = = = = =

= = =

=

= = = = =

=

=

=
 (23) 

где 3 3 3 3,  S S S S  = +  ― свободная поверхность 3S   ― контактная по-

верхность. 

I
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III
I

I

1

3

2

S

1S

2S

4S 

4S 
3S

1


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При решении температурной задачи использовались граничные 

условия первого рода. Для определения ( )m   и * ( )m   воспользуем-

ся данными работы [8] 

 

2

*

1550 1,666 (60 ) / (10 ),

60 c,

20 17,3 .

м    

 

 

= − − − +

 

= +

 (24) 

Здесь  ― время охлаждения, с. 

В процессе охлаждения жидкого металла при условии, что темпе-

ратура металла *
11m   определяется толщина затвердевающего слоя 

из решения межфазового перехода: 

 1 2
1 2 ,

x x

d d d
L

ddn dn

 
  




− =  (25) 

где 1  и 2  ― соответственно температуры в твердой и жидкой фа-

зах; 1  и 2 ― коэффициенты теплопроводности в твердой и жидкой 

фазах; L  ― скрытая теплота плавления;   ― плотность твердой фа-

зы;   ― толщина корочки; *n  ― нормаль к границе двух фаз. Если 

предположить, что температура в твердой фазе (корочке) изменяется 

по линейному закону, а градиент температуры в жидкой фазе равен 

нулю, то после интегрирования получим [16] 

 1 12
;  n C C

L

 





 = = . (26) 

Здесь 1  ― перепад температур в твердой фазе вблизи фронта 

кристаллизации. 

Время процесса кристаллизации 
*  разбивается на малые шаги 

n  (n ― номер временного шага). На каждом временном шаге Δτn 

вычисляется толщина твердой фазы 
1

( )
n

n n  =  .  

Для данной задачи общий алгоритм дополняется в пункте 5 вы-

ражением: определяется толщина закристаллизовавшейся корочки по 

формуле (26). 

Результаты численного решения задачи. При численном реше-

нии были использованы следующие исходные данные. 

Геометрические параметры: 50T =  мм, 20R =  мм, 150 =  ,  

1 130 ;  90 =  =  . 

Временные интервалы n : 0,01; 0,02; 0,03; 0,04; 0,05; 0,1; 0,2; 

0,3; 0,4; 0,5; 2,0; 5,0; 6,0; 8,0; 9,0. 
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Разбиение области: 1 2 15 20N N =  ; выточка 7,1 2,6  мм. 

Приняты следующие физические параметры разливаемой стали 

при температуре ( )1000  * 1500мC C   =  : 

( )

( )

2 6 -1

3

6 3

1000 кг/мм ;  12 10 рад ;  0,0298 Вт/ мм×°C

270 10 ж/кг;   444 Дж/ кг×°C

7,80 10 кг/мм ;  1450 °C.

 г ;

   ;

  к

G г

L Д C

 

 

−

−

= =  =

=  =

=  =

(27) 

где L  ― скрытая теплота плавления. 

Физические свойства металлической формы соответствуют (27), а 

расчет G осуществляется согласно [17] по выражению: 

 2 28100 [1 1,2 ( /1000) ] (кг/мм )G Q=  −   (28) 

На рис. 4 приведены эпюры напряжений 22  по сечениям формы 

за время охлаждения 8,6 сек = . Видим, что в форме без выточек 

сжимающие напряжения на внутренней поверхности формы дости-

гают 64 МПа, что примерно соответствует пределу текучести стали 

при С. Такие значения напряжений могут привести либо к наруше-

нию геометрии внутренней поверхности формы, либо к её разруше-

нию. Технологическое решение такой проблемы было найдено в ре-

зультате анализа известных в литейном производстве методов сни-

жения термических напряжений в отливках за счет использования, 

так называемых, «ребер жесткости» [18], а в нашем случае темпера-

турных швов (выточек). 

 
Рис. 4. Эпюры напряжений 22  по сечениям формы за время охлаждения 

8,6 сек = : эпюры 22  в сечениях формы без выточек 
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Рассматривалась задача по получению литой заготовки сфериче-

ской конфигурации. Данная работа имеет важное прикладное значе-

ние при получении литых шаровых опор. Было получено, что в 

начальный момент заливки литейная форма получает сильный тепло-

вой удар большой величины, при этом сжимающие нормальные 

напряжения могут привести к разрушению и нарушению геометрии 

внутренней поверхности формы. С учетом полученных расчетных 

результатов было найдено техническое решение по устранению дан-

ной проблемы [19]. 

На рис. 5 приведена схема меридианного сечения с учетом осе-

вой симметрии при наличии на внутренней поверхности формы тем-

пературных швов (выточек), а на рис. 6 ― эпюры напряжений 22  в 

сечениях формы с выточками  при 1 30 = . Видно, что в форме с вы-

точками при 1 30 =  сжимающие напряжения 22  уменьшаются в 

разы по модулю в широком диапазоне области от выточки. 

 

 
Рис. 5. Схема меридианного сечения формы с учетом осевой симметрии при 

наличии температурных швов (выточек) на внутренней поверхности литейной 

формы 
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Рис. 6. Эпюры напряжений 22  по сечениям формы за время охлаждения 

8,6 сек = : эпюры 22  в сечениях формы с выточкой при 1 30 =  

 

На рис. 7 приведены эпюры 11  при 8,6 сек =  в сечениях фор-

мы с выточкой 1 30 = . Наблюдается та же картина ― вблизи вы-

точки напряжения 11  падают по модулю. 

 

 
Рис. 7. Эпюры 11  при 8,6 сек =  в сечениях формы 

с выточкой при 1 30 =  
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а) 

 

 
б) 

Рис. 8. Эпюры перемещений 2U  в районе выточки  1 30 =  (а) и 22  (б) по 

сечению формы с выточкой при 1 90 =  
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На рис. 8, а показаны эпюры перемещений 2U  в районе  выточки  

1 30 = . Видим, выточка стремится закрыться, но перемещения 

слишком малы и составляют в сумме 0,0066 мм. Следовательно, для 
данного случая достаточно было выполнить температурный шов ши-
риной 0,5 мм. На рис. 8, б приведены эпюры 22  по сечению формы 

с выточкой при 1 90 = . Наблюдаем ту же картину, что и при 

1 30 =  ― напряжения 22  в области выточки падают (по модулю). 

Напряжения 33  примерно такие же, что и по величине 22 . Время 

8,6 сек =  ― это время максимальных значений 22 . 

Таким образом, можно заключить, что наличие внутренних тем-

пературных швов (выточек) на внутренней поверхности литейной 

формы позволяет исключить образование дефекта по нарушению 

геометрии внутренней поверхности металлической сферической ли-

тейной формы и возможного её разрушения после заливки жидким 

металлом. 

Заключение.  

1. Разработана пространственная математическая модель расчета 

НДС оболочечных литейных форм, находящихся в условиях много-

связной области в упругом состоянии под действием внешней тепло-

вой и силовой нагрузок. 

2. Рассмотрен частный пример расчета НДС стойкости металли-

ческой сферической формы после заливки ее сталью при отсутствии 

и наличии в форме внутренних температурных выточек. Показано, 

что для снижения температурных напряжений, возникающих на 

внутренней поверхности формы заданной геометрии в начальный 

момент кристаллизации металла, достаточно нанести на внутреннюю 

поверхность формы выточку шириной 0,5 мм. 

3. Результаты вычислительных расчетов по разработанной мето-

дологии моделирования позволят значительно сократить объем экс-

периментальных исследований по доработке и доводке технологии 

литья шарообразных отливок до промышленного освоения. 

4. Предложенная методология моделирования стойкости оболо-

чечных литейных форм к трещинообразованию может быть исполь-

зована для моделирования других функциональных оболочечных 

конструкций. 

Исследование выполнено за счет гранта Российского научного 

фонда №24-29-00214, https//rscf.ru/project/24-29-00214/ 

 

ЛИТЕРАТУРА 

 Одиноков В.И., Каплунов Б.Г., Песков А.В, Баков А.В. Математическое 

моделирование сложных технологических процессов. Москва, Наука, 2008, 

178 с. 



В. И. Одиноков, А. И. Евстигнеев, Э. А. Дмитриев, Ю. Б. Колошенко … 

48                                                       ММЧМ 2024 № 4 (44) 

 Севастьянов Г.М. Моделирование напряженно-деформируемого состояния 

при заливке и затвердевании металла в керамической оболочковой форме. 

Автореферат дисс. канд. физ.-мат. наук. Владивосток, 2011, 16 с. 

 Скляр С.Ю. Математическое моделирование тепловых и деформацион-

ных процессов на литейно-ковочном модуле вертикального типа. Авторе-

ферат дисс. канд. техн. наук. Комсомольск-на-Амуре, 2011, 16 с. 

 Сапченко И.Г. Теория и практика формирования пористых стуктур в ли-

тье по выплавляемым моделям. Автореферат дисс. докт. техн. наук. Ком-

сомольск-на-Амуре, 2011, 32 с. 

 Горнаков А.И. Моделирование процесса движения жидкого металла в 

кристаллизаторе установки непрерывного литья стали. Автореферат 

дисс. канд. техн. наук. Комсомольск-на-Амуре, 2013, 24 с. 

 Черномас В.В. Разработка конструкции и исследование процесса получе-

ния непрерывнолитых деформированных заготовок на литейно-ковочном 

модуле. Автореферат дисс. докт. техн. наук. Владивосток, 2007, 24 с. 

 Одиноков В.И., Евстигнеев А.И., Дмитриев Э.А., Карпенко В.А. Матема-

тическое моделирование процесса перемешивания жидкого металла в кри-

сталлизаторе установки непрерывной разливки стали // Математическое 

моделирование и численные методы, 2023, № 3, с. 18-41. 

 Иванкова Е.П. Моделирование стойкости оболочковой формы по выплав-

ляемым моделям к трещинообразованию при охлаждении в ней отливки. 

Автореферат дисс. канд. техн. наук. Комсомольск-на-Амуре, 2022, 24 с. 

 Zhang Q., Cao M., Zhang D., Zhang S., Sun J. Research on integrated casting 

and forging process of aluminum automobile wheel. Advances in Mechanical 

Engineering, 2014, vol. 6, 870182. DOI:10.1155/2014/870182. 

 Zhenglong L., Qi Z. Simulation and experiment research on squeeze casting 

combined with forging of automobile control arm. Proceedings of the ASME 

2018 International Mechanical Engineering Congress and Exposition, 2018, 

vol. 2, art. no. 144113. DOI:10.1115/IMECE2018-86006 

 Chang F.-C., Hwang W.-S., Lee C.-H., Wu C.-F., Yang, J.-B. Forging condition 

for removing porosities in the hybrid casting and forging process of 7075 alumi-

num alloy casting. Materials Transactions, 2004, vol. 45(6), pp. 1886-1890. 

DOI: 10.2320/matertrans.45.1886 

 Dedov S., Lehmann G., Kawalla R. Application of combined casting-forging 

process for production of durable lightweight aluminum parts. Key Engineering 

Materials, 2013, vol. 554–557, pp. 264–273. DOI: 

10.4028/www.scientific.net/KEM.554-557.264 

 Krüger L., Jentsch E., Brunke L., Keßler A., Wolf G., Lehnert T., Schubert N., 

Wagner A., Landgrebe D. Development of an innovative lightweight piston 

through process combination “casting – forging”. Procedia Manufacturing, 

2019, vol. 27, pp. 172–176. DOI: 10.1016/j.promfg.2018.12.061 

 Perrier, F., Bouvier, V., & Duperray, L. A new wheel design for reducing 

weight. Materials Science Forum, 2014, vol. 794–796, pp. 578–583. DOI: 

10.4028/www.scientific.net/msf.794-796.578 

 Böhmichen, U., Schubert, N., Lehnert, T., Sterzing, A., & Mauermann, R. From 

casting to forging – The combined simulation for a steel component. 

Engineering Reports, 2021, art no. e12400. DOI: 10.1002/eng2.12400 

 Евстигнеев А.И., Дмитриев Э.А., Чернышова Д.В., Одиноков В.И. и др. 

Моделирование внешнего силового воздействия на стойкость оболочковой 

формы при заливки в нее стали // Математическое моделирование, 2022, 

Т. 34, № 5, с. 61-72. 

 Одиноков В.И., Дмитриев Э.А., Евстигнеев А.И., Свиридов А.В. Матема-



Моделирование стойкости литейных оболочечных форм, находящихся под … 

ММЧМ 2024 № 4 (44)                                                    49 

тическое моделирование процессов получения отливок в керамические 

оболочковые формы. Москва, Инновационное машиностроение,  2020,    

256 с. 

 Михайлов А. М. Литейное производство: учебник для металлургических 

специальностей вузов. Москва, Машиностроение, 1987, 256 с. 

 Пат. 2828801 Российская Федерация, МПК B22C 9/04 B22C 9/08. Литейная 

многослойная оболочковая форма / В.И. Одиноков, А.И. Евстигнеев, Э.А. 

Дмитриев, и др. – № 2024106208; заявл. 05.03.2024; опубл. 21.10.2024. 

Статья поступила в редакцию 24.06.2024 

Ссылку на эту статью просим оформлять следующим образом:  

Одиноков В. И., Евстигнеев А. И., Дмитриев Э. А., Колошенко Ю. Б., Евстиг-

неева А. А., Петров В. В. Моделирование стойкости литейных оболочечных форм, 

находящихся под действием внешней силовой и тепловой нагрузки. Математиче-

ское моделирование и численные методы, 2024, № 4, с. 31–51. 

 

Одиноков Валерий Иванович — д-р техн. наук, профессор, ведущий научный со-

трудник, Комсомольский-на-Амуре государственный университет.                                    

e-mail: 79122718858@yandex.ru 

 

Евстигнеев Алексей Иванович — д-р техн. наук, профессор, ведущий научный со-

трудник, Комсомольский-на-Амуре государственный университет.                                  

e-mail: diss@knastu.ru 

 

Дмитриев Эдуард Анатольевич — д-р техн. наук, профессор, ректор Комсо-

мольского-на-Амуре государственного университета. e-mail: rector@knastu.ru 

 

Колошенко Юлия Борисовна — старший преподаватель, Комсомольский-на-Амуре 

государственный университет. e-mail: koloschenko2011@yandex.ru 

 

Евстигнеева Анна Алексеевна — студент, Комсомольский-на-Амуре государствен-

ный университет. e-mail: annka.ewstic@mail.ru 

 

Петров Виктор Викторович — д-р техн. наук, профессор, ректор Комсомольско-

го-на-Амуре государственного университета. e-mail: petrovpng@mail.ru 

 
 
 

Modeling the durability of casting shell molds under ex-

ternal force and thermal loads 
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A numerical scheme and algorithm have been developed for calculating the stress-strain 

state (SSS) of a shell casting mold with an internal cavity, subjected to external force and 

thermal loads. The calculations are based on the equations of linear elasticity theory, 
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heat conduction, and a validated numerical method. The study examines a shell casting 

mold (construction) bounded by orthogonal families of surfaces. As an example, a specif-

ic problem is presented involving the production of a spherical cast billet in a metallic 

shell mold, both in the absence and presence of thermal grooves on the contact surface 

between the mold and the liquid metal (steel). The calculation results are provided in the 

form of diagrams of normal stress fields, displacements, and temperatures across the 

sections of the spherical mold. An assessment is made of the effectiveness of applying 

grooves to the inner surface of the mold. 

 

Keywords: shell  
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