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Предложена одномерная математическая модель нестационарного процесса теп-

лопереноса в процессе 3D-печати технологии SLM. Особенность модели – учёт 

послойного добавления материала в расчётную область с течением времени. Мо-

дель реализована в собственном программном обеспечении, использующем метод 

конечных элементов. Добавление материала учитывается алгоритмом актива-

ции/деактивации элементов. Решена тестовая задача по определению темпера-

турного поля при выращивании детали, геометрия которой идеализируется 

стержнем переменного сечения. Для оценки достоверности результатов проведе-

ны аналогичные расчёты в сторонних программных продуктах: в Ansys – в полной 

трёхмерной постановке – и в Matlab – решено одномерное уравнение теплопровод-

ности для стержня изменяющейся во времени длины и переменной площади сече-

ния. Сравнение поля температур показывает, что результаты расчётов в разра-

ботанном программном обеспечении соответствуют сторонним решениям при 

обеспечении высокой вычислительной эффективности. 
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Введение. Технологический процесс 3D-печати связан с воз-

никновением в детали значительных температурных деформаций, 

что сказывается на конечной форме изделий. Для корректного пред-

сказания этих явлений необходимо расчётным путём определять 

температурное поле в процессе печати. Данное направление активно 

исследуется в научных работах [1-6]. Также на рынке имеются ком-

мерческие программные продукты по численному моделированию 

3D-печати (в частности, Ansys Additive [7] и Simufact Additive [8]). 

Полное решение тепловой задачи в трёхмерной постановке со-

пряжено со значительными вычиcлительными затратами. В то же 

время, для изделий, обладающих теми или иными конструктивными 

особенностями, можно ввести в модель упрощения, позволяющие 

ускорить расчёт. Одними из таких случаев является печать детали, 

два габаритных размера которой намного больше третьего. Тогда де-

таль можно рассматривать как стержень переменного поперечного 

сечения и моделировать процесс теплопередачи в одномерной поста-

новке. К нюансам этого процесса следует отнести увеличение длины 
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стержня с течением времени. Заметим, в классических методах мате-

матической физики размеры расчётной области, как правило, счита-

ются неизменными.  Таким образом, основная задача данной работы 

– построить одномерную математическую модель нестационарной 

теплопроводности в процессе 3D-печати с учётом пошагового добав-

ления материала и оценить возможность её применения для ускоре-

ния тепловых расчётов в данном контексте. 

Математическая постановка задачи. Получим нестационар-

ное уравнение теплопроводности для стержня переменного попереч-

ного сечения ( )A A z= , где А ― площадь сечения, z ― координата 

вдоль оси стержня.  

Классическое уравнение энергии (уравнение притока тепла) для 

твердого тела V без учета внутренних напряжений и деформаций, в 

общем виде записывается следующим образом [9] 

 e

dU
Q

dt
= , (1) 

где 
eQ  ― скорость нагрева тела за счет поверхностных источников 

(массовые источники тепла полагаются отсутствующими), а U  ― 

внутренняя энергия тела 

 eQ q d


=  , 
V

U edV=  , (2) 

здесь V ― объем тела,   ― его внешняя поверхность, q q n = −   ―  

приток тепла за счет поверхностных источников, q  ― вектор потока 

тепла, n  ― вектор нормали к поверхности,   ― плотность материа-

ла стержня, e  ― плотность внутренней энергии, для которой прини-

маем классическое выражение 

 pe c T= , (3) 

где T  ― температура, 
pc  ― удельная теплоёмкость. Плотность   и 

теплоемкость 
pc полагаются постоянными. 

Согласно закону Фурье  

  q k gradT= − , (4) 

где k  ― коэффициент теплопроводности, gradT  ― дифференциаль-

ный оператор градиента  температуры. 

Уравнение притока тепла (1) с учетом (2) и (3) принимает вид 

 p

V

d
c TdV q d

dt
 



=   . (5) 
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Сделаем основное допущение, что боковые поверхности стержня 

теплоизолированы, т.е. на этих поверхностях 0q = , а температура в 

стержне зависит только от продольной координаты z и времени: 

 ( , )T T z t= . (6) 

Выберем в качестве области V(z) часть стержня, соответствую-

щую значениям  координаты z в диапазоне 0 z z  . Тогда уравне-

ние притока тепла (5) c учетом сделанных допущений для области 

V(z) примет вид 

 
0 ( ) ( ) (0)

( , )

z

p

A z A z A

d
c T z t d dz q d q d

dt
   = −     , (7) 

0 ( )z L t  , 

где ( )L t  ― длина стержня, зависящая от времени.  В силу сделанных 

допущений приток тепла q
 и температура являются постоянным по 

сечению ( )A z , тогда из (7) получаем 

 
0

( ) ( , ) ( ) ( , ) (0) (0)

z

p

d
c A z T z t dz A z q z t A q

dt
  = − . (8) 

Дифференцируя (8) по z и учитывая, что закон Фурье (4) для 

случая (6) дает следующее выражение:   

 ( ),
T

q z t k
z




=


, (9) 

из (8) получаем итоговое уравнение притока тепла для стержня пере-

менного сечения 

 
1

0p

T T
c kA

t A z z


   
− = 

   
 (10) 

или 

 
pc A T T

A
k t z z

    
=  

   
. (11) 

Одномерная идеализация при решении тепловой задачи здесь 

связана с учётом изменения температуры только вдоль оси объекта. 

Заметим, что 1D-подход при моделировании тепловых процессов в 

SLM-печати использован также в работе [10]. 

Граничные условия соответствуют поддерживанию заданной 

температуры на концах стержня:  
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( )

( )
( )

min0

max

, ,

, .
i

z

z L t

T z t T

T z t T

=

=

=

=
 (12) 

Уравнение теплопроводности  (11) решается итерационно в цик-

ле по временным шагам. На каждом шаге по времени t  происходит 

увеличение длины стержня на величину L . Начальное распределе-

ние температур задаётся на основе поля температур на предыдущей 

итерации: 

 ( ) ( )
1

, ,
i it t t t

T z t T z t
−= =

= . (13) 

При этом длина стержня L  увеличивается с течением времени, 

что соответствует пошаговому добавлению материала при печати. 

Численное решение одномерного нестационарного уравнения 

теплопроводности процесса 3D-печати в Matlab. Для решения 

уравнений в частных производных в Matlab используется функция 

«pdepe». Синтаксис данной функции требует, чтобы уравнение было 

представлено в виде [11] 

 , , , , , , , , ,m mT T T T
c z t u z z f z t T s z t T

z t z z z

−           
= +      

          
. (14) 

В нашем случае для величин с, m, f, s получаем следующие значения 

 
, , , , , , , ,

0.

pc AT T T
с z t u f z t T A

z k z z

s m

     
= =   

     

= =

 (15) 

Зависимость площади сечения от координаты задаётся функцией 

 ( )
base base

part

, ,

, .

A z L
A z

A z L


= 


 (16) 

Алгоритм конечно-элементного расчёта температурного поля 

в одномерной постановке. Конечно-элементная формулировка не-

стационарной задачи теплопроводности записывается в виде [12, 13]: 

 
t


 +  =


T
C K T Q , (17) 

где C  ― матрица теплоёмкости, K  ― матрица теплопроводности, 

Q  ― вектор тепловой нагрузки (мощности). Для одномерных 

двухузловых элементов матрицы теплопроводности и теплоёмкости 

имеют вид:  
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1 1

1 1
e

kA

l

− 
=  

− 
k , 

1 3 1 6

1 6 1 3
e

с A

l

  
=  

 
с , (18) 

где l  ― длина элемента.  

Сборка глобальных матриц осуществляется по стандартному ал-

горитму.  

В работе используется неявная схема интегрирования по време-

ни:  

 t t t
t t

t

+
+

− 
 +  = 

 

T T
C K T Q , (19) 

откуда получаем систему линейных уравнений для нахождения век-

тора температур на следующем шаге: 

 
t t+ =M T r  (20) 

где 

 
2t t=  + M C K , 2

tt t=  +  r Q C T . 

Для учёта пошагового добавления материала используется метод 

активации/деактивации элементов. Для деактивированных элементов 

матрицы 
ek  и 

eс  получают множитель 10-6. В начальный момент 

времени все элементы, кроме первого, деактивированы. На каждом 

шаге по времени активируется один очередной элемент. Матрицы 

теплопроводности и теплоёмкости пересобираются на каждой вре-

менной итерации с учётом нового набора активных элементов. 

Граничные условия в виде заданной температуры на концах за-

даются по методу Пэйна-Айронса [14]: соответствующие диагональ-

ные компоненты матрицы M в (21) полагаются равными большому 

числу (например, 1020), а компоненты вектора правой части r ― за-

данной температуре Tmin или Tmax соответственно.  

Данный алгоритм реализован в программе «PrintHeat» на языке 

C++. Для выполнения векторно-матричных операций и решения си-

стемы уравнений используется библиотека Eigen [15]. 

Решение тестовой задачи. Сравнение и анализ результатов. 

Рассмотрим задачу численного моделирования теплопередачи в про-

цессе SLM-печати образца, изображённого на рис. 1. 
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Рис. 1. Геометрия тестовой задачи 

 

 
Рис. 2. Распределение температур по оси Z (по направлению выращивания)  

на основе решения Matlab 

 

Данная задача решена тремя способами: 1) при помощи Matlab-
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«PrintHeat» и 3) с использованием Ansys. Решение Matlab приведено 

на рис. 2. 

Конечно-элементная сетка и распределение температур в конеч-

ный момент времени в Ansys приведено на рис. 3. 

 

 
а) 

 
  

 
б) 

 
Рис. 3. КЭ-сетка (а) и распределение температуры (б) на основе решения 

Ansys в конечный момент времени 

 
Сравнение распределения температур в конечный момент време-

ни на основе решений в Matlab, PrintHeat и Ansys приведено на      
рис. 4. 
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Рис. 4. Сравнение распределения температур в конечный момент времени в 

Matlab, PrintHeat и Ansys 
 

Анализ результатов расчётов. Распределение температур в ко-

нечный момент времени (рис. 4), согласно трём проведенным расчё-
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хода от опорной плиты к детали имеет место определённый темпера-

турный градиент по осям X и Y.  

Заметим, что время расчёта задачи в одномерной постановке в 

программе PrintHeat на порядки меньше полного 3D-моделирования 

в Ansys. 

Вывод. Разработанная тепловая математическая модель коррект-

но описывает температурное поле в процессе печати для детали, гео-

метрия которой допускает одномерную идеализацию в виде стержня 

переменного сечения. При этом обеспечивается значительное сокра-

щение вычислительных затрат по сравнению с трёхмерной постанов-

кой. 

Направлением дальнейшей работы в части расширения возмож-

ностей разработанного конечно-элементного теплового решателя для 

аддитивного процесса является расширение списка доступных гра-

ничных условий для более гибкого учёта теплоотвода и переход к 

трёхмерной постановке. 

Работа выполнена при финансовой поддержке Российского 
научного фонда (РНФ), номер проекта 23-79-01213. 
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Numerical simulation of unsteady one-dimensional heat 

transfer during 3D-printing using SLM 
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A one-dimensional mathematical model of unsteady heat transfer process in the process 

of 3D printing of SLM technology is proposed. The feature of the model is taking into 

account the layer-by-layer addition of material to the calculation domain over time. The 

model is implemented within in-house software using the finite element method. Addition 

of material is taken into account by the algorithm of activation/deactivation of elements. 

A test problem for determining the temperature field during the growth of a part whose 

geometry is idealized by a rod of variable cross-section has been solved. To assess the 

reliability of the results, similar calculations are performed in third-party software prod-

ucts: in Ansys – in full three-dimensional formulation and in Matlab – the one-

dimensional heat conduction equation for a rod of time-varying length and variable 



Численное моделирование нестационарного теплопереноса в процессе … 

ММЧМ 2024 № 4 (44)                                                    29 

cross-sectional area is solved. Comparison of the temperature field shows that the results 

of calculations in the developed software correspond to third-party solutions while ensur-

ing high computational efficiency. 

 

Keywords: heat conduction equation, unsteady process, layer-by-layer addition of mate-

rial, 3D printing, finite element method, Ansys, Matlab 
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