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Рассмотрено применение обобщенного разложения полиномиального хаоса (РПХ) в 

задачах количественной оценки неопределенности. Реализован программный код 

для изучения влияния схемы генерации входных данных на качество модели, коэффи-

циенты которой вычисляются методом наименьших квадратов. В качестве крите-

риев качества использовались значения среднеквадратической ошибки и скользя-

щего контроля. Наряду с классическим методом заполнения пространства входных 

признаков по схеме латинского гиперкуба рассмотрены два варианта моделирова-

ния когерентно-оптимальной выборки: с использованием марковской цепи и с допол-

нительным прореживанием по D-критерию.  В то время, как выборка латинского 

гиперкуба равномерно распределяет точки по всему пространству случайных пере-

менных, когерентно-оптимальные методы нацелены на распределение проб более 

плотно в областях с большой дисперсией и более редко в областях с малой диспер-

сией. Такой подход позволяет более полно учесть информацию о реальной модели, 

что приводит к уменьшению количества проб при планировании эксперимента и как 

следствие экономии дорогого процессорного времени. Реализованные методы срав-

нивались на модельной функции Ишигами и конструкции фермы со случайными зна-

чениями физических характеристик. В результате сравнительного моделирования 

установлено, что в случае малого диапазона изменения случайных параметров, ко-

гда их градиенты медленно меняются, конструкция латинского гиперкуба показы-

вает наименьшие значения ошибки и скользящего контроля. В то же время в случае 

сильной нелинейности применение когерентно-оптимальной конструкции приводит 

к созданию более стабильной и эффективной модели, а дополнительное прорежи-

вание по критерию D-оптимальности дает лучший результат и является самым 

устойчивым. Также показано, что оба алгоритма планирования эксперимента не-

устойчивы и некорректны при недостаточном количестве проб. 

 

Ключевые слова: разложение полиномиального хаоса (РПХ), выборка латинского 

гиперкуба, когерентно оптимальная выборка, D-критерий оптимальности, функ-

ция Ишигами, ферменная конструкция 

 

Введение. На прогнозирование поведения сложных физических и 

инженерных систем влияют различные типы неопределенностей, в 

том числе несовершенные знания о параметрах системы и их измен-

чивость. Для количественной оценки возникающей неопределенности 

весьма эффективным является разложение по системе ортонормиро-

ванных полиномов, связанных с законом распределения входных слу-

чайных параметров (разложение полиномиального хаоса — РПХ). Ис-

пользование РПХ позволяет исследовать построенную прямую функ-

цию по многим параметрам, включая вычисление чувствительности, 
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без дополнительной выборки [1, 2]. Задача РПХ может быть сформу-

лирована как в интрузивной, так и в неинтрузивной форме. Интрузив-

ный подход предполагает изменение исходного кода математической 

модели и по этой причине редко используется в практических прило-

жениях. Использование неинтрузивных методов более удобно при 

проведения вероятностного анализа любой модели чёрного ящика. 

Наиболее распространены два типа неинтрузивных методов расчета 

детерминированных коэффициентов: спектральная проекция [3] и ли-

нейная регрессия. Хотя линейная регрессия, как правило, требует 

меньших вычислительных затрат, чем спектральная проекция, тем не 

менее она также подвержена «проклятию разности». Кроме того, как 

это недавно было показано в обширном обзорном исследовании [4], на 

качество модели регрессии на основе РПХ могут существенно влиять 

схемы выборки. Данная работа посвящена поиску оптимальных соче-

таний РПХ со стратегией отбора проб. 

Разложение полиномиального хаоса. Пусть имеется вероятност-

ное пространство ( , , ),  где  -алгебра на   и -вероятност-

ная мера на . Разложение ПХ случайной величины ( ),Y  X  где 

( ), X  — тоже является случайной величиной, имеет вид: 

  ( ) ,
M

Y 


   α α

α

X ξ   (1) 

где 
α
 — детерминированные коэффициенты; 

α
 — M -мерные ор-

тогональные полиномы. Поскольку компоненты вектора входных дан-

ных X  по предположению независимы, полиномы 
α
 представляют 

собой тензорные произведения соответствующих одномерных поли-

номов 
i   

 
1

( ), , ( ) ( ) .( )
i

M

i i j i j ij

i

p d      


      α ξ
ξ ξ ξ ξ   (2) 

В свою очередь ортогональные полиномы 
i  определяются в со-

ответствии с законом распределения входных данных. В частности, 

при равномерном законе распределения вектора X  используют поли-

номы Лежандра, при нормальном — полиномы Эрмита, а в случае 

произвольного закона полиномы 
i  вычисляют с помощью некото-

рого нелинейного отображения на основе схемы Аски [5, 6]. 

Для практических вычислений схема РПХ должна быть усечена 

до конечного числа членов p  (максимальный порядок многомерных 

полиномов 
α
). Таким образом, усеченный набор слагаемых РПХ 

определяется как 
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1

: | | .
M

M p M

i

i

p


 
  

 
  α α   (3) 

Мощность усеченного множества индексов ,M p  при этом равна 

 ,card .M p
M p

P
M

 




 


  (4) 

Для минимизации ошибки аппроксимации будем использовать 
метод наименьших квадратов (МНК) 
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Ψ
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  (6) 

Из формулы (4) замечаем, что число членов P  в РПХ сильно за-
висит от размерности входных случайных переменных M  и макси-

мальной полной степени полиномов p . Со другой стороны в работе в 

[7] показано, что для существования стабильного решения (5) требу-

ется по крайней мере n( l )O P P  признаков. 

После построения РПХ необходимо оценить точность полученной 
модели, что важно в числе прочего и при прямом сопоставления не-
скольких моделей в целях выбора наилучшей. И это еще одна причина 
целесообразности применения методов, не требующих каких-либо 
трансформаций исходной математической модели. Естественная 
оценка точности обеспечивается средней квадратной погрешностью 
(MSE): 

  
2

( ) ( )

1

1
.

N
i PCE i

i

S yM E
N 

 
 

 x   (7) 

Другой распространенной оценкой является коэффициент детер-

минации 2R : 
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  (8) 
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Однако ориентация на увеличение 2R  может привести к переобу-

ченности модели, и, следовательно, к необходимости ее корректи-

ровки. В последнее время для оценки эффективности алгоритма обу-

чения предпочтение отдается методу скользящего контроля или кросс-

валидации (Leave-One-Out Cross Validation) 2Q : 

 

 
2

( ) ( )

1
2

2

1

1
1 ,

i PCE iN

i i

Y

y

N h
Q





 
 

 








x

  (9) 

где 
ih  представляет собой i  й диагональный элемент матрицы 

1) .( T TH Ψ Ψ Ψ Ψ  

Планирование эксперимента. При выборе алгоритма отбора 
проб предпочтение принято отдавать такой процедуре, которая обес-
печивает равномерное заполнение пространства входных признаков.  
Среди множества схем наиболее известными являются: выборка ла-
тинского гиперкуба, стратифицированная выборка, методы типа 
Монте Карло [8], генерирующие квази-случайные последовательно-
сти. Однако равномерная конструкция заполнения пространства мо-
жет быть далеко не оптимальной с точки зрения максимального учета 
всех особенностей системы. В работе [9] показано, что схемы, ориен-
тированные на равномерное заполнение пространства признаков, хо-
рошо работают в ситуациях, когда градиент (относительно случайных 
параметров) медленно меняется (т.е. линеен или слабо нелинеен), в то 
время как для сильно нелинейных случаев, стратегии отбора проб 
должны быть разработаны таким образом, чтобы концентрировать 
пробы в тех областях пространства, которые одновременно обладают 
и значительной вероятностью и большой дисперсией [10, 11]. В дан-
ной работе исследуются именно такие методы генерации выборки. 

Выборка латинского гиперкуба. Выборка латинского гиперкуба 
является одним из самых известных методов заполнения простран-
ства.  

Для получения выборки 
1 2; ;[ ...; ]Mx x xx  размера S , подчиняю-

щейся закону распределения 
1 2( ), ( ), ..., ( ),Mpp p    диапазон изме-

нения каждой переменной 
jx  делится на S  непересекающиеся интер-

валов равной вероятности и из каждого интервала случайным образом 

выбирается одно значение. Полученные таким образом S  значений 

первой переменной 
1x  случайным образом комбинируются без замены 

с S  значениями, полученными для 
2x , затем аналогично добавляем S  

значений 
3x  для образования S  троек. Этот процесс продолжается до 

тех пор, пока не образуется набор S  M -кортежей [12]. 
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Проиллюстрируем получение выборки латинского гиперкуба для 

примера: [ ; ]U Vx , 5S  , [0;10]~U , а случайная величина V рас-

пределена по треугольному закону. Выберем  1RU ,  1RV  равно-

мерно на интервале [0;0,2) ,  2RU ,  2RV  равномерно на  0 2;0 4, ,  и 

т.д. Затем, используя соответствующие кумулятивные функции распре-

деления, можно определить значения наборов ,U V . Генерация вы-

борки латинского гиперкуба завершается случайным комбинированием 

(без замены) результирующих значений для ,U V . Процесс формиро-

вания и два результирующих варианта выборки приведены на рис. 1. 
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Рис 1. Пример выборки латинского гиперкуба для получения набора размера 5S   

из [ ; ]U Vx , где ~ [0;10]U , V  распределена по треугольному закону 

 распределения на интервале [0;10]  с модой 8c  :  

а — выборка для кумулятивного распределения для U ;  

б — выборка для кумулятивного распределения для V ;  

в — выборка латинского гиперкуба, 1 с; г — выборка латинского гиперкуба, 2 с 

 

Когерентно оптимальная выборка. Рассмотрим множество ор-
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  
2

1

( ) .
P

j

j

B


 ξ ξ   (10) 

Величина (10) представляет собой равномерную наименьшую 

верхнюю границу суммы квадратов базисных полиномов усеченного 

базиса и используется для оценки стабильности в случаях, когда раз-

мерность признаков M  близка к размеру выборки N . 

Также рассмотрим вычислительно удобную функцию )(G ξ , удо-

влетворяющую 

 ) ( )( ,G B  ξ ξ ξ   (11) 

которая для конечного P  представляет собой 
2 ( , )L p

ξ
  — интегри-

руемую верхнюю границу )(B ξ  для всех ξ . Определим плотность 

вновь создаваемой выборки следующим образом: 

 

1

2
2 2 2( ) ( ) ( ), ( ) ( ,)f c p G c p G d



 
   

 
ξ ξ

ξ ξ ξ ξ ξ ξ   (12) 

где p
ξ
 — исходная совместная плотность признаков,   усечен-

ное множество изменения признаков. При этом важно, чтобы после 

выбора множеств  выполнялось неравенство  

 
2 2

( ) ( )
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i j
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То есть чтобы есть 
ij

 было снижено до необходимого уровня. 

Очевидно, что если   , то 0ij   из-за ортогональности 

 
1

( ) .
P

k k
 ξ  После выбора множества  для сохранения свойства ор-

тогональности системы полиномов  
1

( )
P

k k
 ξ  относительно новой 

плотности f  трансформируем эти функции с помощью веса  

 
1

( ) .
( )c

w
G

ξ
ξ

  (14) 

Полученная система  
1

) ( )(
P

k k
w


ξ ξ , очевидно, будет ортогональна 

относительно f . При этом такая трансформация РПХ сводит исход-

ную задачу оптимизации к вычислению: 

 
2

argmin ,Y 
β

W WΨβ   (15) 



Об оптимальной конструкции моделирования разложения полиномиального… 

127 

где ( )( ( )i

iiW w W ξ  диагональная положительно-определенная мат-

рица весов, а оценки параметров регрессии β  могут быть вычислены 

из формулы  

 ) ) ( ) .( (T T YWΨ WΨ β WΨ W   (16) 

Введем параметр когерентности ( ) ξ  следующим образом 

 

2

1

(( ) sup ) ( .)
P

j

j

w
 

 
ξ

ξ ξ ξ   (17) 

В [13] было доказана теорема: Если  выборки получаются из рас-

пределения, пропорционального 2( ) ( )Bf ξ ξ , а полиномы ( )k ξ  бе-

рутся с весом ) 1/( ( )w Bξ ξ , то параметр когерентности   достигает 

минимума по всем схемам выборки на множестве . Кроме того, 

P  . 

Параметр когерентности (17) при    особенно удобно исполь-

зовать при анализе полиномов Лежандра, ограниченных на [ 1;1]M . 

Однако, если 

2

1

sup ) ( )(
P

j

j

w
 


ξ

ξ ξ  бесконечен, как в случае эрми-

товых полиномов с весом )( 1w ξ , в формуле  (17) нужно использо-

вать усечение   до поддающегося измерению подмножества  . 

В этом случае получаем задачу:  

 

 

2

1

1

2

1

minisizesup ) ( ) ;

1
( ) ) ;

1
) ( )

2

(

(

( .
0

c

P

j

j

c

P

k

k

NP

M I P

w

P

w



 











 



 






ξ

ξ ξ

ξ

ξ ξ

  (18) 

Для нахождения  используются эвристические методы, наце-

ленные на то, чтобы с одной стороны охватить области наибольших 

значений ( )p
ξ
ξ , а с другой удовлетворить указанным условиям. 

Описанная процедура генерации когерентно оптимальной вы-

борки (Coherence-optimal sampling) таким образом нацелена на мини-

мизацию параметра когерентности, связанного со стабильностью и 

сходимостью РПХ, найденного с помощью МНК [11].  

Использование марковской цепи.  Рассмотрим алгоритм генера-

ции когерентно оптимальной выборки с использованием свойства ин-

вариантности безусловной плотности марковской цепи (Markov Chain 
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Monte Carlo - MCMC). Как известно [14], вероятность перехода непри-

водимой и апериодической марковской цепи из состояния ξ  в состоя-

ние ξ  с использованием инвариантного распределения пропорцио-

нального 2( ) ( )Bf ξ ξ  и переходной плотности )(g ξ  может быть 

найдена по следующей формуле: 

 
2

2

) ( ) ( )
min .

'

(
1,

( ) ( ) ( )

f B

f B

g

g

 


 

  
  

 

ξ

ξ
  (19) 

Формулу (19) применяют при вычислении вероятности принятия 

пробы ξ  в соответствии с алгоритмом, приведенным на рис. 2.   

 

Algorithm 1 MCMC sampler for coherence-optimal sampling 

Select a proposal distribution, dented )(g ξ , based on distribution of Ξ   

Draw ξ  from )( .g ξ   

for A number of burn-in samples do 

Draw ξ , independently, from the proposal distribution. 

Set 
2

2

) ( ) ( )
: min .

') ( ) (
1

( )

(
,

g

g

f B

f B

 


 

  
  

 

ξ

ξ
  

Draw U , independently, from  0;1 . 

if U   then 

Set ξ ξ . 

end if 

end for 

ξ  is approximately drawn 

Рис. 2. MCMC набор для когерентно оптимальной выборки 

 

Также в случае p M  применяем стандартный нормальный от-

бор для полиномов Эрмита и равномерный на [ 1;1]M  для Лежандра. 

Если же p M , то используем равномерный отбор на M -мерном 

шаре радиуса 2 2 1p   для полиномов Эрмита и M -мерный отбор 

Чебышева для Лежандра [13]. Предложенное значение ξ  добавляется 

в выборку с вероятностью  . Смысл переменной burn-in, использую-

щейся как количество циклов, заключается в обеспечении независи-

мости выборки в цепи. 

Критерии алфавитной оптимальности. Оптимальность про-

странства признаков для МНК может также измеряться по так называ-

емым алфавитным критериям (alphabetic criteria) информационной 

матрицы 

 
1

.T

N
 Ψ Ψ   (20) 
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Эти критерии принимают точки выборки таким образом, чтобы 

некоторые функционалы ( )  минимизировались. Мы используем 

наиболее простой и хорошо известный D -критерий ( D -opt), оторый 

ориентирован на точную оценку β  и минимизирует детерминант об-

ратной информационной матрицы.  
Для того, чтобы понизить вычислительную сложность построения 

D -оптимальных конструкций, были разработаны последовательные 
(жадные) алгоритмы [14], принципиальная схема которых приведена 
на рис. 3. 

   

Algorithm 2 A sequential algorithm to construct alphabetic designs 

1: ● Input: Number for samples in the design N P , number of samples in the          

candidate design 
c

N , optimality criterion  , type, dimension d , and order p  of 

PC basics. 

2: ● Output: N P  optimal measurement matrix Ψ  and the corresponding optimal 

sample set 
  

1

N
i

i
ξ  based on the smallest optimally criterion  . 

3: Generate 
c

N  realizations 
  

1

N
i

i
ξ  and the corresponding 

c
N P  candidate           

measurement matrix 
c

Ψ . 

4: Initialize    . Let  ,cΨ  be the sub-matrix of 
c

Ψ  with row and column 

indices in  and , respectively. 

5: for 1:n N  do 

6:        Grow the column set while n P  by setting   1;....;min , .n P   

7:        for   1;...; \ci N  do 

8:                 ,
ci

i  Ψ . 

9:        end for 
10:      Include the row corresponding to largest reduction in  , i.e., set

 arg min i i  . 

11: end for 

12: Return  ,cΨ Ψ . 

Рис. 3. Последовательный алгоритм построения алфавитных  

оптимальных конструкций для 
1/

1
P

 
   

 

Результаты моделирования выборки разными способами приве-

дены на рис. 4 — 6.  

Как видно на рис. 4 выборка латинского гиперкуба равномерно рас-

пределяет точки по всему пространству случайных переменных. На рис. 

5 выборка формируется по принципу когерентной оптимальности с ис-

пользованием MCMC. Рис. 6 отражает результат применения комбини-

рованного метода: пул кандидатов формируется в соответствии с коге-

рентно-оптимальным подходом и дополнительно сокращается за счет 

использования критерия D-оптимальности. В этом случае пробы более 

плотно концентрируются в областях большой дисперсии, что должно 

привести к созданию стабильного и корректного решения МНК [15]. 
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Рис. 4. Моделирование методов планирования экспериментов в 2
[ 1;1]   

для выборки латинского гиперкуба с объемом: 

а — 50; б — 100; в — 50 

 

 
 

 
 

а б 

 
 

в 

Рис. 5. Моделирование методов планирования экспериментов в 2
[ 1;1]   

для когерентно оптимальной выборки с объемом: 

а — 50; б — 100; в — 50 
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Рис. 6. Моделирование методов планирования экспериментов в 2
[ 1;1]   

для когерентно оптимальной с помощью D  критерия выборки с объемом: 

а — 50; б — 100; в — 50 

 

Исследование чувствительности методов на функции Иши-
гами. На рис. 7, 8 приведены результаты моделирования функции 
Ишигами для указанных значений параметров: 

 

2 4

1 2 3 1

1 2 3

) sin( ) sin ( ) sin( )( ;

, , ~ ( , );

7, 0,1.

x a x bx x

x x

a

f

x

b

 

   



  

x

  (21) 

Рассмотрены модели РПХ степени 3 и 5, реализованные на основе 
следующих методов заполнения пространства: выборка латинского 
гиперкуба (LHS), когерентно оптимальная выборка с помощью мар-
ковской цепи (MCMC), и когерентная D-оптимальная выборка (D-opt). 
Выборка, генерируемая каждым методом, разделяется на обучающий 
и контролирующий наборы в соотношении 8:2. Эффективность мето-
дов сравнивается по значениям ошибки MSE и значению скользящего 

контроля 2Q . В качестве результатов на рис. 7, 8 приведены среднее 

значения и диапазон его изменения для 5 независимых прогонов каж-
дого метода при увеличении объема выборки. 

Модели реализованы в программе, написанной на языке Python, 
для компьютера со следующей конфигурацией: процессор Intel(R) 
Core i5-9600KF; оперативная память RAM 16Gb; видеокарта NVIDIA 
GeForce RTX 2060.  
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Рис. 7. Сравнение эффективности методов планирования экспериментов 

 при моделировании функции Ишигами при увеличении объема выборки 
sim

n   

для порядка полиномов 3p  ; 

─ — выборка латинского гиперкуба (LHS);  

─ — когерентно оптимальная выборка с помощью марковской цепи (MCMC); 

─ — когерентная D-оптимальная выборка (D-opt); 

 а — значение ошибки MSE;  

б — значение скользящего контроля 2Q   
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Рис. 8. Сравнение эффективности методов планирования экспериментов 

 при моделировании функции Ишигами при увеличении объема выборки 
sim

n   

для порядка полиномов 5p  ; 

─ — выборка латинского гиперкуба (LHS);  

─ — когерентно оптимальная выборка с помощью марковской цепи (MCMC); 

─ — когерентная D-оптимальная выборка (D-opt); 

 а — значение ошибки MSE;  

б — значение скользящего контроля 2Q   
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Как видно, аппроксимация ошибки моделей убывает при увеличе-
нии объема выборки и порядка полиномов разложения. Кроме того, 
все модели испытают неустойчивость, пока объем выборок не прибли-

жается к необходимому числу ( ln )O P P . Аппроксимация скользящего 

контроля 2Q  начинается сходиться при 300simn   для порядка 3 и 

200simn   для порядка 5.  

Ферменная конструкция. Рассмотрим задачу вычисления про-
гиба ферменной конструкции, изображенной на рис. 9. 

 

 
Рис. 9. Конструкция стропильной фермы, построенная из двух наклонных брусьев 

 

Теоретически расчет можно произвести методом единичной 
нагрузки, согласно которому прогиб в середине пролета согласно [14] 
составит 

 
552 50,9117

.
h h d dA E A

Y F
E

 
 

 
   (22) 

Будем считать, что входной случайный вектор модели X  состоит из 
пяти независимых компонент, задающих следующие характеристики: 

~ (0,21;0,1),h LognormalE  [ТПа] —  модуль Юнга поперечного сечения 

горизонтальных стержней; ~ (0,002;0,1),h LognormalA [м2] — площадь 

поперечного сечения горизонтальных стержней; 

~ (0,21;0,1),d LognormalE  [ТПа] — модуль Юнга поперечного сечения 

диагональных стержней; ~ (0,001;0,1),d LognormalA  [м2] — площадь 

поперечного сечения диагональных стержней; (0,005;0,15),F Gumbel

[МН] — сила нагрузки на верхних соединениях. 
Исследованы модели РПХ степени 3, реализованные на основе 

тех же трех методов заполнения пространства. Генерация выборок и 

процедура вычисления MSE и 2Q  проведена так же, как в предыду-

щем примере. 
Результаты расчета, приведенные на рис. 10, показывают, что в 

случае малого интервала изменения случайных параметров (гради-
енты медленно меняются) конструкция латинского гиперкуба показы-
вает наименьшую ошибку и наименьшее значение скользящего кон-
троля. Критерий D-оптимальности делает когерентно оптимальную 
конструкцию более стабильной и эффективной. Фактически, алгоритм 
когерентно D-оптимальности является самым устойчивым методом. 
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Рис. 10.  Сравнение эффективности методов планирования экспериментов  

при моделировании ферменной конструкции; 

─ — выборка латинского гиперкуба (LHS);  

─ — когерентно оптимальная выборка с помощью марковской цепи (MCMC); 

─ — когерентная D-оптимальная выборка (D-opt); 

 а — значение ошибки MSE;  

б — значение скользящего контроля 2Q   
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Выводы. Разложение полиномиального хаоса дает лучший          
результат, т.е. меньшую и более стабильную аппроксимацию ошибки, 
когда случайные переменные моделируются на основе когерентно         
оптимальной выборки с использованием D-критерия. При малом диа-
пазоне изменения случайных параметров конструкция латинского             
гиперкуба является более эффективной, в то время как когерентная              
D-оптимальная выборка приводит к большей устойчивости.  
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Application of generalized decomposition of polynomial chaos (RPH) in problems of    

quantitative estimation of uncertainty is considered. A pro-gram code has been imple-

mented to study the influence of the input data generation scheme on the quality of the 

model whose coefficients are calculated by the least squares method. Standard error and 

sliding control values were used as quality criteria. Along with the classical method of 

filling the space of the input features on the scheme of the Latin hyper-cube, two variants 

of modelling coherent-optimal sample are considered: using the Markov chain and with 

additional thinning on the D-criterion.  While the Latin hypercube sample evenly distrib-

utes points across the whole space of random variables, coherent optimum methods aim to 

distribute samples more densely in areas with greater variance and more rarely in areas 

with small variance. This approach allows for a better integration of information about the 

real model, which leads to a reduction in the number of samples in the planning of the 

experiment and as a result save costly CPU time. The implemented methods were              

compared on the Ishigami model function and the farm design with random values of phys-

ical characteristics. As a result of comparative modeling, it is established that in case of 

small range of change of random parameters, when their gradients slowly change, the 

design of the Latin hypercube shows the lowest values of error and sliding control. At the 

same time, in the case of strong non-linearity, the application of coherent-optimal design 

leads to a more stable and efficient model, and additional thinning according to the crite-

rion of D-optimality gives the best result and is the most sustainable. It has also been shown 

that both the planning algorithms of the experiment are unstable and incorrect if there are 

insufficient samples.  
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