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Рассматривается задача моделирования продольного движения самолета транс-
портной категории и параметрическая идентификация аэродинамических харак-
теристик продольного движения: составляющих безразмерных коэффициентов 
аэродинамической подъемной силы и момента тангажа. Задача решается в клас-
се модульных полуэмпирических динамических моделей, созданных объединением 
теоретического и нейросетевого моделирования. Работоспособность и практиче-
ская значимость моделей подтверждается результатами вычислительных экспе-
риментов. Разработка нейросетевой модели продольного движения самолета вы-
полнена на языке Python с использованием открытой программной библиотеки 
Tensorflow для машинного обучения и  высокоуровневого API Keras в составе Ten-
sorflow. 
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Введение. При создании современных самолетов транспортной 

категории параметрическая идентификация аэродинамических харак-

теристик по результатам летных испытаний является одной их важ-

нейших проблем. Точные аэродинамические характеристики необхо-

димы при разработке законов управления комплексной системы 

управления, при разработке математической модели пространствен-

ного движения самолета для пилотажного стенда, «электронной» и 

«железной» птицы с целью  проведения сертификационных испыта-

ний и летного тренажера самолета для обучения пилотов серийных са-

молетов. Традиционный подход создания подобной математической 

модели пространственного движения самолета основан на использо-

вании линеаризованной модели возмущенного движения самолета с 

представлением зависимостей для аэродинамических сил и моментов 

в виде разложения их в ряд Тейлора, состоящим, как правило, из чле-

нов не выше первого порядка. В этом случае решение задачи парамет-

рической идентификации сводится к восстановлению по данным лет-

ных испытаний зависимостей, описывающих коэффициенты разложе-

ния в ряд Тейлора безразмерных коэффициентов аэродинамических 

сил и моментов, где определяющими являются производные                 
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безразмерных коэффициентов аэродинамических сил и моментов по 

параметрам движения самолета.  

Анализ опыта идентификации параметров моделей нелинейных 

динамических систем (ДС), описывающих динамику полета самоле-

тов, по результатам летных испытаний позволяет выделить следую-

щие методы, получившие наибольшее практическое применение и 

представленные в [1–8]: 

 метод максимума правдоподобия (ММП) [3]; 

 метод множественной регрессии или метод наименьших квад-

ратов (МНК) [4]; 

 дискретно-непрерывный метод идентификации (ДНМИ)  с 

фильтром Калмана[7]; 

 частотные методы. 

Точность данных алгоритмов исследовалась в работах [2, 8] мето-

дом математического моделирования при идентификации основных 

параметров продольного и бокового движения самолетов. Погреш-

ность идентификации параметров производилась сравнением оценок 

параметров, полученных в результате идентификации, с соответству-

ющими значениями, использованными в математической модели дви-

жения самолета при генерации исходных данных для идентификации. 

При уровнях шумов измерений параметров движения самолета, 

соответствующих реальным шумам датчиков измерения параметров 

полета самолета, и при отсутствии шумов атмосферы, по данным ра-

бот [2, 8] погрешности оценок МНК равны 10…30 %, а ММП, ММП с 

фильтром Калмана и ДНМИ 5…7 %. При наличии атмосферной тур-

булентности погрешности оценок с использованием МНК и ММП воз-

растали, а погрешности оценок ММП с фильтром Калмана и ДНМИ 

оставались на прежнем уровне, поскольку эти методы учитывают шум 

объекта. Более низкая точность МНК связана с ошибками численного 

дифференцирования и ошибками измерения регрессоров. В алгорит-

мах ММП и ДНМИ численное дифференцирование не используется и 

вектор состояния восстанавливается при численном решении уравне-

ний объекта и наблюдений. Вследствие этого влияние ошибок измере-

ний входного сигнала в этих методах уменьшается, так как уравнения 

движения самолета фактически представляют собой фильтр нижних 

частот. 

Также методы идентификации ДС делятся на две большие группы 

по способу получения исходных данных для идентификации: актив-

ные и пассивные. В активных методах на вход ДС подаются специ-

ально сформированные тестовые детерминированные или случайные 

сигналы. Активные методы уменьшают временные и материальные за-

траты на проведение и обработку результатов экспериментов. Основ-

ным преимуществом пассивных методов идентификации является         
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использование в качестве исходных данных результатов рабочего 

функционирования ДС. При этом на сбор и необходимую статистиче-

скую обработку данных требуются значительные временные затраты, 

что является недостатками этих методов. 

В работах [9–12] предложен полуэмпирический нейросетевой 

(НС) подход для моделирования ДС, а в работах [13–16] предложен 

полуэмпирический НС подход, реализующий восстановление безраз-

мерных коэффициентов аэродинамических сил и моментов как нели-

нейных зависимостей  от соответствующих аргументов без их разло-

жения в ряд Тейлора и линеаризации. При этом подходе оцениваются 

сами функции, представленные в НС-виде, а не коэффициенты разло-

жения их в ряд. Каждая из таких зависимостей реализуется как отдель-

ный НС-модуль, встроенный в полуэмпирическую НС-модель. Произ-

водные предлагается при необходимости вычислять с использованием 

результатов, получаемых при формировании НС-модулей коэффици-

ентов сил и моментов, являющихся элементами полуэмпирической 

НС-модели.  

В данной работе предлагается решить задачу восстановления ко-

эффициентов разложения в ряд Тейлора безразмерных коэффициентов 

аэродинамических сил и моментов полного продольного движения 

(траекторного и углового) самолета транспортной категории как 

сумму составляющих от параметров движения и конфигурации само-

лета безразмерных коэффициентов, каждый из которых реализуется в 

виде отдельного НС-модуля прямого распространения, встроенного в 

полуэмпирическую рекуррентную НС-модель. 

Математическая модель продольного движения самолета 

транспортной категории. Для решения поставленной задачи ис-

пользуется математическая модель полного продольного движения са-

молета в связанной системе координат: 
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В вышеприведенной модели приняты следующие обозначения: V  — 

скорость самолета;   — угол наклона траектории; H  — высота по-

лета; 
Z  — угловая скорость тангажа;  AoA  — угол атаки; 

XN  — 
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продольная перегрузка; 
YN  — вертикальная перегрузка; g  — ускоре-

ние свободного падения; 
ZZJ  — момент инерции самолета относи-

тельно поперечной оси; 
ZM  — результирующий момент тангажа. 

В модели (1) принято, что аэродинамические силы, действующие 

на самолет, определены в полусвязанной системе координат, что явля-

ется следствием определения аэродинамических характеристик само-

лета в полусвязанной системе координат при продувках модели само-

лета в аэродинамической трубе. Продольная и вертикальная пере-

грузка 
XN  и 

YN  в связанной системе координат определяются через 

продольную и вертикальную перегрузки 
XaN  и 

YaN  в полусвязанной 

системе координат: 
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где 
XaC  — суммарный коэффициент аэродинамического сопротивле-

ния в полусвязанной системе координат; 
YaC  — суммарный коэффи-

циент подъемной силы в полусвязанной системе координат; q  — ско-

ростной напор; 
ENGP   — тяга двигателя; M   — масса самолета; S  — 

площадь крыла. 

Суммарный коэффициент аэродинамического сопротивления 
XaC  

определяется в следующем виде: 
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где , ( , )Max

XC Max    — коэффициент аэродинамического сопротивле-

ния при фиксированных органах управления, убранных механизации 

и шасси; ( , , )SF

X FL SLC     — приращение коэффициента аэродинамиче-

ского сопротивления при выпуске закрылков (
FL — угол выпуска 

предкрылков); ( , )XC Max   — производная коэффициента аэродина-

мического сопротивления по углу отклонения стабилизатора; 

0( , )( )X FLC      — приращение производной коэффициента аэро-

динамического сопротивления по углу отклонения стабилизатора при 
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выпуске закрылков ( — угол установки стабилизатора, 
0  — угол 

установки стабилизатора при продувках); ( , )EL

XC Max
   — производ-

ная коэффициента аэродинамического сопротивления по углу откло-

нения руля высоты 
EL ; LG

XC  — приращение коэффициента аэродина-

мического сопротивления при выпуске шасси ( LG — признак выпуска 

шасси). 

 Суммарный коэффициент аэродинамической подъемной силы 

YaC  определяется в следующем виде: 
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где , ( , )Max

YC Max    — коэффициент аэродинамической подъемной 

силы при фиксированных органах управления, убранных механизации 

и шасси; ( , , )SF

Y FL SLC     — приращение коэффициента аэродинамиче-

ского сопротивления при выпуске закрылков и предкрылков;           

( )YC   — производная коэффициента аэродинамической подъемной 

силы по углу отклонения стабилизатора; ( )MaxK Max  — коэффициент, 

учитывающий влияние сжимаемости воздуха на эффективность стаби-

лизатора; ( , )qK q Max  — коэффициент, учитывающий снижение эф-

фективности стабилизатора, обусловленное влиянием упругости кон-

струкции и сжимаемости воздуха; ( , )FLK

    — коэффициент, учиты-

вающий влияние угла атаки и положения закрылков на эффективность 

стабилизатора; ( )Z ELM   — коэффициент продольного момента руля 

высоты; ( )
EL

MaxK Max  — коэффициент, учитывающий влияние сжимае-

мости воздуха на эффективность руля высоты; ( , )
EL

qK q Max  — коэф-

фициент, учитывающий снижение эффективности руля высоты, обу-

словленное влиянием упругости конструкции и сжимаемости воздуха; 

( , )
EL FLK

    — коэффициент, учитывающий влияние угла атаки и по-

ложения закрылков на эффективность руля высоты. 

Суммарный коэффициент продольного момента 
ZaM  определя-

ется в следующем виде: 
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где , ( , )Max

ZM Max   — коэффициент продольного момента в крейсер-

ской конфигурации; ( , )FL

Z FLM    — приращение коэффициента про-

дольного момента при выпуске закрылков; ( , )SL

Z SLM    — прираще-

ние коэффициента продольного момента при выпуске предкрылков; 

( )Zm   — приращение коэффициента продольного момента при пе-

ремещении стабилизатора; ( )EL

Z ELM
   — приращение коэффициента 

продольного момента при отклонении руля высоты; Z

ZM
  — производ-

ная коэффициента продольного момента по угловой скорости тангажа; 

ZM   — производная коэффициента продольного момента по произ-

водной угла атаки; LG

ZM  — приращение коэффициента продольного 

момента при выпуске шасси. 

Полуэмпирическая НС-модель продольного движения само-
лета. Типичным подходом для традиционного нейросетевого модели-
рования ДС является формирование эмпирических моделей (моделей 
типа «черный ящик») только на основе экспериментальных данных, 
полученных при наблюдении за функционированием системы. Такой 
подход является единственно возможным при отсутствии априорного 
знания о природе моделируемой системы и механизмах ее функцио-
нирования. Однако для рассматриваемой ДС, самолета транспортной 
категории, имеется математическая модель движения, представленная 
выше. Данная модель обладает высокой точностью и широко исполь-
зуется в практике проектирования и сертификации авиационной тех-
ники. В начале математическая модель движения самолета создается 
на базе банка данных аэродинамических характеристик, полученного 
при исследовании аэродинамических моделей самолета в аэродинами-
ческих трубах. Далее, на основе данных, полученных в летных испы-
таниях самолета, проводится параметрическая идентификация мате-
матической модели самолета. Именно разработка новой методики па-
раметрической идентификации математической модели полного про-
дольного движения самолета (1) и является целью данной работы. Для 
этого предлагается использовать полуэмпирический подход к модели-
рованию (модели типа «серый ящик» [9, 12]) динамических систем. 
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При этом подходе модель формируется с использованием как теорети-
ческих знаний предметной области, в данном случае математической 
модели полного продольного движения самолета (1) с известной  
структурой суммарного коэффициент аэродинамического сопротивле-

ния 
XaC  (4), суммарного коэффициента аэродинамической подъемной 

силы 
YaC  (5) и суммарного коэффициента продольного момента 

ZaM  

(6), так и экспериментальных данных о реакции системы на входные 
воздействия, в данном случае результаты летных испытаний самолета 
по исследованию характеристик устойчивости и управляемости. 

В общем виде процедура формирования для ДС полуэмпириче-

ских НС-моделей состоит из следующих этапов [13–16]: 

1. разработка теоретической модели с непрерывным временем; 

2. формирование банка экспериментальных данных, характеризу-

ющих функционирование ДС; 

3. математическое моделирование ДС для оценки точности теоре-

тической модели ДС на полученных экспериментальных данных; 

4. преобразование математической модели с непрерывным време-

нем в модель с дискретным временем; 

5. разработка НС-модели для модели с дискретным временем; 

6. обучение НС-модели — параметрическя идентификация ДС; 

7. модификация НС-модели при недостаточной точности по ре-

зультатам обучения. 

Разработка теоретической модели полного продольного движения 

самолета выполнена выше. Банк экспериментальных данных, характе-

ризующих динамику продольного движения самолета, используется в 

данной работе  синтетический. Банк формируется по результатам ма-

тематического моделирования теоретической модели (1) с использо-

ванием модифицированных произвольным образом безразмерных ко-

эффициентов аэродинамических сил и моментов продольного движе-

ния. Целью параметрической идентификации в таком случае будет яв-

ляться восстановление этих модифицированных произвольным обра-

зом безразмерных коэффициентов аэродинамических сил и моментов 

продольного движения на основе синтетического банка эксперимен-

тальных данных. Полученные по результатам обучения НС-модели 

продольного движения оценки модифицированных произвольным об-

разом безразмерных коэффициентов позволят в дальнейшем оценить 

точность предложенной методики параметрической идентификации.  

Набор синтетических экспериментальных данных для отработки 

и оценки точности предлагаемой методики параметрической иденти-

фикации состоит из траекторий на временном сегменте  0;11t  c, с 

постоянным шагом дискретизации 0,02t   c, полученных при моде-

лировании дачи рулем высоты различной величины и продолжитель-

ности. Дача рулем высоты является стандартным испытательным           
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режимом в реальных летных испытаниях самолетов всех типов при ис-

следовании характеристик устойчивости и управляемости продоль-

ного движения самолета. Каждая из траекторий выполнена из условий 

установившегося прямолинейного горизонтального полета самолета и 

начальные условия (конфигурация самолета, масса, скорость и высота 

полета, угол атаки, угол наклона траектории)  являются точно извест-

ными. Значения наблюдаемых параметров движения (скорость полета, 

угол атаки, угловая скорость тангажа, высота полета, угол наклона 

траектории, продольная и вертикальная  перегрузка)  подвержены воз-

действию аддитивного белого гауссовского шума  , т. е. 

( ) ( )k k ky y t t  . Среднеквадратическое отклонение (СКО) шума   

для наблюдаемых выходов принимается различным в соответствии с 

реальными данными, полученными в летных испытаниях, так как из-

мерение параметров полета производится различными системами, 

имеющими различные погрешности измерения. Критерием качества 

НС-модели принимается среднеквадратичная ошибка моделирования 

(MSE). Если НС-модель абсолютно точно воспроизводит ДС, то в этом 

случае ошибка моделирования будет определяться исключительно 

шумом выходных сигналов системы. Таким образом, сравнение 

ошибки НС-модели с СКО шума выходных сигналов позволяет оце-

нить точность НС-модели полного продольного движения самолета. 

Следующий шаг данной процедуры состоит в переходе от исход-

ной модели с непрерывным временем, т. е. от дифференциальных 

уравнений, к модели с дискретным временем — к разностным уравне-

ниям. Простейшим методом дискретизации модели ДС с непрерыв-

ным временем является метод Эйлера в явной форме. Для дискретиза-

ции модели продольного движения самолета (1) с непрерывным вре-

менем в данной работе применен численный метод решения обыкно-

венных дифференциальных уравнений Адамса-Башфорта 3-го по-

рядка в явной форме, который  приближает решения задач с началь-

ными значениями вида:  

 
0 0( ) ( , ); ( ) .y t f t y y t y    

Результатом являются приближения для значения  y t  в дискрет-

ные моменты времени 
kt : 

 
0( ), ,k k ky f t t t k h     

где h  — временной шаг, а k  — целое число. 

 
1 1 1 2 2

23 16 5
( , ) ( , ) ( , ) .

12 12 12
k k k k k k k ky y h f t f f t f f t f    

 
    

 
  (7) 
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Выбор метода дискретизации модели был сделан по результатам 

численных экспериментов с различными схемами дискретизации.           

Результаты этих экспериментов выходят за рамки данной работы. 

При дискретизации модели продольного движения самолета (1) с 

непрерывным временем с использованием метода Адамса-Башфорта 

3-го порядка в явной форме (7) модель в дискретном времени будет 

иметь следующий вид (8): 

 

 

 

1 1 2

1 1 2

1 2
1

( cos sin ) sin ;

23 16 5
;

12 12 12

( cos sin ) cos ;

23 16 5
;

12 12 12

23 16 5

12 12 12

k Xk k Yk k k

k k k k k

Zk Yk k Xk k k

k

k k k k k

Zk Zk Zk
Zk Zk

ZZ ZZ ZZ

V g N N

V V h V V V

g
N N

V

h

M M M
h

J J J

  

    

    

 

  

  

 


  

 
    

 

   

 
    

 


   



 

1 1 1 2 2

;

23 16 5
sin sin sin ;

12 12 12

( cos sin ) cos ;

k k k k k k k k

k Yk k Xk k k

k

H H h V V V

g
N N

V

  

   

    





 
    

 

  

  (8) 

 
1 1 2

23 16 5
.

12 12 12
k k k k kh      

 
    

 
  

После дискретизации теоретической модели  полученная разност-

ная схема модели (8) преобразуется в НС-форму. Для этого выражения 

разностной модели интерпретируются в терминах элементов НС-мо-

делей и результатом преобразования является рекуррентная нейрон-

ная сеть.  

С целью унификации подходов к обучению рекуррентных сетей 

необходимо привести рекуррентные НС-модели к единообразному 

виду. В работах [10, 11] предложен алгоритм преобразования модели 

ДС в дискретном времени в каноническую форму модели. В резуль-

тате преобразования НС-модель канонического вида представляет со-

бой многослойную сеть прямого распространения, которая замыка-

ется внешними рекуррентными связями с единичными задержками от 

выходов сети к ее входам (рис. 1). На рис. 1 обозначение 1q  соответ-

ствует элементу единичной задержки. 



С.С. Крееренко, О.Д. Крееренко 

90 

 
 

 

Рис. 1. Каноническая форма рекуррентной нейронной сети 

  

В данной работе применен явный многошаговый метод Адамса-
Башфорта 3-го порядка, поэтому для преобразования в каноническую 
форму необходимо ввести дополнительные элементы, реализующие 
линии задержки для значений правых частей уравнения (8) на преды-
дущих шагах. Полуэмпирическая НС-модель полного продольного уг-
лового движения самолета в канонической форме на основе схемы 
дискретизации Адамса-Башфорта 3-го порядка представлена на рис. 2. 
На рис. 2 значения весов соответствующих связей и смещений подпи-

саны рядом со стрелками и приняты следующие обозначения: V  — 

скорость полета, AoA  — угол атаки, 
Z  — угловая скорость тангажа,

XN  — продольная перегрузка,  
YN  — вертикальная перегрузка,   — 

угол наклона траектории, 
ENGP  — тяга двигателей, Elev — угол откло-

нения руля высоты, Stab — угол отклонения стабилизатора, Slat — 
угол отклонения предкрылков, Flap — угол отклонения закрылков, 

caxb  — средняя ародинамическая хорда, g  — ускорение свободного 

падения, S   — площадь крыла,  r H  — плотность воздуха,  a H  — 

скорость звука, H  — высота полета, m  — масса самолета, 
XC  — сеть 

прямого распространения для вычисления коэффицента аэродинами-

ческого сопротивления, 
YC  — сеть прямого распространения для вы-

числения коэффицента аэродинамической подъемной силы, 
ZM  — 

сеть прямого распространения для вычисления коэффицента момента 
тангажа. 

На рис. 2 прямоугольники с обозначением « , ,X Y ZC C M » обозна-

чают отдельные НС-модели для аппроксимации безразмерных                   
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коэффициентов аэродинамических сил 
XC , 

YC  и  момента тангажа 

ZM  в соответствии с выражениями (4)–(7). Составляющие безразмер-

ных коэффициентов подъемной силы и момента тангажа представля-
ются в виде двух параллельных сетей: априорной НС-модели и уточ-
няющей НС-модели (рис. 3). На рис. 3 в качестве примера приведена 
структура сети для вычисления безразмерного коэффициента подъем-

ной силы ( , )predict

YC Max . Каждая из НС-моделей, и априорная и уточ-

няющая, представляют собой многослойную сеть прямого распростра-
нения, структура которой приведена на рис. 4.  

 
 

 

 
  

 

 

Рис. 2. Полуэмпирическая НС-модель полного продольного углового движения  

самолета (на основе схемы дискретизации Адамса-Башфорта 3-го порядка) 
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Рис. 3. Структура сети для аппроксимации составляющих безразмерных 

 коэффициентов аэродинамических сил и моментов,  

подлежащих идентификации 

 

 

 
 

 Рис. 4. Структура сети для аппроксимации составляющих  

безразмерных коэффициентов аэродинамических сил и моментов: 

1 2
X , X  — вектора входных величин; w  — весовые функции; b  — смещение; 

tanh  — активационная функция гиперболический тангенс;  

Linear  — линейная активационная функция; Y  — выходной вектор 

 

При проведении  численных экспериментов для этих многослой-

ных сетей прямого распространения была принята следующая струк-

тура: 20 нейронов на входном слое, 15 нейронов на первом скрытом 

слое, 10 нейронов на втором скрытом слое и 1 нейрон на выходном слое. 

Априорная НС-модель ( , )YC Max  проходит предварительное обуче-

ние на данных, полученных по результатам испытаний аэродинамиче-

ских моделей самолета в аэродинамических трубах. Математически за-

дача обучения априорной НС-модели ( , )YC Max  является задачей ап-

проксимации функции двух переменных: угла атаки и числа Маха. 
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Далее в процессе обучения  НС-модели продольного движения са-

молета, представленной на рис. 2, коэффициенты априорной НС-мо-

дели, определенные на этапе предварительного обучения,  остаются 

без изменения. Уточняющая НС-модель имеет структуру, аналогич-

ную структуре априорной НС-модели (рис. 4). В процессе обучения 

НС-модели продольного движения, представленной на рис. 2, коэффи-

циенты уточняющей НС-модели модифицируются в процессе обуче-

ния сети. Следовательно, в процессе обучения НС-модели продоль-

ного движения будет сформировано новое значение безразмерного ко-

эффициента подъемной силы ( , )predict

YC Max , как сумма значений на 

выходе априорной НС-модели ( , )YC Max  и значений на выходе уточ-

няющей НС-модели ( , )YC Max . 

Аналогичную структуру сети для аппроксимации имеют все без-

размерные коэффициенты аэродинамических сил и моментов, подле-

жащие идентификации. При этом безразмерные коэффициенты аэро-

динамических сил и моментов, не подлежащие идентификации, пред-

ставлены в сетях прямого распространения 
X Y ZC , C , M  только в виде 

априорной модели, коэффициенты которой в процессе обучения 

НС-модели продольного движения остаются без изменения. 

Результаты численных экспериментов. С целью проверки точ-

ности предлагаемой методики параметрической идентификации аэро-

динамических характеристик продольного движения самолета были 

проведены вычислительные эксперименты. НС-модель продольного 

движения была разработана на языке Python с использованием откры-

той программной библиотеки Tensorflow для машинного обучения и  

высокоуровневого API Keras в составе Tensorflow. В качестве оптими-

затора при обучении НС-модели использовался метод Adam из состава 

API Keras. При обучении модели рассматривался частично наблюдае-

мый вектор состояния системы           Z X Yy t t , t ,N t ,N t .   

Данные переменные состояния являются обязательно регистрируе-

мыми в процессе летных испытаний и всегда доступны для исследо-

ваний. В процессе обучения минимизировались среднеквадратичные 

ошибки (MSE) для этого наблюдаемого вектора состояния. На базе 

банка произвольно модифицированных аэродинамических характери-

стик самолета-амфибии Бе 200ЧС с использованием математической 

модели (1) путем математического моделирования был получен набор 

из 50 траекторий, длительностью 11 сек каждая, при даче рулем вы-

соты для самолета в крейсерской конфигурации с различными началь-

ными скоростями полета в установившемся прямолинейном горизон-

тальном полете. Были модифицированы произвольным образом сле-

дующие составляющие безразмерных коэффициентов аэродинамиче-

ских сил и моментов: 
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 , ( , )Max

YC Max   — коэффициент подъемной силы в крейсерской 

конфигурации; 

 , ( , )Max

ZM Max   — коэффициент продольного момента в крей-

серской конфигурации; 

 ( )EL

Z ELM
   — коэффициент продольного момента руля высоты; 

 Z

ZM
  — производная коэффициента продольного момента по 

угловой скорости тангажа. 
Далее набор из 50 полученных траекторий был разделен на две 

группы: 30 траекторий использовались для обучения НС-модели с це-
лью идентификации модифицированных коэффициентов аэродинами-

ческих сил и моментов , ( , )Max

YC Max  , , ( , )Max

ZM Max  , ( )EL

Z ELM
  , 

Z

ZM
 , а 20 траекторий использовались в качестве тестовых (на них 

обучение не проводилось) для оценки точности обучения (идентифи-
кации) НС-модели. 

Экспериментально установлено, что процесс обучения (иденти-
фикации) заканчивается при уменьшении MSE для угловой скорости 

тангажа до величин менее 
60 5 10,   и при постоянстве этого значения 

для нескольких эпох обучения. Ошибка моделирования MSE на обуча-
ющем и тестовом множестве приведена на рис. 5. Для обучения НС-
модели требуется около 100-120 эпох (рис. 5). 

 

 

 
 

  

Рис. 5. Ошибка моделирования MSE на обучающем и тестовом множестве  

для перегрузки ,
Y

N  угла атаки ,  угловой скорости тангажа 
Z

 : 

— — 
Y

N ; — — AoA ; — — 
Z

 ; 

сплошные линии —  обучающий набор данных;  

прерывистые линии —  тестовый набор данных 
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На рис. 6 представлены переходные процессы для угла атаки и уг-

ловой скорости тангажа в сравнении для обучающей траектории  и 

траектории, построенной с помощью НС-модели после завершения 

процесса обучения, т.е. процесса идентификации. Очевидно, что пере-

ходные процессы для обучающей траектории и траектории, восстанов-

ленной по результатам идентификации, практически совпадают. 
 

 

 
 

 

Рис. 6. Оценка переходных процессов для угла атаки и  

угловой скорости тангажа; сравнение для обучающей траектории и  

траектории, остроенной с помощью НС-модели после завершения 

процесса обучения (идентификации): 

— AoA ;       — 
Z

   
 

На рис. 7 представлены переходные процессы одного из тестовых 
режимов с оценкой для безразмерного коэффициента подъемной силы 

, ( , )Max

YC Max   для самолета в крейсерской конфигурации в сравнении 

для обучающих, восстановленных по результатам обучения (иденти-
фикации) и априорных (до модификации) данных. Очевидно, что 
оценки для безразмерного коэффициента подъемной силы 

, ( , )Max

YC Max   в сравнении для обучающих и восстановленных дан-

ных практически совпадают. 
На рис. 8 представлены переходные процессы одного из тестовых 

режимов с оценкой для безразмерного коэффициента продольного мо-

мента , ( , )Max

ZM Max   для самолета в крейсерской конфигурации в 

сравнении для обучающих, восстановленных и априорных (до моди-
фикации) данных. Очевидно, что оценки для безразмерного коэффи-

циента продольного момента , ( , )Max

ZM Max   в сравнении для обуча-

ющих и восстановленных данных практически совпадают. 
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Рис. 7. Оценка точности идентификации коэффициента подъемной силы 
,

( , )
Max

YC Max
   для самолета в крейсерской конфигурации: 

— — априорные данные; — — данные тестовой модели; 

— — результат идентификации 

 

 

 
 

Рис. 8. Оценка точности идентификации коэффициента продольного момента 
,

( , )
Max

ZM Max
   для самолета в крейсерской конфигурации: 

— — априорные данные; — — данные тестовой модели; 

— — результат идентификации 

 

Заключение. Проведенные численные эксперименты показы-
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идентификации аэродинамических характеристик продольного дви-

жения самолета транспортной категории. Следующим этапом авторы 

работы планируют провести с использованием данной методики  

идентификацию аэродинамических характеристик полного продоль-

ного движения самолета-амфибии Бе-200ЧС на больших углах атаки с 

использованием данных реальных летных испытаний. Также планиру-

ется провести с использованием данной методики  идентификацию 

аэродинамических характеристик бокового движения самолета. 
Исследование выполнено без финансирования со стороны каких-либо 

организаций. 
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The problem of modeling the longitudinal motion of a transport category aircraft and the 
parametric identification of the aerodynamic characteristics of the longitudinal motion: 
the components of the dimensionless coefficients of aerodynamic lift and pitching moment 
are considered. The problem is solved in a class of modular semiempirical dynamic models 
created by combining theoretical and neural network modeling. The performance and 
practical significance of the models is confirmed by the results of computational experi-
ments. The development of a neural network model of the longitudinal movement of an 
aircraft was carried out in Python using the Tensorflow open software library for machine 
learning and the high-level Keras API as part of Tensorflow. 
  
Keywords: dynamics, airplane, identification, semi-empirical, neural network, recurrent, 
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