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В работе представлен метод ускорения численного решения дифференциального 

уравнения пьезопроводности, на примере описания фильтрации в трещиновато-поро-

вом пласте, основанной на модели Уоррена-Рута. Исходная система дифференциаль-

ных уравнений, описывающая модель фильтрации от матрицы к трещине, записана 

через комплексные параметры удельный коэффициент проводимости, долю тре-

щинно-кавернозной емкости, и объемную среднюю проницаемость трещин. Предла-

гаемый метод ускорения численного решения системы дифференциальных уравнений, 

описывающих модель пласта с двойной пористостью, основан на преобразовании 

традиционной записи конечно-разностной аппроксимации системы для двух диффе-

ренциальных уравнений в одно уравнение. Для получения конечно-разностной аппрок-

симации параметров использована устойчивая неявная разностная схема. Рассмот-

рены граничные условия первого и второго рода: граница постоянного давления и 

непроницаемая граница. Результаты тестовых расчетов по предлагаемому методу 

сопоставлены с аналитическим решением. При сопоставлении сравнивалось измене-

ние давления в скважине, рассчитанное по численному и аналитическому методу. 

Давление в скважине рассчитывалось по методу Писмена с определением эффектив-

ного радиуса для ячейки сетки Вороного. Проведен численный анализ параметров мо-

дели многозабойной скважины в пласте с двойной пористостью с использованием 

псевдостационарной модели потока. В качестве расчетной сетки использовалась 

двухмерная декартовая неструктурированная нерегулярная сетка Вороного. Числен-

ные расчеты матричных уравнений осуществлялись тремя разными методами: ста-

билизированный метод бисопряжённых градиентов с ILU(0) предобуславливанием, 

метод Гаусса-Зейделя с релаксацией, метод Ньютона. Показано, что реализация си-

стемы дифференциальных уравнений по предлагаемому методу существенно сни-

жает сложность численного решения и сокращает время расчета моделирования 

процессов фильтрации и интерпретации параметров при гидродинамическом иссле-

довании скважин. 

 

Ключевые слова: модель, пласт с двойной пористостью, численное решение, мно-

гозабойная скважина, дифференциальное уравнение пьезопроводности, параметри-

ческий анализ 

  

Введение. При интерпретации результатов гидродинамических 

исследований скважин (ГДИС) используют математические модели 

пласта, основанные на решении дифференциального уравнения пьезо-

проводности. С целью проведения оперативной интерпретации ГДИС 

уравнения пьезопроводности решаются аналитически, для получения 
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которых вводятся упрощения. Принимается, что пласт однородный, 

процесс фильтрации изотермический, идеальная геометрия скважины, 

дебит скважины постоянный и т.д. Переход от моделирования про-

цесса добычи с постоянным дебитом к моделированию с изменяющи-

мися дебитами осуществляется с помощью принципа суперпозиции 

(наложения) по времени [1, 2, 3]. Согласно принципу суперпозиции, 

сложность расчета давления для каждого последующего дебита растет 

линейно, а расчет функции всех точек давления целиком имеет квад-

ратичную сложность. Благодаря аналитическим решениям сложность 

вычислений кратно сокращается, но не всегда полученные решения 

могут быть пригодны для инженерной практики, так как время расчета 

сложной модели "скважина – пласт – граница" на сотнях и тысячах 

режимов работы скважины значительно увеличивается, особенно при 

решении обратной коэффициентной задачи [4]. В связи с этим, акту-

альным является построение математических моделей и разработка 

методов их численного решения. 

Так, в работе [5] рассмотрены вопросы математического модели-

рования трёхмерного ламинарного и турбулентного движения вязкой 

несжимаемой жидкости в многослойных проницаемых структурах – 

пористых сетчатых материалах. В работе [6] приведены результаты 

математического моделирования ламинарной и турбулентной филь-

трации жидкой несжимаемой среды в пористых сетчатых материалах. 

Обзор моделей трещиновато-порового пласта приводится в работе [7]. 

В работах [8, 9] расчет по модели Уоррена-Рута основан на разностной 

схеме, состоящей из двух уравнений, описывающих давление в ячейке 

матрицы и в ячейке трещины. В [8] приводится численное решение 

модели Уоррена-Рута при помощи программного обеспечения 

COMSOL. В [9] показан анализ вычислительных затрат по времени 

при расчете по модели Уоррена-Рута распределения давления в тре-

щиноватом пласте. Оригинальная конечно-разностная схема типа 

«классики» для модели двойной пористости, позволяющая исключить 

неизвестное давление в матрице на новом шаге по времени, что дает 

возможность свести систему уравнений в одно при проведении чис-

ленного расчета, приведена в [10]. Численное моделирование задач 

двухфазной фильтрации в трещиновато-пористых средах с использо-

ванием модели двойной пористости с сильно неоднородным коэффи-

циентом проницаемости, рассматривается в [11]. В работах [12 - 14] 

получены оригинальные результаты численного моделирования про-

цесса фильтрации в трещиновато-пористой среде с применением мо-

дели двойной пористости. 

Целью работы является разработка метода ускорения численного 

решения уравнения пьезопроводностия для модели пласта с двойной 

пористостью, позволяющего снизить сложность и сократить время 

при расчете давления в пласте. 
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Постановка задачи. За основу примем модельное описание филь-

трации в трещиновато-поровом пласте Уоррена-Рута [15]. В модели 

Уоррена-Рута двойной пористости используется псевдостационарная 

модель потока PSS (PSS — pseudo steady state), пласт представлен в 

виде идеализированных геометрических фигур [15, 16]. Система урав-

нений, описывающая модель фильтрации от матрицы к трещине, по-

лученое на основе уравнения пьезопроводности, имеет следующий 

вид [17]: 

 

( )

( )

2fb mbf
f fb f m f

mbm
mb m m f

k
0

k kp
p c p p q

t

p
c p p

t


 =  −  − +   


 =  +  −

  

 (1) 

Здесь fbk  — объемная средняя проницаемость системы трещин, mbk  — 

объемная средняя проницаемость матрицы, mp  — давление в матрице, 

fp  — давление в трещине, 
fc  — сжимаемость трещины, mc  — сжи-

маемость матрицы,   — вязкость флюида, t   — время,   — геомет-

рический коэффициент, φfb — объемная средняя пористость системы 

трещин, mb  — объемная средняя пористость матрицы, q  — иточ-

ник/сток в пластовых условиях. 

Приведенная система уравнений (1), может быть решена аналити-

чески и численными методами с необходимостью отдельно задаваться 

параметрами пористой матрицы и системы трещин, что увеличивает 

число математических операций и в целом усложняет ход решения. 

Разработка метода, ускоряющего численное решение. Преобра-

зуем систему уравнений (1), записав её через комплексные параметры 

удельный коэффициент проводимости  , долю трещинно-каверноз-

ной емкости ω, и объемную среднюю проницаемость системы трещин 

fbk . Удельный коэффициент проводимости   определяется следую-

щим образом: 

 
2

mb w

fb

k r

k


 = , где 

( )
2

m

4 2n n

h

+
 = , (2) 

здесь wr  — радиус скважины, mh  — характеристический размер блока 

матрицы, n  — параметр, определяющий в каких пространственных 

направлениях возможен обмен флюида между матрицей и трещинами. 

Выразим mbk  из уравнения (2): 

 fb
mb 2

w

k
k

r


 = , (3) 
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Общая упругоемкость пласта ( )t m f
c

+
  определяется из следую-

щего выражения 

 ( )t mb m fb fm f
c c c

+
 =  +  , (4) 

здесь tc  — общая сжимаемость, m  — матрица, f  — система трещин. 

Доля трещинно-кавернозной емкости   определяется следую-

щим образом: 

 fb f

fb f mb m

c

c c


 =

 + 
. (5) 

Выразим fb fc  и mb mc  из уравнения (5), использовав (4) 

 ( )fb f t m f
c c

+
 =   . (6) 

Сложим к числителю уравнения (5) и вычтем mb mc : 

 fb f mb m mb m

fb f mb m

c c c

c c

 +  − 
 =

 + 
. (7) 

Далее разделим дробь на две части и сократим первую часть, по-

лучим: 

 mb m

fb f mb m

1
c

c c


 = −

 + 
. (8) 

Из получившегося уравнения выведем mb mc : 

 ( )( )mb m t m f
1c c

+
 = −   . (9) 

Перепишем систему уравнений (1) использовав (3), (6) и (9). 

Имеем запись вида: 

 

( ) ( )

( )( ) ( )

2fb fbf
f t m f2m f

w

fbm
t m f2m f

w

,

0 1 .

k kp
p c p p q

t r

kp
c p p

t r

+

+

 
 =   − − +   


  = −   + −

  

 (10) 

Полученная система уравнений (10), записанная через комплекс-

ные параметры  ,  , и fbk , является предпочтительней при модели-

ровании процессов фильтрации и интерпретации результатов ГДИС, 

так как не требует задания отдельных параметров пористой матрицы 

и трещины исследуемой системы. 

Запишем конечно-разностную аппроксимацию системы уравне-

ний (10) методом контрольных объемов. Приведем q  источник/сток к 
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поверхностным условиям, умножив и разделив на объемный коэффи-

циент B . Аппроксимацию коэффициента проводимости T  произве-

дем по схеме «вверх по потоку». Для аппроксимации параметров по 

времени будем использовать устойчивую неявную разностную схему. 

Конечно-разностная аппроксимация для одномерного случая примет 

вид: 

 

( ) ( ) ( )

( )

( )( ) ( )

i 0.5 i 0.5

n nn n n n 1bi
fi 1 fi fi 1 fi fi fi

n nfb
i mi fi2

w

n n 1
nfbmi mi

t mi fi2m f
w

,

,

0 1 ,

n

i

V
T P P T P P P P

t

k
V P P Q

r B

kP P
c P P

t r

+ −

−

+ −

−

+


 − − − =  −


 

− − +


 − 
 = −   + −

 

 (11) 

 
( )fb i 0.5 r

i 0.5

i 1 i 0.5

k A k
T

x B




 

 
=  

  
, (12) 

 
( )i m f

bi

tV c
V

B

+


= . (13) 

Здесь T  — коэффициент проводимости на грани, n  — индекс вре-

мени, Q  — объемный расход на поверхности (дебит), A  — площадь 

грани между узловыми точками, V  — объем ячейки, rk  — относи-

тельная проницаемость (при однофазной фильтрации 1rk = ), fbk  — 

объемная средняя проницаемость системы трещин по рассматривае-

мой оси, i 1x   — расстояние между расчетными узлами, индекс 0.5  

обозначает грани между расчетными узлами. 

Преобразуем уравнение (11). Для этого выразим из второго урав-

нения n

miP . 

 

( )( )

( )( )

t n 1 nfbm f
mi fi2

n w
mi

t fbm f

2

w

1

1

c k
P P

t r
P

c k

t r

−+

+

−   
+

 
=

−   
+

 

. (11) 

Подставим уравнение (14) в первое уравнение системы (11), полу-

чим: 

 

( ) ( ) ( )
i 0.5 i 0.5

n nn n n n 1bi
fi 1 fi fi 1 fi fi fi

n 1 n
ni mi fi

fi ,n

i

V
T P P T P P P P

t

V P P
P Q

B

+ −

−

+ −

−

− − − =  −


  + 
−  − + 

 +  

 (12) 
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где 

 fb

2

w

k

r


 =


, 

( )( )t m f
1 c

t

+
−  

 =


. (13) 

Уравнение (15) запишем следующим образом: 

 ( ) ( )
n 1 n

n
n n n 1 nbi i mi fi

ij fj fi fi fi fi

1

iN
n

i

j

V V P P
T P P P P P Q

t B

−
−

=

  + 
− =  − −  − + 

  +  
  (14) 

где i  — рассматриваемая расчетная ячейка, j  — соседняя расчетная 

ячейка. 
Перенесем все неизвестные в уравнении (17) в левую часть, тогда 

окончательно получим запись 

 

n n n nbi bi
ij fi ij fj

1 1

n 1
n 1bi i mi

fi

i

1

.

i iN N

j ji

n

i

V V
T P T P

B t

V V P
P Q

t B

= =

−
−

  
+  − +  − =  

 +    

 
=  +  − 

  +  

 
 (15) 

Таким образом, после преобразования получаем систему из N  

уравнений, а не 2N , где N  — количество расчетных узлов. 

Начальные и граничные условия. При 0t = , давление во всех 

ячейках равно начальному давлению iP . Граничные условия форми-

руются в соответствии с взаимодействием пласта с его законтурной 
областью. Рассмотрим граничные условия первого (условие Дирихле) 
и второго рода (условие Неймана). 

Наиболее часто используемым граничным условием первого рода 
является «граница постоянного давления» (19), второго рода — 
«непроницаемая граница» (20). 

 (0, )P t const= , (16) 

 fb f

0

0
x

k p

B x
=

 
= 

  
. (17) 

Для того чтобы учесть граничные условия применим метод отра-

жения, суть которого заключается во введении фиктивного расчетного 

узла. Рассмотрим ячейку под индексом 1i = , которая граничит с фик-

тивным расчетным узлом под индексом 0i = . Конечно-разностная ап-

проксимация для ячейки 1i =  при границе постоянного давления (21) 

и непроницаемой границе (22) будет иметь следующий вид: 

 ( ) ( )
1 0.5 1 0.5

n nn n

f2 f1 f 0 f1T P P T P P D
+ −

− − − = , (18) 

 ( )
1 0.5

nn

2 1T P P D
+

− = , (19) 
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 ( )
n 1 n

n n 1 nbi i mi fi
fi fi fi

n

i

V V P P
D P P P Q

t B

−
−   + 

=  − −  − + 
  +  

. (20) 

Численный анализ применения метода ускорения. Рациональ-
ность применения предлагаемого метода ускорения рассмотрим на 
примере численного решения дифференциального уравнения пьезо-
проводности модели пласта с двойной пористостью. 

Для численных расчетов построена двухмерная декартовая не-
структурированная нерегулярная сетка Вороного. Построение сетки 
осуществлялось при помощи алгоритма Форчуна [18], так как данный 
алгоритм обладает сложностью O(nlogn). Локальное измельчение 
ячеек вокруг скважины осуществлялось согласно положениям, изло-
женным в работе [19]. Моделирование бесконечного пласта, осуще-
ствилось при помощи построения квадратной сетки с длиной стороны 

м. Время работы скважины составляло 510  ч, при расчетах это время 

было разбито на 101 расчетный узел в диапазоне с 510−  до 510  ч. по 10 
значений на логарифмический шаг. Для проверки корректности расче-
тов давления по модели [15] проводилось сопоставление с аналитиче-
ским решением модели многозабойной скважины, вскрывающей 
пласт с двойной пористостью вертикально по всей толщине [20]. Мо-
делирование многозабойной скважины с полным вертикальным 
вскрытием пласта при численном решении осуществлялось согласно 
условию, что изменение давления одинаково в каждом стволе сква-
жины [20, 21]. Для этого давление во всех n ячеек, в которых располо-
жены стволы скважины, рассматривались как единая ячейка с прито-
ком, равным общему дебиту скважины. Переток между стволом и рас-
четной ячейкой, в которой расположен ствол, рассчитывался по ме-
тоду Писмена [22], где расчет эквивалентного радиуса ячейки r0 для 
сетки Вороного определялся согласно положениям, изложенным в ра-
боте [23]: 

 

( )
0

ln

exp

ij ij

j ij

j ij

b
d

d
r

b

d


  

−  
  =

  
  
  




, (21) 

где i  — индекс ячейки скважины, j  — индекс соседней ячейки, 
ijb  — 

длина грани между ячейками i  и j , 
ijd  — дистанция между центрами 

ячеек i  и j , 
ij — угол потока. 

Матричные уравнения, составленные на основе уравнений (18), 
(20), решались тремя методами: 

• Стабилизированный метод бисопряжённых градиентов 
(BiCGStab) с ILU(0) предобуславливанием [24]; 

• Метод Гаусса-Зейделя с релаксацией [25] (коэффициент релак-
сации равен 0.91); 
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• Метод Ньютона [26]. 
Метод Ньютона использовался без оптимизации разреженных 

матриц, матрица производных рассчитывалась численно. Для сравне-
ния сложности вычислений конечно-разностная аппроксимация мо-
дели двойной пористости PSS решалась методом Ньютона согласно 
системе уравнений (11), в котором вычислялись два неизвестных па-

раметра: давление в блоке матрицы mP , давление в блоке трещины    

fP . Параметры остановок итерационных алгоритмов подбирались та-

ким образом, чтобы среднее отклонение относительно аналитического 
решения [12] по рассчитываемому давлению в скважине считается 
одинаковым для всех и составляло 0.82 %. 

Исходные данные для расчетов приведены в таблицах 1 и 2, в ка-
честве граничных условий использовалась «непроницаемая граница». 

 

Таблица 1 

Основные параметры модели 

Параметры Значения 

Толщина пласта, h 10 м 

Проницаемость пласта, k 100 мД 

Общая сжимаемость, tc  0.00005 атм-1 

Пористость,   0.2 

Объемный коэффициент, B 1 м3/ст.м3 

Вязкость флюида,   5 сПз 

Общий дебит, q  100 м3/сут 

Удельная проводимость,   0.1 

Емкостной коэффициент,   0.00001 

 

 

Таблица 2 

Параметры ответвлений 

Ствол № X, м Y, м Радиус, м 

1 0 0 0.065 

2 50 50 0.09 

3 500 250 0.045 

 
Расчетная сетка показана на рисунке 1. Количество расчетных 

ячеек составило 1400. Результаты расчетов показаны в таблице 3 на 
диагностическом графике Бурде [27], приведенном на рисунке 2. 

Из таблицы 3 видно, что наиболее быстрым методом решения 
уравнения (18), (20) является BiCGStab с ILU(0) предобуславлива-
нием, чуть больше времени потребовалось для расчёта по методу 
Гаусса-Зейделя с релаксацией. Расчет по не оптимизированному ме-
тоду Ньютона оказался в 50 раз медленнее, чем BiCGStab с ILU(0) 
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предобуславливанием и в 46 раз медленнее, чем метод Гаусса-Зейделя 
с релаксацией. 

 
Рис. 1. Расчетная сетка 

 

Таблица 3 

Результаты расчетов 

Метод расчета Решаемые 

уравнения 

Время расчетов, с 

BiCGStab с ILU(0) предобуславлива-

нием 

(18), (20) 1.21 

Метод Гаусса-Зейделя с релаксацией (18), (20) 1.33 

Метод Ньютона (18), (20) 61.33 

Метод Ньютона (11) 121.89 

 

Из расчетов видно, что решение уравнения (11) по методу Нью-

тона в 2 раза больше по времени, чем решение уравнений (18), (20) 

записанных по предлагаемому методу ускорения. 

На диагностическом графике, рисунок 2 показано сопоставление 

результатов расчета изменения давления в скважине полученных по 

предлагаемому методу ускорения численного решения для модели 
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многозабойной скважины в пласте с двойной пористостью PSS, и ана-

литическому решению [20]. 

 
Рис. 2. Изменение давления в многозабойной скважине в пласте с двойной по-

ристостью PSS 
 

На рисунке 2 видно, что численная модель хорошо описывается 

аналитической моделью, погрешность в начале времени обоснована 

недостаточной раздробленностью сетки вокруг забоев скважины. На 

диагностическом графике видно, что до 0.01 ч присутствует радиаль-

ный режим в системе трещин. На интервале от 0.01 ч до 2 ч имеет ме-

сто переходный период (приток от матрицы к трещине). На интервале 

времени от 1 ч до 1000 ч наблюдается интерференция между стволами 

многозабойной скважины. Начиная с 1000 ч, для всей системы сохра-

няется радиальный режим. 

Для расчета модели с граничными условиями воспользуемся дан-

ными таблицы 1 и таблицы 2, а также построим новую расчетную 

сетку со стороной 1500 м. Расчеты производились при двух границах: 

все четыре стороны — непроницаемая граница и все четыре стороны 

— граница постоянного давления. Результаты расчетов показаны на 

рисунке 3. 
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Рис. 3. Изменение давления в многозабойной скважине в пласте с двойной по-

ристостью PSS при заданных граничных условиях 
На рисунке 3 видно, что возмущение от скважины достигает гра-

ниц за 600 часов, после чего в случае с границей постоянного давления 

перепад становится постоянным, а при непроницаемой границе — 

резко возрастает. 

Выводы. Предложен новый метод ускорения численного реше-

ния уравнения пьезопроводности модели пласта с двойной пористо-

стью. Численное решение по предлагаемому методу согласуется с ана-

литическим решением. Запись конечно-разностной аппроксимации 

системы дифференциальных уравнений по предлагаемому методу, по 

сравнению с традиционным методом, снижает сложность численного 

решения и существенно сокращает время при сохранении точности 

расчета. Применение предлагаемого метода ускорения расчета диффе-

ренциального уравнения пьезопроводности позволит оперативно про-

изводить интерпретацию ГДИС с учетом комплексных параметров 

трещиновато-порового коллектора системы "скважина-пласт". 
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This paper presents a method for accelerating the numerical solution of the diffusivity 
equation based on the Warren-Root model. A general differential equation system describ-
ing the filtration model from the matrix to the fracture is written through the complex pa-
rameters of the transmissivity ratio, the storativity ratio, and the volumetric average per-
meability of the fracture system. The proposed method for accelerating the numerical so-
lution of a differential equation system describing a double-porosity reservoir model is 
based on converting the traditional form of a finite-difference approximation of the system 
for two differential equations into one equation. A stable implicit difference scheme is used 
to obtain a finite-difference approximation of the parameters. Boundary conditions of the 
first and second kind are considered: a constant pressure boundary and an impermeable 
boundary. The results of the test calculations using the proposed method are compared 
with the analytical solution. The pressure change in the well was compared, calculated by 
numerical and analytical methods. The pressure in the well was calculated using the 
Peaceman method with the effective radius for the Voronoi grid cell. A numerical analysis 
of the parameters of a multilateral well in a double porosity formation model is carried 
out. A two-dimensional Cartesian unstructured irregular Voronoi grid was used as the 
calculated grid. The numerical calculations of the matrix equations were carried out by 
three different methods: the biconjugate gradient stabilized method with ILU(0) precondi-
tioning, the Gauss-Seidel method with relaxation, and the Newton method. It is shown that 
the implementation of a differential equation system according to the proposed method 
significantly reduces the complexity of the numerical solution and reduces the calculation 
time of the filtration process modeling and pressure transient analysis interpretation. 
 
Keywords: model, dual porosity reservoir numerical solution, multilateral well, diffusivity 
equation, parametric analysis 
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