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Сравнительный анализ методов свертывания  

критериев оптимальности в задачах  

многокритериальной оптимизации 

© А.Х. Тлибеков 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

 

Выполняется сравнительный анализ существующих и разработанных новых ме-

тодов свертывания критериев оптимальности в скалярную функцию цели. Реали-

зовано применение новых методов свертывания в задачах интерполяции экспери-

ментальных данных модифицированным дробно-степенным рядом Ньютона – 

Пюизе. Коэффициенты и степени дробно-степенного ряда определяются эволю-

ционными или бесконечно-шаговыми методами оптимизации, где модули разности 

между экспериментальными данными и значениями, полученными расчетом                  

по интерполяционному многочлену, используются как критерии оптимальности. 

При таких условиях задача оптимизации становится многокритериальной, для 

которой в процессе поиска часть критериев оптимальности увеличивается, 

остальные — уменьшаются, уменьшая скалярную функцию цели и создавая иллю-

зию, что поиск эффективен. Для новых методов свертывания все критерии опти-

мальности в процессе поиска уменьшаются. Приведены погрешности интерполя-

ции времени лазерной резки стального листа и прогнозирования программы произ-

водства деталей. Предлагается использование модифицированных дробно-

степенных рядов и новых методов свертывания критериев оптимальности для 

реализации функции обучения нейросети.  

 

Ключевые слова: свертывание критериев оптимальности, интерполяция, дробно-

степенной ряд, многокритериальная оптимизация, генетический алгоритм, беско-

нечно-шаговые методы оптимизации 

 

Введение. Поиск решения задачи многокритериальной оптими-

зации в условиях, когда гиперповерхность, образуемая целевой 

функцией формируется несколькими локальными экстремумами 

(мультимодальность, рис. 1) основан на двух группах методов: свер-

тывания отдельных критериев оптимальности в функцию цели и             

поиском ее оптимального значения или поиском значений каждого 

достижимого критерия оптимальности в отдельности, стремящихся к 

границе Парето. В первой группе, при аддитивном методе свертыва-

ния оптимальность отдельного критерия оценивается по сумме всех 

критериев, каждый из которых умножен на весовой коэффициент. 

Как правило, значения весовых коэффициентов назначаются экспер-

тами, но сумма всех весовых коэффициентов равна единице. Во вто-

рой группе, используется граница или множество Парето, по которой 

определяется улучшаемое (доминирующее) множество критериев оп-

тимальности.  
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Рис. 1. Вид мультимодальной поверхности целевой функции,  

скомпилированной из решений задач оптимизации при дроблении шага поиска 

двух параметров интерполяции 

 

Реализации этих методических подходов используют в одном ал-

горитме с генетическими алгоритмами (ГА), основанными на имита-

ции биологической эволюции или с бесконечно-шаговыми алгорит-

мами второго порядка. В бесконечно-шаговом методе Ньютона 

направление к оптимуму определяется с помощью вторых производ-

ных функции цели, поэтому устойчивый вычислительный процесс 

реализуется только для выпуклых функций цели, гиперповерхность 

которых не имеет «разрывов», «плато» и «граней» и когда удается 

исключить нулевые значения аргументов. 

При решении задач интерполяции дробно-степенным рядом с ис-

пользованием ГА под термином «ген» понимается один из парамет-

ров (коэффициент или степень) дробно-степенного ряда. «Хромосо-

ма» — совокупность всех генов, «популяция хромосом» — множе-

ство хромосом, полученных мутацией и скрещиванием. Критерии 

оптимальности равны модулям разности между экспериментальными 

данными и значениями, полученными расчетом по дробно-

степенному ряду.   

Решение задач многокритериальной оптимизации выполняют ГА 

с независимой селекцией Шеффера, при которой поиск оптимума 

производится по нескольким критериям без их свертывания в ска-

лярную целевую функцию [1] или последовательной работой ГА и 
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метода Хука-Дживса [2]. В одном из методов свертывания критериев 

оптимальности в аддитивную функцию цели используют адаптивную 

автоматическую корректировку весовых коэффициентов по принци-

пу доминирования Парето [3, 4]. Процесс корректировки во время 

работы ГА запускается автоматически с заданной периодичностью. 

Сочетание промежуточных решений с корректировкой критериев оп-

тимальности формирует множество начальных точек для процессов 

локальной оптимизации. Адаптация весовых коэффициентов позво-

ляет отказаться от привлечения экспертов и расширить возможности 

использования ГА.  

Когда граница Парето неустойчива по отношению к изменчиво-

сти весовых коэффициентов, вместо границы Парето целесообразно 

рассматривать оболочку Эджворта–Парето, составленную из множе-

ства достижимых векторов критериев оптимальности [5, 6]. 

Наряду с корректировкой весовых коэффициентов используется 

самонастройка ГА [7, 8]. Реализуются операторы пропорциональной, 

ранговой, турнирной селекции и равномерного, одноточечного и 

двухточечного скрещивания. Выбор того или иного оператора будет 

зависеть от успешности его применения.  

Решение многокритериальных задач большой размерности               

выполняют «островными» ГА, которые при одинаковых ресурсах 

позволяют не только быстрее получить решение, по сравнению с их 

стандартными версиями, но и повысить его качество [9]. При реали-

зации островных ГА популяция хромосом делится на подпопуляции 

(острова), которые эволюционируют изолировано в течение несколь-

ких поколений. Происходит обмен лучшими хромосомами между 

подпопуляциями и замена наименее эффективных на вновь прибыв-

шие с других островов. Данный обмен называется миграцией и тре-

бует настройки двух параметров: размера миграции (количество 

лучших хромосом для обмена) и интервала миграции (числа поколе-

ний, через которое происходит миграция). Кроме того, используются 

разные топологии островных коопераций, в которых обмен хромосо-

мами осуществляется между каждой парой островов. 

Для решения многокритериальной задачи условной оптимизации 

выполняется преобразование условной оптимизации к безусловной, 

присоединением условий — ограничений к многокритериальной 

функции цели [10]. Поиск Парето — оптимального решения в этом 

случае выполняется по схеме метода VEGA (Vector Evaluated Genetic 

Algorithm). В данном методе селекция производится по каждому кри-

терию оптимальности отдельно и промежуточную популяцию                 

составляют хромосомы, отобранные по каждому из критериев.  

Решения задач многокритериальной оптимизации, близких к               

оптимальным получают в пределах допуска на критерии оптималь-

ности (метод Taguchi-WASPAS [11]).  
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Когда поиск оптимального значения функции цели выполняют 

методом случайного подбора, комбинирования или вариации пара-

метров модели исследуемого процесса рассчитывается вероятность 

возникновения средних арифметических значений критериев опти-

мальности в пределах их среднего квадратического отклонения [12]. 

Определяется предпочтительная вероятность одного из критериев 

оптимальности, который рассматривается как промежуточное ска-

лярное значение функции цели на этапе поиска и задача из многоце-

левой оптимизации переходит в задачу одноцелевой оптимизации. 

Свертывание функции цели с использованием вероятности воз-

никновения величины критерия оптимальности uz  может быть вы-

полнено на основе меры энтропии Шеннона 

 1 2 1 2 2log log log ,u u m mS z z z z z z        

где количество критериев оптимальности равно m  и для решения 

задачи оптимизации используются методы нечеткого математическо-

го программирования [13, 14]. 

Тестирование метода Ньютона на задачах интерполяции моди-

фицированным дробно-степенным рядом Ньютона – Пюизе [15]                

показало, что точность этого метода зависит от выбора начальных 

значений коэффициентов и степеней, с которых начинаются вычис-

ления. Для мультимодальной функции цели погрешность интерполя-

ции составляла более 100 %. Уменьшить погрешность до допустимой 

позволил длительный подбор начальных значений параметров дроб-

но-степенного ряда.  

Общим недостатком рассмотренных методов решения задачи оп-

тимизации (свертывания отдельных критериев оптимальности в ска-

лярную функцию цели или поиском значений каждого достижимого 

критерия оптимальности в отдельности) является то, что низкая              

эффективность одних критериев скрывается за высокой эффективно-

стью других. Поэтому метод свертывания критериев оптимальности 

в функцию цели для задач интерполяции должен обеспечить за каж-

дую итерацию поиска уменьшение всех критериев оптимальности. 

Задача интерполяции экспериментальных данных. Рассматрива-

ется функция  F x  заданная в виде таблицы, в которой для каждого 

значения аргумента x  указывается соответствующее ему значение 

функции:  F x  — таблица результатов экспериментального иссле-

дования характеристик какого-либо процесса,  1 2, ,..., ,..., ,i dx x x xx  

где 1d   вектор аргументов. Количество результатов эксперимен-

тального исследования m . Используя  F x  требуется построить 

функцию  ,W p x , для которой график проходит через имеющиеся 
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экспериментальные точки данных  F x  с минимальной погрешно-

стью ( p  — параметры интерполяции). 

Представим результаты эксперимента и расчета по интерполяци-

онному многочлену как векторное поле из векторов F  и W , у кото-

рых положение начальных точек совпадают. Задача интерполяции 

сводится к определению значений параметров p , при которых мо-

дуль вектора разности  Φ F W  тремиться к нулю. Компоненты 

вектора Φ , т.е. разности в точках данных экспериментальных и по-

лученных расчетом по интерполяционному многочлену, используют-

ся как критерии оптимальности, образующие векторную функцию 

цели. Когда 1m  , функция цели многокритериальная и требуется 

решение задачи многокритериальной векторной оптимизации. 

Методы свертывания критериев оптимальности. Существу-

ющие решения задач многокритериальной оптимизации используют 

различные методы свертывания векторной функции цели с образова-

нием скалярной величины. Рассматриваются следующие методы 

свертывания, в результате которых получают скалярные величины с 

различными размерностями: 

1. минимум модуля максимальной разности 

  1, max min;i u uS F W     

2.  минимум максимального значения корня квадратного из сум-

мы квадратов двух относительных разностей 

 

2 2

2, max min;u u u u
i

u u

F W F W
S

F W

 
          

    
 

  

3. минимум суммы квадратов разностей (метод наименьших 

квадратов) 

  
2

3,

1

min.
m

i u u

u

S F W


     

В определениях скалярных функций цели 1S , 2S  и 3S  абсолют-

ные величины разности u uF W  ссматриваются как критерии опти-

мальности, количество результатов экспериментального исследова-

ния 1,2,...,u m  равно количеству критериев оптимальности 

1,2,...,i n  — номера и количество итераций поиска. 

Поиск оптимального решения предлагается выполнять миними-

зацией векторной функции цели Φ , которую образуют линейно неза-

висимые вектора F  и W  в m -мерном векторном пространстве. Ко-

синус угла между векторами  
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 ,

,

,
cos ,

u u i

i

u u i

F W

F W
    

где    , ,1
,

m

u u i u u iu
F W F W


   — скалярное произведение векторов, 

 
2

1

m

u uu
F F


   и  

2

,1

m

u u iu
W W


   — модули векторов. 

Для того, чтобы в процессе поиска все компоненты вектора Φ  

уменьшились, т.е. каждый результат расчета по интерполяционному 

многочлену сходился к результату эксперимента, предлагается вы-

полнять свертывание критериев оптимальности в одну из функций 

цели 4S  или 5S   

 4, , mini u iS      

или  

 
cos

5, , min,
i

i u iS


     

где  
2

, ,1

m

u i u iu
    — модуль вектора Φ  оценку эффективности 

поиска производить по двум критериям: величине поля погрешности 
max min

, ,i i u i uD    , равного разности между максимальной и минималь-

ной относительными погрешностями интерполяции в пределах одной 

итерации поиска и по критерию эффективности итераций поиска 

, , 1,/i u i u u    , где относительная погрешность интерполяции 

 , , /i u u i u uF W F   . Решение считается эффективным, когда относи-

тельные погрешности интерполяции по каждому экспериментально-

му значению меньше допустимой относительной погрешности ин-

терполяции: ,Δi u ε . Случай, когда 1uη   означает, что абсолютная 

величина разности расчетных и экспериментальных значений 

,u i uF W  на итерациях поиска 2,3,...,i n  меньшились по сравнению 

с первой итерацией ( 1i  )и расчетные значения сходятся к экспери-

ментальным. В противном случае, когда , 1i u  , экспериментальные 

и расчетные значения на итерациях 1i   расходятся, т.е. 

   ,u uW p x F x  или    ,u uW p x F x  и если при этом ,Δi u ε , ите-

рация поиска не эффективна. При , 1i u   — результат поиска нахо-

дится на границе эффективности. 

Модифицированный дробно-степенной ряд. Дробно-степенной 

ряд Ньютона – Пюизе с одной переменной — это алгебраическое  
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выражение вида  
0

/, t g

tt t
W x p A x




 , в котором число t  — целое, 

число g  — натуральное число: при 1g   получается обычный сте-

пенной ряд. Интерполяция экспериментальных данных  F x  выпол-

нена модифицированным дробно-степенным рядом d  переменных, 

построенном на основе ряда Ньютона – Пюизе  

  
1

1 1

1 1 1

, j j j jd d

dd d

j j j j j d d j

j j j

W x p A x B x x B x x C x


    



  

      , 

где p t g      — вектор параметров интерполирования 

 , , ,β ,λ , γ ,δj j j j j jp A B C , 1,2,...,j d  — количество аргументов jx . 

Общее количество параметров интерполирования 6 1k d  .  

Сравнительный анализ методов свертывания критериев оп-

тимальности. Сравнительный анализ методов свертывания критери-

ев оптимальности проведен с использованием экспериментальных 

данных, полученных в процессе вырезки деталей из стальных листов 

лучом лазера (таблица). Функция  F x  — время резки контура дета-

ли (мин), аргументы: 1x  — толщина листа (мм), 2x  — периметр 

наружных и внутренних контуров вырезаемой детали (мм), 3x  — ко-

личество врезок луча для формирования наружного и внутренних 

контуров, 4x  — предел временного сопротивления стали (Н/мм
2
). 

Экспериментальные данные выбраны таким образом, чтобы оценить 

влияние вариабельности аргументов и функции на погрешность ин-

терполяции: аргумент 1x  изменяется в 8 раз, 2x   —  54 раза, 3x  — в 

37 раз и 4x  — в 1,4 раза, при этом функция изменилась в 20,6 раза. 

В начале поиска все значения коэффициентов и степеней ряда 

Ньютона – Пюизе устанавливались равными нулю и все расчетные 

значения  ,W p x , приведенные в таблице, также равнялись нулю. 

Выполнено пять серий поиска, в каждой из которых использовался 

один из методов свертывания 1 5S S . Каждая серия содержала четы-

ре цикла ГА с заданными предельной сходимостью (предельное от-

носительное изменение скалярной функции цели, например для 1S  

1, 1 1, 1,/ 0,0001i i iS S S   ) и количеством хромосом в популяции, рав-

ным 100. Если рассчитанная в цикле сходимость получалась меньше 

предельной, цикл заканчивался и фиксировались найденные значения 

коэффициентов и степеней ряда Ньютона – Пюизе. Следующий цикл 

начинался с параметров дробно-степенного ряда, полученных на 

предыдущем цикле. В табл. 1 приведены Результаты эксперимента и 
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расчета по модифицированному дробно-степенному ряду для функ-

ции цели 5S  и 4d  , 10m  , 4n  .  

Таблица 1 

Результаты эксперимента и расчета по модифицированному                             

дробно-степенному ряду для функции цели 5
S  и 4d = , 10m = , 4n =  

u  1x  2x  3x  4x   F x  
 ,W p x  

для 5S  

1 2,5 117,8 2 410 0,045 0,047 

2 6,0 204,0 1 299 0,095 0,102 

3 1,0 1502,3 1 295 0,100 0,096 

4 8,0 230,0 1 420 0,138 0,127 

5 8,0 284,0 1 420 0,166 0,164 

6 8,0 360,0 1 420 0,206 0,217 

7 1,0 4800,0 1 295 0,283 0,299 

8 1,0 4575,5 3 295 0,304 0,301 

9 1,0 7274,5 1 295 0,421 0,407 

10 1,0 6360,8 37 295 0,970 0,970 

 

На рис. 2 показана погрешность интерполяции критериев опти-

мальности при использовании метода свертывания 5S . Максималь-

ная величина погрешности наблюдалась для четвертого критерия    

оптимальности и не превышала 7,7 %  при допустимой относитель-

ной погрешности интерполяции 10 % .  
 

 Поля погрешности скалярных 

функций цели, полученных мето-

дами свертывания 1S  и 2S  на ите-

рациях поиска практически не из-

менялись, а полученные методами 

свертывания 3S , 4S  и 5S  начитель-

но сужались (рис. 3, а), т.е. метод 

свертывания критериев оптималь-

ности определяет погрешность ин-

терполяции.  

При использовании методов 

свертывания 1S , 2S  и 3S  некоторые 

критерии эффективности итераций ,i u  выше границы эффективно-

сти поиска (рис. 3, б, в и г), хотя скалярные функции цели, получен-

ные на итерациях поиска уменьшаются. Это означает, что часть         

 
 

Рис. 2.  Погрешность интерполяции 

критериев оптимальности  

при использовании метода  

свертывания 5S   
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критериев оптимальности (модулей разности экспериментальных и 

расчетных величин) увеличивается, остальные критерии оптимально-

сти уменьшаются, уменьшая скалярную функцию цели и создавая 

иллюзию, что поиск эффективен. Для методов свертывания 4S  и 5S  

(рис. 3, д, е) все критерии эффективности итераций поиска с ростом 

числа итераций стабилизируются ниже границы эффективности, т.е. 

относительная погрешность интерполяции ,Δi u  уменьшается, поэто-

му эти методы свертывания рекомендуется использовать для интер-

поляции экспериментальных данных модифицированным дробно-

степенным рядом Ньютона – Пюизе.   
 

 
 

 
 

а б 

 

 

 

 

в г 

 

 

 

 

д е 

Рис. 3. Данные, полученные по результатам четырех итераций ГА  
в зависимости от использованных в процессе поиска методов свертывания  

1S  — 5S , красная линия обозначает границу эффективности поиска: 

а  — поля погрешности D , %; б — критерии эффективности итераций ,i u  для 1S ; 

в — критерии эффективности итераций ,i u  для 2S ; г — критерии эффективности 

итераций ,i u  для 3S ; д — критерии эффективности итераций ,i u  для 4S ;  

е — критерии эффективности итераций ,i u  для 5S  
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Использование разработанных методов в проектировании 

машиностроительного производства. Тестирование работы алго-

ритма многокритериальной оптимизации применительно к интерпо-

ляции экспериментальных данных модифицированным дробно-

степенным рядом [15–17] показало, что погрешность расчета допу-

стима для практического использования. Например, на предприятиях, 

изготавливающих детали с помощью лазерной резки, собраны значе-

ния и сформирована база реального времени резки. Интерполяция, 

выполненная с использованием 2,5 % от всего количества деталей, 

содержащихся в базе, показала, что максимальная погрешность не 

превышала ±9,3 % по сравнению с реальным временем резки. Другой 

пример, сравнение результатов тестирования методов статистическо-

го прогнозирования, используемых Microsoft Excel (линейная и                

экспоненциальная зависимости и предсказание) с результатами те-

стирования по разработанному алгоритму. Погрешность прогноза 

производственной программы 47-и из 48-и рассмотренных деталей не 

превышает 15 %. Погрешность меньше 15 % методом прогноза ли-

нейной и экспоненциальной зависимостями получена для 7, а пред-

сказанием — для 8 из 48 деталей. 

Выводы. При проектировании альтернативных вариантов произ-

водства используются нейросетевые технологии, построенные по 

принципу обучаемой сети рекуррентного распространения [18]. 

Формируется база аргументов x  функции обучения  F x . В каче-

стве аргументов используются основное, подготовительно-

заключительное и вспомогательное время обработки, оптимальная 

партия запуска деталей, станкоемкость, количество оборудования, 

коэффициенты его загрузки и использования. Каждому набору аргу-

ментов, соответствует показатель эффективности технологии  F x , 

содержащий пропускную способность, производительность и циклы 

выполнения заказов. Важное преимущество — возможность посто-

янно пополнять базу проверенными практикой эксплуатации аргу-

ментами и показателями эффективности. Функция обучения, выпол-

ненная с использованием интерполяционного многочлена  ,W x p  

позволит оперативно выполнять анализ результатов проектирования 

и поиск оптимальных вариантов маршрутных технологических про-

цессов. 
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The comparison of existing and developed new methods of converting optimality criteria 

into a scalar function of the goal is performed. New converting methods are used in the 

problems of interpolation of experimental data by a modified fractional-power Newton – 

Puiseux series. Coefficients and degrees of a fractional-power series are calculated by 

evolutionary or infinite-step optimization methods, where the modules of the difference 

between experimental data and the values obtained by calculating the interpolation poly-

nomial are used as optimality criteria. Under such conditions, the optimization task be-

comes multi-criteria, for which, during the search process, part of the optimality criteria 

increases, the rest decrease and reduce the scalar goal function and creating the illusion 

that the search is effective. For new converting methods, all optimality criteria in the 

search process are reduced. The errors obtained by interpolating the time of laser cutting 

of steel sheet and forecasting the production program of parts are shown. The use of 

modified fractional power series and new methods of converting optimality criteria for 

the implementation of the neural network learning function is proposed.  
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