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В статье впервые получено аналитическое решение задачи о преследовании в си-

стеме «хищник–жертва» в евклидовом 3D-пространстве для произвольных 

начальных углов прицеливания. В процессе преследования жертва движется рав-

номерно и прямолинейно, постоянный по модулю вектор скорости хищника наце-

лен на жертву. Точное решение задачи получено в форме параметрически задан-

ной пространственной кривой преследования. Получены точные выражения для 

других существенных характеристик процесса преследования (времени преследо-

вания, координат жертвы, длины кривой преследования, и др.). Проведено реали-

стичное компьютерное моделирование взаимного движения хищника и жертвы в 

пространстве и во времени; определены характерные параметры процесса пре-

следования. Отмечен значительный дидактический потенциал решенной задачи о 

3D-преследовании для подготовки будущих специалистов в области механики и 

управления; задача может служить содержательной основой для выполнения 

обучающимися исследовательских проектов, курсовых и выпускных квалифика-               

ционных работ.  
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Введение. Исчерпывающее решение задачи о преследовании (го-

ворят также, задача о погоне или pursuit problem) в системе «хищ-

ник–жертва» в евклидовом 2D-пространстве (в декартовых коорди-

натах Oxy ) для произвольного начального угла прицеливания 
o o

00 180   получено автором в работе [1]. А именно, получено 

выражение для параметрически заданной кривой преследования (па-

раметр преследования 0 1  ): 
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а также выражения для других существенных характеристик процес-

са погони (время движения, расстояние «хищник–жертва» и др.). В 

[1] проведено реалистичное компьютерное моделирование движения 

хищника и жертвы в 2D-пространстве и во времени. 

Случай движения хищника и жертвы в евклидовом 3D-про-

странстве предоставляет гораздо большие содержательные возмож-
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ности, как для математического анализа процесса преследования, так 

и для численного моделирования, но и представляется математически 

значительно более сложным. Ограничимся кратким обзором работ 

[2–14], дающих в совокупности вполне ясное представление о теку-

щем состоянии исследований по теме работы. 
В работе [2] авторы учли нелинейные динамические характери-

стики ситуации преследования в трехмерном пространстве для более 
строгого анализа работы трехмерного закона PPNG (pure proportional 
navigation guidance — чистое пропорциональное навигационное 
управление). Доказано, что ракета, управляемая по трехмерному за-
кону PPNG, всегда может перехватить цель, произвольно маневри-
рующую в трехмерном пространстве, если:  

1) ускорение цели изменяется в ограниченных пределах;  
2) навигационная постоянная выбрана большой, и либо; 
3a) начальная курсовая ошибка мала, либо; 
3б) ракета удерживает головную часть в направлении цели во 

время полета. 
Авторы работы [3] представили, по-видимому, наиболее обстоя-

тельное рассмотрение задачи преследования в трехмерном евклидо-
вом пространстве. Авторская постановка задачи такова. Пусть тело 
B , называемое целью или убегающим, движется по пространствен-

ной кривой  B t  в евклидовой декартовой системе отсчета. В момент 

времени 1t T  другое тело A , называемое преследователем, начинает 

движение из начала координат так, что его мгновенная скорость 

направлена на мгновенное положение тела B . При 1t T  убегающее 

тело B  находится в точке ( 0 0 0x , y , z ), где 0 0y  . Задача состоит в 

том, чтобы определить путь преследователя и найти необходимые 
условия для перехвата, учитывая то ограничение, что цель может 

скрыться в безопасном месте в момент Ft T . Чистое преследование 

цели подразумевает, что искомый путь преследователя 

        A t x t , y t , z t  должен удовлетворять следующей системе 

обыкновенных дифференциальных уравнений: 
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где 0Y y y  . При классическом подходе к решению предполагает-

ся, что:  
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1) движение преследования происходит в одной плоскости, т. е. 

0 0Bz z  ; 

2) отношение скоростей жертвы и преследователя является из-

вестной константой: B Am u . 

Авторы [3] указывают, что выписанная ими система уравнений 

может быть решена только численно. 

В работе [4] для рассмотрения относительного движения в си-

стеме «хищник–жертва» в 3D-пространстве автор вводит полярную 

систему координат, связанную с хищником. При этом преобразова-

нии количество дифференциальных уравнений, необходимых для 

описания относительной динамики «контрагентов», можно сократить 

с шести до трех, а все члены преобразованных дифференциальных 

уравнений содержат только произведения и сложения переменных. 

Решение задачи преследования в конечном виде автором не получе-

но. 

В диссертационном исследовании [5] разработан новый подход к 

решению 3D-задачи преследования, реализованный в специально 

разработанной автором среде моделирования. Предлагаемый алго-

ритм работает путем разложения трехмерного пространства с осями 

,Ox  Oy  и Oz  на три плоскости ,Oxy  Oxz  и ,Oyz  соответственно. 

После решения задачи преследования-уклонения в этих плоскостях и 

вычисления требуемых ускорений, комплект плоскостных решений с 

помощью геометрических соотношений «собирается» в движение в 

трехмерной среде. Анализ траектории и характеристик движения вы-

полняется посредством созданного автором программного обеспече-

ния для моделирования VEGAS (Visual End-Game Simulation). Под-

тверждено, что характеристики предлагаемого подхода являются 

надежными и эффективными с точки зрения величины промаха и 

времени перехвата с допустимой перегрузкой до 10g  для воздушных 

целей, использующих маневры уклонения. 

В работе [6] преследование цели по методу погони рассматрива-

ется как задача неголономной механики, когда на движение точки 

наложены две идеальные неголономные, а значит и неинтегрируе-

мые, связи. Авторами [6] получены дифференциальные уравнения 

для траектории преследователя  M x, y,z , решение которых могло 

быть получено только численно. 

В работе [7] диссертант анализирует проблему как дифференци-

альную игру преследования/уклонения для двух космических аппа-

ратов на околоземных орбитах. Анализ существенно упрощается за 

счет линеаризации системы уравнений движения. Игра преследова-

ния/уклонения может быть также интерпретирована как «минимакс-

ная» задача, так как цель преследователя — минимизировать, а цель 
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убегающего — максимизировать время захвата. Ввиду математиче-

ских сложностей автору не удалось получить аналитическое решение 

своей задачи преследования/уклонения. Для осуществления расчетов 

автор использовал специализированный пакет MATLAB Toolbox 

DACE. 

В статье [8] коллектив авторов изучил движение аэрокосмиче-

ского аппарата в трех измерениях. Сформулированы кинематические 

уравнения движения с тремя степенями свободы, используя метод 

наведения чистого преследования. Кинематические дифференциаль-

ные уравнения движения решаются путем численного интегрирова-

ния методом Эйлера с использованием созданной авторами програм-

мы в среде MATLAB. 

В [9] авторы рассмотрели обобщенную задачу преследования в 

двухмерном и трехмерном пространствах, когда преследуемый объ-

ект движется по окружности (плоский случай) или по винтовой ли-

нии (трехмерный случай) при различных соотношениях векторов 

скоростей преследующего и мишени. Аналитически получены усло-

вия устойчивости траекторий движения объектов в задаче. Найдено, 

что при определенных условиях, накладываемых как на траекторию 

объекта-преследователя, так и на объект-мишень, можно получить 

как устойчивую траекторию, так и неустойчивую. Численное моде-

лирование проведено с применением пакета Wolfram Mathematica. 

В статье [10] авторский коллектив предложил новую стратегию 

управления движением преследующего в пространстве, являющуюся 

гибридом двух известных стратегий навигации: навигации чистого 

преследования (Pure Pursuit, PP) и навигации чистого рандеву (Pure 

Rendezvous, PR). В PP-навигации поле вектора скорости преследова-

теля  Mv t  всегда направлено к цели, тогда как в PR-навигации поле 

вектора скорости  Mv t  направлено к некоторым точкам перед це-

лью, что возможно при условии правильного предсказания траекто-

рии цели. Новая стратегия названа авторами навигацией гибридного 

преследования (Hybrid pursuit, HP). Авторы [10] в среде Maple прове-

ли модельные расчеты, которые показали некоторый небольшой вы-

игрыш (в несколько процентов) во времени погони в HP-навигации 

по сравнению с PP-навигацией. 

Авторы [11] подчеркивают, что традиционный закон наведения в 

задаче преследования гарантирует лишь результативность атаки це-

ли. Однако в реальных приложениях обязателен учет фактически су-

ществующих ограничений по углу обзора и ускорению. Авторы 

предлагают закон наведения для адаптивной трехмерной пропорцио-

нальной навигации на основе выпуклой оптимизации; последняя поз-

воляет учесть существующие ограничения. Собственно, минимизи-

руемой целевой функцией является введенная авторами интегральная 
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функция энергии управления ,J  учитывающая ограничения. Задача 

оптимизации решена численно с помощью существующего про-

граммного обеспечения MOSEK для MATLAB.v2 в модели конусно-

го программирования второго порядка (second-order cone 

programming). Моделирование движения выполнено в [11] на персо-

нальном компьютере. Правильность работы программы проконтро-

лирована путем решения задачи преследования в классическом 

(плоском) случае. 

В статье [12] представлена новая и, как считают авторы, надеж-

ная двухэтапная стратегия преследования для импульсно управляе-

мых космических аппаратов с учетом неполноты информации и с 

учетом возмущения из-за сжатия Земли. Согласно стратегии [12], 

осуществляемая игра преследования-уклонения на первом этапе про-

исходит в форме дальнодействующего перехвата (far-distance 

rendezvous stage, FRS), а на втором этапе (ближняя дистанция, close-

distance game stage, CGS) — превращается в задачу преследования с 

использованием одного из алгоритмов обучения с подкреплением, 

что позволяет корректировать траекторию преследующего. Показана 

осуществимость этой новой стратегии и ее устойчивость к различ-

ным начальным состояниям преследователя и убегающего, а также к 

разным стратегиям уклонения. Результаты тестов методом Монте-

Карло показали, что коэффициент успешных попыток предложенно-

го метода составляет более 91%. Численное моделирование движе-

ний выполнено в среде Matlab. 

Коллективом авторов [13] численно изучены дифференциальные 

игры преследования-уклонения между более быстрым преследовате-

лем, движущимся в трехмерном пространстве, и убегающим, движу-

щимся в плоскости. 

В монографии [14] описано численное (итерационное) моделиро-

вание в среде MathCAD задачи преследования при различных харак-

теристиках движений участников процесса. В частности, учитывают-

ся ограничения на движения участников преследования, например, 

по кривизне траектории. Автор [14] декларирует, что разработанные 

алгоритмы и модели могут быть востребованы при проектировании 

беспилотных летательных аппаратов с автономным управлением с 

элементами искусственного интеллекта. Модельные задачи в моно-

графии [14] снабжены множеством анимированных изображений, 

позволяющих визуализировать процесс преследования. 

Подводя итоги краткому обзору работ [2–14], отметим следую-

щее: 

 задача о преследовании в системе «хищник–жертва» в 3D-

пространстве представляет несомненный как теоретический, так и 

практический интерес, однако до сих пор не найдено ее точного ана-

литического решени; 
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 имеются модельные рассмотрения движения участников              

преследования как в евклидовом 3D-пространстве, где траектория  

жертвы в простейшем случае прямолинейна, так и в околоземном 

космическом пространстве, где в простейшем случае жертва движет-

ся по околоземной круговой орбите; 

 в существующих исследованиях задачи преследования в 3D- 

пространстве выписаны верные уравнения движения, но из-за мате-

матических сложностей авторы ограничиваются проведением чис-

ленного моделирования, обычно с помощью некоторого существую-

щего компьютерного математического пакета, таким образом, полу-

чаются всегда частные решения задачи, обобщение же затруднено. 

Целью настоящей статьи является получение точного решения 

задачи о преследовании в 3D-пространстве с произвольными началь-

ными углами прицеливания и во всем временном промежутке пре-

следования, демонстрация результатов компьютерного моделирова-

ния, указание перспектив дальнейших исследований в рамках модели 

и дидактического потенциала решенной задачи. 

Математическая модель и постановка задачи. Объект B  

(жертва) движется параллельно оси Ox  евклидова 3D-пространства 

Oxyz  с постоянной скоростью v из начальной точки  0 0 0 0B x , y ,z h

(рис. 1). Объект A  (хищник) движется из начальной точки  0 0 0O , ,  

с постоянной скоростью u  так, что вектор u  все время направлен на 

объект B . Начальный угол прицеливания 0 , тсчитываемый от плос-

кости Oxy , лежит в пределах 
o o

00 90  ; начальный угол прицели-

вания 0 , отсчитываемый от оси Ox  в плоскости Oxy , 
o o

00 360  . 

  
Рис. 1. Координатное представление задачи о преследовании в  

3D-пространстве (точка A  соответствует началу вектора u , точка B  — v ) 
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Задача состоит в том, чтобы найти уравнение  z x, y  траектории 

движения хищника (кривую преследования), время погони T , другие 

существенные характеристики процесса преследования. Провести 

численное моделирование процесса преследования при различных 

значениях начального положения жертвы. Размерами объектов A  и 

B  в задаче можно пренебречь. 

Для получения точного решения задачи заметим, что векторы  , 

u  и, как следствие, вектор визирования AB  компланарны в процессе 

всего преследования. Рис. 1 визуализирует сказанное. 

Плоскостью преследования OXY  назовем плоскость, содержа-

щую векторы   и u . Единичные орты плоскости преследованияOXY  

есть  

 , sin cos ,I i J j k      (1) 

где , ,i j  и k , соответственно, единичные орты координатных осей 

Ox, Oy  и Oz  евклидова 3D-пространства Oxyz . Плоскость OXY    

содержит ось Ox OX  и наклонена к оси Oz  под углом 

 0

0

arctg , 90 90 .
y

z
         (2) 

С учетом сказанного, радиус-векторы хищника в системах коор-

динат  Oxyz r  и  OXY R  определяются соотношениями: 

  0 0 0 0 0cos cos cos sin sin ;r xi y j zk r i j k            (3) 
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cos sin
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R i j k

 

    

    

  
  (4) 

Так как r R , то из сопоставления (3) и (4) получаем 

 
0 0 0

0 0 0

0 0

cos cos cos ;

sin sin cos sin ;

sin cos sin .

  

   

  

 



 

  (5) 

Система соотношений (5) обеспечивает преобразование углов и 

координат при переходе .Oxyz OXY  В частности,  

 

0 0

2 2

0 0

0

0 0

tg ctg sin ,

1 cos cos
tg .

cos cos

  

 

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Прочие тригонометрические функции углов могут быть легко 

получены из выписанных сооношений. В частности, в дальнейшем 

потребуется выражение: 

 0 0 0 0

0 00

1 cos 1 cos cos
tg .

2 1 cos cos1 cos

   

 

 
 


  (6) 

В начальный момент времени для векторов скоростей жертвы   

и хищника u  в системе координат Oxyz  имеем:  

  0 0 0 0 0

( 0) ;

( 0) cos cos cos sin sin .

t vi

u t u i j k



    

  
    

  (7) 

Начальные углы прицеливания связаны с начальными координа-

тами жертвы соотношениями: 

 0 0
0 0

2 2
00 0

arctg ; arctg .
z y

xx y
  


  (8) 

Процесс преследования в плоскости OXY  происходит согласно 

точному решению задачи о преследовании в 2D-пространстве, полу-

ченному в [1]. Начальные координаты жертвы B  в плоскости OXY  

равны  2 2

0 0 0 0B x , y z . Иными словами, в плоскости преследования 

OXY  жертва движется на «высоте»  

 

2 2

0 0

2 2

0 0

0

cos

1 cos cos .
sin

h
H y z

h



 


   

 

  (9) 

В начальный момент времени для векторов скоростей жертвы V  

и хищника U  в системе координат OXY  имеем:  

 
 0 0

( 0) ;

( 0) cos sin .

V t vI

U t u I J 

  


  

  (10) 

В (10) учтено, что по модулю V v  и U u . Как и следует, при 

0 0  , H h , и задача о преследовании в 3D-пространстве пере-

ходит в решенную в [1] задачу о 2D-преследовании. 

Алгоритм решения задачи. С учетом сказанного, точное реше-

ние задачи о преследовании в 3D-пространстве в форме кривой пре-

следования, есть: 
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 
1 1

1 1

1 1

0 0

1 1

1 1

0 0 0 0

1 0 1 0

1

1 1
ctg tg

2 1 2 1 2

1 cos cos 1 cos cos1 1
,

2 1 sin 1 sin

1/ ,

k k

k k

H
X

k k
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  

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 

 

 

  
   

  
      

     
     



  (11) 

где приведенная ордината жертвы в плоскости OXY  равна  

 , 0 1.
H Y

H
 


     

и отношение скоростей хищника и жертвы / 1.k u v   Ордината 

жертвы равна 

        
2 2

0 0

0

1 cos cos
1 1 1 .

cos sin

h
Y H h

 
   

 


        (12) 

Таким образом, кривая преследования в плоскости OXY  пред-

ставляет собой параметрически заданную кривую     X , Y  , 

0 1  . В координатах Oxyz  та же пространственная кривая пре-

следования определяется соотношениями: 
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

  
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  

  

  

  

  (13) 

Совокупность (13) дает исчерпывающее решение вопроса об 

уравнении кривой преследования в евклидовом 3D-пространстве в 

рамках поставленной задачи. 

С учетом результатов [1], время 3D-преследования составит 

 0 0 0
02 2

00

cos cos cos
,

sinsin

k kHu
T T

u v kk

  



 
 


  (14) 

где для «классического» ( 0 090 , 0    ) времени преследования 

введено обозначение 0 2 2

hu
T

u v



. Как и следует, при 0 0   резуль-

тат (14) для времени погони T  в 3D-задаче о преследовании перехо-
дит в результат для 2D-задачи. 
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В момент встречи координаты хищника  A  и жертвы  B  рав-

ны:    A T B T . Координаты точки встречи, с учетом (13), равны: 

2

0 0 0 0
0 2 2 2

0 0

0

0 0 0( ) ctg

1 cos cos cos cos
( ) ;

1 sin sin

(

sin

) .

;

k v uhk hu
x T x vT

k u v
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y T y h

z h
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 

 

 
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





 
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Полная длина кривой преследования: 

 0 0 0 0
0 0

0 0

cos cos cos cos
( ) ,

sin sin

k k
T uT uT

k k

   

 

 
     (15) 

где 
2

0 2 2

hu

u v



 — длина классической ( 0 090 , 0    ) кривой 

преследования. 

Принимая во внимание геометрический смысл производной, вы-

числим угол  , который в процессе преследования составляет вектор 

скорости хищника u  с положительным направлением оси OX  (как и 

оси Ox ):  
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С учетом (11) и (12), 
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С учетом геометрических соображений, абсцисса жертвы  BX   

в плоскости преследования OXY  определяется соотношением: 
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абсцисса  X   и ордината  Y   хищника определяются (11), (12). С 

учетом (17) после преобразований получаем в плоскости преследова-

ния OXY   

 
1 11 1

0 0
0

1 1

1 1
( ) ctg ctg tg .

2 1 2 1 2

k k

B

H
X H

k k k

  
 

      
      

     
  (18) 
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В пространстве :Oxyz  
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Текущее время t  взаимного движения хищника и жертвы  опре-

деляется из условия  0( )Bt x x v   выражением: 

1 11 1

0 0 0 0

1 0 1 0

1 cos cos 1 cos cos1 1
.

2 1 sin 1 sin

k k
h

t
u k k
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Поставленная задача о преследовании в системе «хищник–
жертва» в евклидовом 3D-пространстве решена. 

С учетом ограниченного формата журнальной статьи, перейдем 
далее к компьютерному моделированию задачи о преследовании в 
евклидовом 3D-пространстве, оставив получение дальнейших мате-
матических результатов в рамках построенной модели для последу-
ющих публикаций. 

Результаты компьютерного моделирования. Результаты чис-
ленного моделирования преследования в евклидовом 3D-
пространстве при указанных значениях параметров в рамках постав-
ленной задачи выборочно представлены на рис. 2–6 и в табл. 1. Рас-
четы проведены штатными средствами MS Excel. Проведению рабо-
чих расчетов предшествовал цикл тестовых расчетов, выполненных 
для удостоверения в правильности компьютерной реализации по-
строенной математической модели. Собственно варьируемыми пара-
метрами были начальные координаты x0 и y0 жертвы; высота движе-

ния жертвы, хотя и могла варьироваться наряду с 0x  и 0y , была при-

нята постоянной 0 1000 м.z h   Скорость хищника была принята 

равной 500 м с,u   скорость жертвы — 300 м сv .   

Таблица 1 

Характеристические параметры выборочных кривых преследования 

0 , кмx   0 , кмy  0  0      
0   , cT     , мx T   , м   

–20 10 24,09° 153,43° 45° 35,26° 39,04 –8286 19523 

–10 10 35,26° 135° 45° 54,74° 35,38 613 17688 

0 10 45° 90° 45° 90° 44,19 13258 22097 

3,9 10 42,97° 68,69° 45° 74,58° 53,16 19847 26578 

Обозначения: 0 0 0, ,  и      — начальные углы, T — время преследования,  x T — 

абсцисса «встречи» хищника и жертвы,  — длина кривой преследования. 
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Пространственные траектории хищника  z x, y  при различных 

начальных координатах имеют характерный выпуклый вправо вид на 

рис. 2–5. Иными словами, направление выпуклости кривой преследо-

вания «противоположно» направлению вектора скорости жертвы v . 
 

 
 

 Рис. 2. Траектории хищника (кружки) и жертвы (треугольники)  

для начальных координат жертвы    0 0 0 2000 10000 10000x , y ,z , ,    
 

 

 

Рис. 3. Траектории хищника (кружки) и жертвы (треугольники) 

для начальных координат жертвы    0 0 0 10000 10000 10000x , y ,z , ,   
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 Рис. 4. Траектории хищника (кружки) и жертвы (треугольники)  

для начальных координат жертвы    0 0 0 0 10000 10000x , y ,z , ,   

 

 

Рис. 5. Траектории хищника (кружки) и жертвы (треугольники) 

для начальных координат жертвы    0 0 0 3900 10000 10000x , y ,z , ,  

 

В проекции на вертикальную плоскость Oxz  евклидова про-

странстваOxyz  кривые преследования ожидаемо имеют вид, харак-

терный для 2D-преследования (рис. 6); в проекции на горизонталь-

ную плоскость Oxy  кривые преследования демонстрируют анало-

гичное поведение. Проекция кривой преследования на плоскость Oyz  

тривиальна (прямолинейна). 
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Рис. 6. Траектории хищника в проекции на плоскость Oxz  

 для начальных координат жертвы: 1 —    0 0 0 20000 10000 10000 ;x , y ,z , ,   

2 —    0 0 0 10000 10000 10000 ;x , y ,z , ,  3 —    0 0 0 0 10000 10000 ;x , y ,z , ,  

4 —    0 0 0 3900 10000 10000x , y ,z , ,  

 

Выводы и рекомендации. В настоящей статье впервые получе-

но аналитически точное решение задачи о преследовании в системе 

«хищник–жертва» в евклидовом 3D-пространстве Oxyz  для произ-

вольных начальных углов прицеливания или, что то же, для произ-

вольных начальных координат жертвы  0 0 0 ,x , y ,z — в форме пара-

метрически заданной пространственной кривой преследования 

       0 1.x , y ,z ,      Проведено реалистичное компьютерное 

моделирование взаимного движения хищника и жертвы в простран-

стве и во времени; определены характерные параметры процесса 

преследования (время преследования, длина кривой преследования, 

координаты точки встречи, и др.). Перспективы дальнейших иссле-

дований в рамках модели представляются весьма широкими: изуче-

ние процесса преследования в условиях ограничений (на кривизну 

кривой преследования, на ресурс движения хищника, при наличии 

укрытия у жертвы, и др.). 

Следует отметить значительный дидактический потенциал зада-

чи о 3D-преследовании для профессиональной подготовки будущих 

специалистов в области механики и управления. Задача о преследо-

вании может быть рассмотрена в курсе механики, дифференциаль-

ных уравнений, математического моделирования, и др. Качественная 

предметная подготовка будущих учителей и преподавателей матема-

тики и физики также очень важна, и задача о преследовании вполне 
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подходит для этого. Автор обсуждает задачу о преследовании в ее 

различных аспектах со своими студентами, будущими преподавате-

лями математики и информатики, — в рамках курса «Основы мате-

матического моделирования» (бакалавриат) и спецкурса «Избранные 

вопросы современных математических исследований» (магистрату-

ра). Задача о преследовании служит отличной содержательной осно-

вой для выполнения обучающимися научно-исследовательских               

проектов, курсовых и выпускных квалификационных работ [15]. 
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An analytical solution of the pursuit problem in the “predator-prey” system in Euclide-

an 3D space for arbitrary initial aiming angles was obtained in the article for the first 

time. In the process of pursuit, the prey moves uniformly and rectilinearly, the speed vec-

tor of the predator is constant in magnitude and is aimed at the prey. The exact solu-tion 

of the problem is obtained in the form of a parametrically specified spatial pursuit curve. 

Exact expressions were obtained for other essential characteristics of the pursuit process 

(pursuit time, coordinates of the prey, length of the pursuit curve, etc.). A real-istic com-

puter simulation of the mutual movement of predator and prey in space and time was 

carried out; the characteristic parameters of the pursuit process are deter-mined. The 

significant didactic potential of the solved problem of 3D pursuit for the training of future 

specialists in the field of mechanics and control is noted; the problem for students can 

serve as a meaningful basis to carry out research projects, courseworks and final qualify-

ing works.   

  

Keywords: pursuit problem, Euclidean 3D-space 
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