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Математическое моделирование гидродинамических 

сопротивлений при колебательном течении  

упруговязкой жидкости в плоском канале  

© Н.И. Абдикаримов, К.Н. Наврузов 

Ургенчский государственный университет, Ургенч, 220100, Узбекистан 
 

Решены задачи о колебательном течении упруговязкой жидкости в плоском канале 

при заданном гармоническом колебании расхода жидкости на основе обобщенной 

модели Максвелла. Определена «импеданс» функция, с помощью этой функции ис-

следованы зависимость гидродинамического сопротивления от безразмерной ча-

стоты колебаний при различных значениях упругого числа Деборы  и концентрации 

Ньютоновской жидкости. Показано, что в колебательном течении упруговязкой 

жидкости  гидродинамическое сопротивление уменьшается в зависимости от числа 

Деборы. Этот эффект позволяет оценить гидродинамическое сопротивление при 

заданном законе изменения продольной скорости осредненной по сечению канала, 

при колебательном течении и, тем самым позволяет определить диссипации энер-

гии среды, имеющие важные значения при регулировании гидро-и пневмосистем. 

 

Ключевые слова: Вязкоупругая жидкость, нестационарный поток, «импеданс» 

функция, колебательное течение, амплитуда, фаза 

  

Введение. Практический интерес предоставляет изучение коле-

бательного течения упруговязкой жидкости в плоском канале и в ци-

линдрической трубе под воздействием  гармонических  колебаний  

градиента давления или при наложении на течение гармонических 

колебаний расхода жидкости. В [1] исследовано движение упруговя-

зкой жидкости по длинной трубе под действием колебательного гра-

диента давления. Показаны отличительные особенности этого дви-

жения по сравнению соответствующего  движения ньютоновской 

жидкости. Исследован безынерционный пульсирующий поток упру-

говязкой жидкости в круглой бесконечной трубе под действием ко-

лебательного градиента давления в работе [2], в котором показано, 

что в осциллирующем потоке профили продольной скорости симмет-

ричны, и существует значительный фазовый сдвиг между градиентом 

давления и скоростью. В пульсирующих потоках фазовый сдвиг фак-

тически отсутствовал, и осевая скорость изменялась несимметрично 

относительно своего среднего за период колебания. Ламинарные 

пульсирующие течения упруговязких жидкостей Максвелла и Ол-

дройда-Б были исследованы в работе [3]. Где демонстрируется много 

интересных особенностей отсутствующих  в потоках ньютоновских 

жидкостей. 
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В [4] проанализированы нестационарные течения вязкоупругой 
жидкости на модели Олдройда-Б в круглой бесконечной цилиндри-
ческой трубе под действием зависящего от времени градиента давле-
ния в следующих случаях:  а) градиент давления изменяется со вре-
менем в соответствии  с экспоненциальными законами; б) градиент 
давления изменяется по гармоническим законам; в) градиент давле-
ния постоянный. Во всех случаях получены формулы для распреде-
ления скорости, расхода жидкости и других гидродинамических ве-
личин в пульсирующем потоке.  

На основе модели Максвелла в [5] рассмотрена задача нестацио-
нарного пульсирующего течения упруговязкой жидкости в круглой 
цилиндрической трубе. Получены формулы для определения дина-
мических и частотных характеристик. С помощью численных экспе-
риментов изучено влияние частоты колебания и релаксационных 
свойств жидкости на касательное напряжение сдвига на стенке. По-
казано, что вязкоупругое свойство жидкости, а также ее ускорение 
являются ограничивающими  факторами для использования квази-
стационарного подхода. В последние десятилетия электрокинетиче-
ские явления, в том числе электроосмос, потенциал течений, элек-
трофорез и седиментационый потенциал привлекли к себе большое 
внимание и предоставили множество приложений в микро и нанока-
налах.  

В связи с этим в работе [6]  исследовано электрокинетическое те-
чение упруговязких жидкостей в плоском канале под воздействием 
колебательного градиента давления. Предполагается, что движение 
жидкости происходит ламинарно и однонаправленное, в этой связи 
движение жидкости находится в линейном режиме. Поверхностные 
потенциалы считаются малыми, поэтому уравнение Пуассона-
Больцмана линеаризуется. В течении появляется резонансное пове-
дение, когда преобладает упругое свойство жидкости Максвелла. Ре-
зонансное явление усиливает электрокинетические эффекты, и вме-
сте с тем усиливается эффективность преобразования электрокине-
тической энергии. 

В перечисленных выше работах в основном исследуется поле 
скоростей жидкости при различных режимах изменения градиента 
давления. Изменение гидродинамических сопротивлений при пуль-
сирующем потоке упруговязкой жидкости в зависимости от безраз-
мерной частоты колебаний исследовано, относительно мало. Поэто-
му в данной работе исследуется пульсирующее течение упруговязкой 
жидкости на обобщенной модели Максвелла в плоском канале при 
наложении на течение гармонических колебаний расхода жидкости. 
Определяется «импеданс» функция, в котором можно анализировать 
изменение гидродинамического сопротивления при колебательном 
потоке упруговязкой жидкости в зависимости от безразмерной часто-
ты колебаний. 
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Постановка задачи и метод решения. Рассмотрим задачи 
медленного пульсирующего течения упруговязкой несжимаемой 
жидкости между двумя неподвижными параллельными плоскостями, 
простирающимися в обе стороны до бесконечности. Обозначим рас-
стояние между стенками через 2h . Ось Ох проходит горизонтально в 

средине канала вдоль потока. Ось Оу направлено перпендикулярно к 
оси Ох.  

Течение упруговязкой жидкости происходит симметрично по оси 

канала. Дифференциальное уравнение движения упруговязкой не-

сжимаемой жидкости в напряжение имеет следующий вид [7-10] 

 
u p

t x y



  

  
  

, (1) 

где u  ― продольная скорость; p  ― давление;   ― плотность;   ― 

касательная напряжения; t  ― время.  
Реологическое уравнение состояния жидкости принимается в ви-

де обобщенного уравнения Максвелла [3,6] 

 

.

,

,
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y
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  

 


  

 


 



 
  

 

 (2) 

Здесь   ― время релаксации; s  ― касательная напряжения 

Ньтоновской жидкости; p  ― касательная напряжения Максвеллов-

ской жидкости;   ― касательная напряжения раствора; s  ― дина-

мическая вязкость Ньтоновской жидкости; p  ― динамическая вяз-

кость Максвелловской жидкости. Между динамическими вязкостями 
выполняется равенство [3,6] 

 s p    , 

где   ― динамическая вязкость раствора. 

Подставляя (2) в уравнение движения (1) для скорости жидкости 
получаем 

 
2 2

2 2
(1 ) (1 ) (1 )

u p u u
s p

t t t x t y y
     

      
      

      
. (3) 

Считаем, что пульсирующее течение упруговязкой жидкости 

происходит за счет заданного гармонического колебания расхода 

жидкости или продольной скорости осреднённой по сечению канала. 
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 Re
i t

Q QQ a cos t a e


  , 

 Re
i t

ua cos t a eu u 
  , 

где Qa  и ua  ― амплитуда расхода жидкости и амплитуда продольной 

скорости осредненной по сечению канала. В данном случае течение 

происходит симметрично по оси канала и на стенке канала удовле-

творяется условие прилипания. 

Тогда граничными условиями будут: 

 0
u

y





 при 0y  , 0u   при y h . (4) 

В силу линейности уравнение (1.3) продольной скорости, давле-

ние, касательное напряжение на стене можно записывать  следую-

щим образом  

    1Re, i t
u eu y t y 

 , 

    1Re, i t
p ep x t x 

 , (5) 

   1Re
i t

et 
  . 

Подставляя (1.5) в уравнение (1.3), получаем 

 

112

1 1
12

( ) ( )1
( )

1 (1 )

u y p xi Z Z
X u y X

y i i x

 

   


 

   
   

  
   
   

. (6) 

Здесь SX



  ― вязкостная доля  Ньютоновской жидкости; 

p
Z




  ― вязкостная доля  Максвелловской жидкости; 

При решении уравнения (6) с граничными условиями (4) полу-

чим формулу  для определения скорости в следующем виде: 

  
 

3/2

0

1
1 3/2

0

cos ( )
( )1

1
cos ( )

y
i i

p x h
u y

i x i i

  

    


  



  
       

  
 
 

, (7) 

где 
0 h





  ― колебательное число Уомерсли (безразмерная часто-

та колебаний); 





  ― кинематическая вязкость раствора. 
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С помощью уравнения 

 
 

 1

1 2
( )

y h

i
u y

i y
 



 








 (8) 

находим касательное напряжение сдвига на стенке 

 
 

 

3/2 3/2

0 0

1 2 3/2

0 0

( ) sin ( )1
( )

cos ( )

i i i iP
i h

x i i i

     
 

   


  



  
       

. (9) 

Теперь проинтегрируем обе части формулы (7) по  переменной 

y  в пределах от h  до h , в результате найдём формулу для расхода 

жидкости 

 
 

   

3/2

01
1 3/2 3/2

0 0

sin ( )( )1
2 1

( ) cos ( )

i ip x
Q h

i x i i i i

  

       


  



   
        

. (10) 

Учитывая что 

 1 12 ,Q h u    

из (10) находим продольную скорость осреднённой по сечению кана-

ла 

 
 

   

3/2

01
1 3/2 3/2

0 0

sin ( )( )1
( ) 1
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
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
  


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 (11) 

Определим отношение градиента давления к средней скорости, 

иногда это отношение называется «импедансом» потока. Из формулы 

(11) находим это отношение 
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, (12) 

где 0 2

3
R

h


  ― гидродинамическое сопротивление Ньютоновской 

жидкости при стационарном потоке. Это отношение позволяет оце-

нить гидродинамическое сопротивление при заданном законе изме-

нения продольной скорости осредненной по сечению канала. Так как 

ее действительная часть позволяет определить активное гидродина-

мическое сопротивление, а мнимая часть реактивное или индуктив-

ность колебательного потока. 

Результаты численных расчетов и их анализ. Гидродинамиче-

ское сопротивление при колебательном потоке в ньютоновских, а 
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также упруговязких жидкостей определяется отношением градиента 

давления к средней скорости, иногда это отношения называется «им-

педансом» потока. Отношением градиента давления к средней скоро-

сти находим из формулы (12) 

 
 

   
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1 1
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0 1 1 1 10 1

sin
1
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 (13) 

Выделяя действительную и мнимую части формулы (13) опреде-

ляем полное гидродинамическое сопротивление R  и индуктивность 

L : 
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где 
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Результаты исследования формулы (13) для Ньютоновской жид-

кости приведены во многих работах  [7,9,10]. В рис. 1 представлена 

зависимость гидродинамического сопротивления от безразмерной 

частоты колебаний 0 , когда число Деборы 0.05De   и при различ-

ных значениях концентрации Ньютоновской жидкости в растворе. 

 
Рис. 1. Зависимость гидродинамического сопротивления от безразмерной 

частоты колебаний 0  при различных значениях концентрации Ньютоновской 

жидкости и 0.05De   
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На рис. 1 при 1X  приведено изменение полного гидродинами-

ческого сопротивления Ньютоновской жидкости в пульсирующем 

потоке, совпадающее с результатами других исследователей [7,9,10].  

Из этого графика видно, что с увеличением безразмерной частоты 

колебаний 0
 
полное гидродинамическое сопротивление Ньютонов-

ской  жидкости монотонно возрастает. Кривые 2-5 приведенные в 

рис.1 характеризуют изменение  гидродинамического сопротивления 

в пульсирующем потоке упруго вязкой жидкости с низким упругим 

числом Деборы, с добавлением ее Ньютоновской  жидкости. Дей-

ствительно кривые 2-5 мало отличаются от кривой  1, что в этом слу-

чае вместо гидродинамического сопротивления упруговязкой жидко-

сти можно принимать  гидродинамическое сопротивление Ньюто-

новской жидкости.  

  

 
Рис. 2. Зависимость гидродинамического сопротивления от безразмерной 

частоты колебаний 0  при различных значениях концентрации 

Ньютоновской жидкости и 2De   
 

Однако с увеличением числа Деборы наблюдается  существенное 

отличие между гидродинамическим сопротивлением упруговязкой 

жидкости сравнительнос Ньютоновской жидкостью. Это отличие по-

казано в рис. 2 при упругом числе Деборы 2De  , где
 
наблюдается 

умещение гидродинамического сопротивления в зависимости от кон-

центрации Ньютоновской жидкости (кривые 3-5 на рис. 2). Когда от-

сутствует Ньютоновская жидкость в растворе, тогда раствор обладает 

реологическими сложными свойствами. В таких случаях в пульсиру-

ющем потоке упруговязкой жидкости гидродинамическое сопротив-
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ление изменяется колебательным образом в зависимости от безраз-

мерной частоты колебаний 0 , и он усиливается с увеличением чис-

ла Деборы (кривые 5 на рис. 2).  
Содержание Ньютоновской жидкости в растворе сглаживает ко-

лебательный режим изменения гидродинамического сопротивления 
(кривые 3,4 на рис. 2- 4).В общем случае при пульсирующем течении 
упруговязкой жидкости гидродинамического сопротивления умень-

шается в промежуточном значении 01 3   безразмерной частоты 

колебаний максимально, а затем увеличивается с увеличением этой 
частоты.  

Полученный эффект позволяет оценить гидродинамическое со-
противление при заданном законе изменения продольной скорости 
осредненной по сечению канала, при пульсирующем течении упру-
говязкой жидкости, и тем самым можно определить диссипации ме-
ханической энергии среды, имеющие важные значения при регули-
ровании гидро- и пневмосистем. 

Заключение. Решены задачи о колебательном течении упруговя-
зкой жидкости в плоском канале при заданном гармоническом коле-
бании расхода жидкости на основе обобщенной модели Максвелла. 
Определена передаточная функция амплитудно-фазовой частотной 
характеристики. С помощью этой функции исследованы зависимость 
гидродинамического сопротивления от безразмерной частоты коле-
баний при различных значениях числа Деборы  и концентрации Нью-
тоновской жидкости. Показано, что в колебательном течении упруго-
вязкой жидкости гидродинамическое сопротивление уменьшается в 
зависимости от числа Деборы. С увеличением этого числа уменьше-
ние становится еще ярче, чем прежнее. Этот эффект позволяет оце-
нить гидродинамическое сопротивление при заданном законе изме-
нения продольной скорости осредненной по сечению канала, при 
пульсирующем течении упруговязкой жидкости, и, тем самым позво-
ляет определить диссипации механической энергии среды, имеющие 
важное значение при регулировании гидро-и пневмосистем. 
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Mathematical modeling of hydrodynamic resistance dur-

ing oscillatory flow of viscoelastic fluid in a flat channel 

 N.I. Abdikarimov, K. Navruzov 

Urgench State University, Urgench, 220100, Uzbekistan 

 
The problems of oscillatory flow of an elastic-viscous fluid in a flat channel for a given 
harmonic oscillation of fluid flow are solved based on the generalized Maxwell model. 
The “impedance” function was determined, and with the help of this function the depend-
ence of the hydrodynamic resistance on the dimensionless oscillation frequency was stud-
ied for various values of the elastic Deborah number and the concentration of the Newto-
nian fluid. It is shown that in the oscillatory flow of an elastic-viscous fluid, the hydrody-
namic resistance decreases depending on the Deborah number. This effect makes it pos-
sible to estimate the hydrodynamic resistance for a given law of change in the longitudi-
nal velocity averaged over the cross section of the channel, with oscillatory flow and, 
thereby, allows us to determine the dissipation of the energy of the medium, which is im-
portant in the regulation of hydraulic and pneumatic systems. 
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