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IIpeoOpa3oBanusi, pelyKIUN U TOYHbIE PellIeHUsI
HIHPOKOI0 KJIACCA HECTAMOHAPHBIX YPABHEHUH C
HEeJIMHEHHOCTHI0O TUNIa MoHKa — AMniepa

© A.J. Ionssauna

Huctutyt npodiem mexanuku uM. A.JO. Nmmuuackoro PAH, Mockga, 119526, Poccust

Paccmampusaromea  0docmamoyno obwjue HeCMAyuoHaApHvle CUTbHO — HenuHeliHbvle
VDABHEHUs 8 YACHHBIX NPOUIBOOHBIX C MPeMsl He3A6UCUMBIMU NePEeMEeHHbIMU, KOmopble
cooepaicam nepeyio npou3eoOHYI0 NO 8peMeHu U K8AOpamuuHy0 KOMOUHAYUIO 6MOPbIX
NPOU3BOOHBIX NO NPOCMPAHCMEEHHbIM nepeMenHbiM muna Mowndca — Amnepa (maxue
VpasHeHus yacmo Haszviearom napaboruveckumu ypaswenusmu Moudxca — Amnepa).
OmoenbHbie ypagHeHusi makozo 8Uuda ecmpeyaemcs 6 ouppepeHyuanrbHol ceomempuu u
9NEKMPOHHOU  MACHUMHOU  2udpoounamuke. B oanmoti  pabome  onucamwvi
MHOo2Onapamempuieckue npeobpa306aHus, COXPAHAIOWUE 6UO UCCIeIYeMo20 KIaAcca
HENUHEeUHbIX YPAGHEHUN, KOMOPbLL 3a0aemcs npoussoavHou @yukyuel. Paccmompenot
makxoice O8yMepHvle U OOHOMEpHble pedyKyuu, npugooawue K 0Ooiee npocmuvim
VPDAGHEHUAM 6 HACMHBIX NPOU3BOOHBIX C O6YMA HEe3ABUCUMBIMU NEPEMEHHbIMU U
00bIKHOBeHHbIM — Ouhepenyuanvubim  ypaenenuam.  Memooamu  060bUeHHO20
pasoenenus NnepemeHHviX NOCMPOeH pAO MOYHLIX peuleHull, MHO2Ue U3 KOmopbix
oonyckarom npedcmagienue 8 dnemMeHmapHulx gyuxyusax. Ilonyuennvie pezynomamvi u
MOuHble peuteHus Mo2ym Obib UCHOb306aHbI O OYEHKU MOYHOCU U aHATU3A
A0EK6AMHOCIU  YUCTEHHbIX — MEMo008 peuleHus 3a0ay, ONUCLIBACMbIX — CUTLHO
HeAUHeUHbIMU YPAGHEHUAMU 8 YACHIHBIX NPOU3BOOHDIX.

Knroueewie cnosa: napabonuyeckue ypasuenus Mouoca — Amnepa, cunvHo HeluHellHble
VpagHenusi ¢ YaCMHbIMU NPOU3BOOHBIMU, OOHOMEPHbIE U 08YMEPHbIE PEOYKYUU, MOYHbBLE
peuwieHus, peutenus ¢ 0000WeHHbVIM pa30esieHueM HNePeMeHHbIX, asmomMooebHble
peuieHus

BBenenue.
1°. BiepBble ~ KOHKpPETHBIE  HECTAI[MOHAPHBIE  YPAaBHEHHS  C
HEJTUMHEHHOCThI0O THHAa MoHXka — AMiepa MO NPOCTPAHCTBEHHBIM

MEepEeMEHHBIM, T0-BUIUMOMY, TOSBHIMCH B pabote [1], B KoTOpoOi
paccMaTpuBaIuCh 0000IICHHBIC PEIICHUST YpaBHEHU I

u, = det[uxixj ] - g(x!t)’ (1)
U, det[uxixj] = _g(x!t)’ (2)
82

rae X =(X;,...,X,), U, =——U. Bxogamas B ypaBHenus (1) u (2)

i OX,0X i
MaTpHuIa BTOPBIX MPOU3BOIHBIX [uxixj] OIMMCBLIBAET JIOKAJIbHYIO KPUBHU3HY

(YHKIIMM MHOTHX TICPEMECHHBIX W HOCHT Ha3BaHHWE MaTpHuIbl [ecce.
Omnpenenurens HSTOW MAaTpPUIBI, T. €. det[uxixj], YacTO Ha3bIBAIOT

T'€CCUaHOM.
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IIpeobpasosanus, pedykyuu u moyHsie peuenus WUpoKo20 Kiacca HeCMayuoHAPHbIX ...

B cimyuae AByX HpOCTpaHCTBEHHBIX TMEPEMEHHBIX X, =X U X, =Y B
ypaBaeHusx (1) wu (2) cmegyer monmoxuth @ X=(X,y) ®

detfu,, J=u,u, —u?
iX]

ooy
2°. B cranmonapuoM ciay4dae U, =@, =0 mpu n=2 ypaBuenue (1)
CBOJUTCS K HEOJHOPOJAHOMY ypaBHeHUI0O MoHka — AmIiepa

uxxuyy _ufy = —g(X, y) (3)

Becbma nonnyto nHpopMainio 06 3TOM ypaBHEHHH U 00JIee CIIOKHBIX
POJICTBEHHBIX CTAIlMOHAPHBIX YpaBHEHUAX THHAa MoHXka — Amrepa,
KOTOpBIE YacTO BCTpeHaroTcsl B AU(depeHINaTbHON T€OMETPUN, MOXKHO
Haiitu B kHure [2]. B wyactHeix ciaywasx npu ¢ =0 (omHopomHOe
ypaBHeHHe MoHxa — Amriepa) 1 g =a >0 oOmiee penieHue ypaBHCHHUS
(3) MoxxHO TIpeACTaBUTH B mapamerpudeckoit dopme [3, 4]. Paznuunsie
npeoOpa3oBaHus U OOLIUPHBIN CIHCOK TOYHBIX PEIIeHUH YpaBHEHUH BUaa
(3) mpuBeneHsl B [4-6].

VYpaBHenue (3) sBISETCS CHIBHO HEIHMHEWHBIM (KBaIpaTUYHBIM
OTHOCHUTENIFHO CTapIIUX MPOW3BOJHBIX) WU MUMEET CBOMCTBA, HEOOBIYHBIC
JUIST KBa3WJIMHEWHBIX YpPAaBHEHHH, KOTOpbIE JMHEHHBI OTHOCUTEIBHO
CTapIIMX MPOU3BOIHBIX. B 4acTHOCTH, KaueCTBEHHBIE OCOOCHHOCTH 3TOTO
ypaBHEHUS 3aBUCAT OT 3Haka (QYHKIUH ¢, TOCKOJIbKy mnpu ¢ >0

ypaBHeHUe (3) sBISETCS ypaBHEHHUEM THNEPOOTMYECKOTO THUTA, a TPH
g <0 — ypaBHeHHeM »siiunTuueckoro tumna [2, 4, 7]. YkazanHoe

OOCTOSITENILCTBO ~ 3HAYUTENIFHO  YCJIOXKHSET TPOUEAYpPY UHCICHHOTO
MHTETPUPOBAHUS MOI00HBIX YPaBHEHUIA.

B [8-11] 11 4MCIEeHHOrO MHTErPUPOBAHMS — CTALlMOHAPHBIX
ypaBHeHuit Monxa — Ammnepa (1) mpu U, =g, =0 (mst N=2 u n=3)
UCIIOJIb30BAIMCh Pa3IMuHble MOJU(UKAIUM METO/a YCTaHOBJICHUS I10
BPEMEHHU C HCIMOJIb30BaHUEM MapadOIMUYecKoro ypaBHeHHs MoHxka —
Awmmepa (1).

3° Iomarasg B (1) g=0 u N=2, Nnpux0OAUM K CHUIILHO HEIMHCHHOMY
HECTallMOHApHOMY ypaBHeHHI0 MoHxka — Ammepa

U =u,u, —u (4)

KOTOPOE€ BCTpEYAeTCs B  IUIA3MEHHOM  AJEKTPOHHOM  MarHUTHOWU
ruapoauHamuke [12-14].

B [15] Obum mony4eHBI TOYHBIE PEIICHHUS HECTAIIMOHAPHOTO
ypaBHeHHs (4) B BHIE Mpou3BeNeHHA (GYHKUIUN pa3HBIX apryMEHTOB:
u=XXY(y)T({). B [16] omucano oawHHAIIATHIAPAMETPHUECKOE
npeoOpa3oBaHue, COXpaHsIOIIee BU ypaBHEHUS (4), a TakkKe ABYMEpPHBIC
U OJHOMEpHBbIE PENyKIUH, MPHUBOJALINE €ro K Oonee MIpOCThIM
YpaBHEHUSIM B YACTHBIX TMPOU3BOJHBIX C JBYMs HE3aBHCHUMBIMHU
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A.J]. Honsanun

NEPEeMEHHBIMH (B TOM 4YHCJIE€ K CTAallMOHAPHBIM YpaBHEHHSM THIIA
Momxa — Amrnepa, HecTallMOHAPHBIM YPaBHEHUSM TEIUIOTIPOBOAHOCTH H
YpaBHEHUSAM HEJIUHEHHOW Teopuu (PUIbTpaluu) HUIU OOBIKHOBEHHBIM
muddepeHManbHBIM ypaBHeHUsIM. KpoMe Toro, Mmetoamu 0000IEHHOTO
pazzeneHuss mepeMeHHbIX B [16] ObuUIM TOCTPOEHBI TOYHBIC pELICHHUS,
MHOTHE H3 KOTOPBIX JOITyCKAIOT TIPE/ACTABICHUE B AJIEMEHTAPHBIX
GbyHKIUSX.

4°, Tlapabonuueckue ypaBHeHUs Tuna Momxka — Ammepa Buga (2) ¢
Pa3IMYHBIM YUCIIOM TMPOCTPAHCTBEHHBIX MEPEMEHHBIX PAacCMAaTPHBAIUCH
BO MHOTUX paboTax (cM., Hampumep, [17-26]), B KOTOPBIX, B OCHOBHOM,
HCCIIEZIOBAIUCH BOIPOCHI CYLIECTBOBAHHUSA M E€IUHCTBEHHOCTH PEIICHHMA
JUI pa3iMyHBIX BHYTPEHHUX M BHEIIHMX HAYaJbHO-KPAEBBIX 3a1ad H
3amaun Komm, a taxke oOcCyXIanuch reOMETpUYECKHE NMPHIOKEeHUs. B
[20] 6bUT0 IONTYyYEHO TOYHOE pelIeHHe OAHON Ha4aabHO-KPaeBOl 3a1auu ¢
paavanbHOM CUMMETpUEH, KOTOPOE ONHUCHIBAJIOCH ypaBHEHUEM (2) mpu
g(x,t) =1; pemenue uckamoch B Buae mpousBeaenus U =T (t)R(r), rue
I — paauanbHas KOOpJAUHAaTA.

bonee obuue, uem (1), mapabonnyeckue ypaBHeHUs Thna MoHxka —
AMriepa, B KOTOpbI€ BXOJUT CYIEPIO3ULIUA CTEHEHHOW GQYHKIUU H
recceaHa, Buja

U, = (detfu,,, " ~g(x) ©)

aHaNM3WpoBanuch B paborax [27-29]. B [30, 31] B neBoil uactu
ypaBHeHHs (5) Ipu MPOU3BOJHOM MO BpeMeHH 100aBIISIICS CTallMOHAPHBIH
(hyHKIIMOHAILHBIN MHOKHTENH a(X) .

B [32, 33] paccmarpuBanuch mnapaOoIu4ecKue YpaBHEHUS THIIA
Monxa — Amnepa

u, = log(detfu,, 1) +9(x1), (6)

B KOTOpHIE BXOAWUT CYNEPHO3HUIHUsS JOrapu(MUIECKOH (QYHKIHHA W
recceaHa.

B [34] wuccnenoBamuch CHUHTYJSIPHBIE OCOOCHHOCTH —peIlIeHUi
LIMPOKOTO KJlacca napaboIMyecKux ypaBHEHUH ¢ 00IIel HETUHEHHOCThIO
tuna Monxa — Amnepa

u, = f(detfu,, 1), ()

rae f(z) — mocraTouno mpousBosbHAs GYHKIMSA. bbutn 10Ka3aHbI TaKkKe

HEKOTOPBIE TEOPEMBI O LIETIBIX PEUICHUSIX TaKUX YPaBHEHHIA.

PoxctBennbie mapabonuueckue ypaBHEHHUS C HEIMHEWHOCTHIO THIIA
Monxa — AMriepa BO3HHUKAlOT TakKke B TEOPUU ONTHUMAIBHOTO
ynpaeneHus (cMm., Hampumep, [35]). Ortmetnm Takxke, 4to B [36]

2 P
M3y4aiuCh PeleHus ¢ 060cTpenneM ypapaenns U, +U,U, —Uy =[ul’ u,

rme p>1.
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5°. B obuiem ciy4yae HeCTallMOHAPHbBIE YPABHEHUS C HEJIMHEHHOCTHIO
tuna MoHxa — AMIepa ¢ TpeMs HE3aBUCUMBIMU MEPEMEHHBIMU
3aIUCBIBAIOTCS TaK:

F(t,x, y,u,u,U,,u,u,u, —uz) =0, (8)

rne F(...) — Hexoropas GyHKINS BOCEMH apryMEHTOB.

B nannoili pabore OyneT aHaNM3MPOBATHCS CIELUAIBHBIA Kiacc
ypaBHeHUH Buaa (8), MpeaCTaBIECHHBIM B pa3pelieHHOW OTHOCHUTEIBHO
HenMHEeHOCTH MoHxa — Amnepa popme

uxxuyy _ufy = f(ut)’ (9)

rne f(z) — nmocrarouno mnpousBonbHAS (yHKOHS. YpaBHeHHE (9)
ABIISICTCS ~ CYLIECTBEHHBIM  00OOIIEHHWEM  ypaBHEHHS  MAarHUTHOM
ruapoauHamMuku (4), a Take ypasaenuit (1), (2), (5), (6) npu N=2 wu
g = const.

6°. Meronbl TOCTPOEHUSI PEIIEHUH MaTEeMaTHUYECKUX YpaBHEHUH,
OCHOBAHHBIE Ha pEUICHUAX OoJee NPOCTHIX YpPaBHEHUH, OOBIYHO
Ha3bIBAIOTCSA PEAYKUUSAMH. PenyKIuM WrpaimT KIIOYEBYIO PpOJIb IS
MOCTPOEHHSI TOYHBIX pereHui qudQepeHIranbHbIX YpaBHEHUN 1 0OBIYHO
NPUBOAAT K ypaBHEHHsM OoJiee HHU3KOTO MOpsAKa WINM ypaBHEHHSIM
MeHbIlIed pa3MepHocTH. Haumbonee BaXHBIMU Ui HEJTUHEHHBIX
YpaBHEHHWH C YaCTHBIMH TPOW3BOAHBIMH  SIBISIFOTCS ~ OJHOMEpHBIC
PENYKIIUH, HCIONB3Ysl KOTOpBIE YIAeTCsl TMPENCTaBUTh MX PEIHICHUS B
TEPMUHAX  peIIeHW Topa3no  Oonee  MPOCTHIX  OOBIKHOBEHHBIX
muddepennmanbabix ypasHenuit (OY).

B nanHoit paboTe o1 TOYHBIMH pEeIIEHUSIMU HEIMHEHHBIX ypaBHEHUN
C YaCTHBIMM TPOM3BOJHBIMU  TOHHUMAIOTCS  PELICHUS, KOTOphIE
BBIPAXKAIOTCS:

() c momompro dMEeMEHTapHBIX (QYHKIMH ¥ HEONpeIeTCHHBIX
UHTETPaJIoB,

(i) uepes pemenns OJLY wm cucrem O/1Y.

BaxxHO OTMETUTb, YTO TOUHBIE pEIICHHUS HETUHEWHBIX YpaBHEHH
MaTeMaTH4ecKoil (PU3MKH C YAaCTHBIMHU HPOM3BOJHBIMU WUIPAIOT BA)KHYIO
pOJb CTaHJAPTHBIX «MATEeMAaTHYECKUX HTAJOHOB», KOTOpPbIE IIHUPOKO
UCTIONB3YIOTCS AJI1 OLIEHKM TOYHOCTH, BEpUPHUKAIMM U pa3pabOTKu
YHUCICHHbIX, ACUMOTOTHYECKUX U TNPHUOIMKEHHBIX aHAJINTHYECKUX
METO/I0B.

Penykuuu u TouHble pelIcHHUs HEJIMHEHHBIX YPaBHEHHUH ¢ YaCTHBIMU
NPOM3BOJHBIMU 4Yallle BCErO CTPOATCS C MCIOJIB30BAaHUEM METO/I0B
rpymmoBoro a"ammza [6, 37, 38], wMeromoB 0O0OOIIEHHOTO |
(YHKIIMOHANTBHOTO — pa3leieHuss mnepeMeHHbx [4, 39-42], wMerona
muddepeHimanbHeix cBszeit [4, 39, 41-43] u HEKOTOPBIX JPYTUX
aAHATUTHYECKUX METOMOB [4, 42, 44-49].
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A.J]. Honsanun

B nanHoif paboTe ans mouMcKa TOYHBIX PEHICHUN HEIMHEHHOTO
ypaBHEHUsI MArHUTHOW THAPOAMHAMUKH (9) HCIOJIB30BaHBI Pa3IMYHBIC
Mo IU(pUKAIIMK METO1a 0000IIEHHOTO pa3/ieicHUs TepeMeHHbIX [4, 39-42]
Y TIpUBEJICHHBIE B [4 | TOUHBIE pelieHus 0oJiee MPOCTHIX, YeM HCXOJIHOE,
MPOMEXYTOUHBIX PEAYLMPOBAHHBIX YPAaBHEHUW C MEHBUIMM YHCIOM
HE3aBUCHUMBIX TlepeMeHHBIX. Oco00e BHUMAHUE YICISIETCS MOCTPOSHHUIO
MPOCTBIX TOYHBIX PEUICHUH, KOTOPHIE BBIPAKAIOTCS Yepe3 3JIEMEHTAPHbIE
¢byukmun. Takue pemeHus yaoOHO HCIOIB30BaTh B KaY€CTBE TECTOBBIX
3a7a4 Il OLUEHKM TOYHOCTHM W MPOBEPKU aJIEKBATHOCTH YHCICHHBIX
METOZIOB PEIICHHUS CUJIbHO HEJIMHEHHBIX YPAaBHEHHM C YacCTHBIMHU
IIPOU3BOAHBIMH.

HexoTopsblie npeodpa3oBanmsi.

1°. IIpeobOpazoBanue

l§:a1x+bly+cl, y=ax+by+c,, t=kt+p, (10)

=ku+a,x+by+c,;, k=|ab,—-ahb |£0,

rae a;, a,, a;, b, b,, b, ¢, C,, ¢;, p — mpousBOIBLHBIE OCTOSIHHBIE,

MPHUBOAMT UCXOHOE YpaBHEHHUE (9) K ypaBHEHHIO TOYHO TaKOTO )K€ BU/IA.

JlecaTunapameTpuueckoe HMHBapuaHTHOe mpeoOpasoBanue (10)
MO3BOJISIET C TIOMOIIBIO 00JIee MPOCTHIX YAaCTHBIX peIIeHUI ypaBHEHUs (9)
CTPOUTH €ro 0Ooyee CIOXHbBIE TOYHBIC peIIeHHA. A WMMEHHO, eCciH
u=d®d(x,y,t) — pemenue ypaBaenus (9), To GyHKUIUSA

u :%(D(aix+b1y+cl,a2x+b2y+cz,kt+ p)+a,x+b,y+c,,
k =[ab, —a,b, [#0,

roe a, =—-a,/k, b, =-b/k, ¢, =-C,/K — mpousBonbHEIE MOCTOSIHHBIE,
TaK)Ke SIBJISIETCS PEIIEHUEM ITOr0 YpaBHEHUS.

2°. B TOJIApHBIX KOOpJAHWHATaX F, ¢, TIe X=rcosSe, y=rsing,
UCXOAHOE ypaBHeHuE (9) NpuHUMAET BUJ

r_zurr (u¢¢ + rur) _[(r_lu¢)r]2 = f (ut)' (ll)

DTO0 ypaBHEHHE OyJEeT HCIOIB30BAHO Jajee JUisi MOCTPOCHUS TOUYHBIX
pelIeHnit paccMaTpUBAEMOT0 ypaBHEHUSI.
3°. B omuunTHYecKHX KOOpJAMHATax F, ¢@, TAe X=arcose,

y=brsing (a m b — momoxurenbHble KOHCTAaHTHI), ypaBHeHHe (9)
3aMMChIBAETCS TaK:

r72urr (u¢¢ + rur) _[(r71u¢)r]2 = (ab)2 f (ut)' (12)

4°. B runepOoIuYecKux KoopauHatax &, v, rae X =ady , Yy =bly
(a u b — HeHyneBble KOHCTaHTHI), ypaBHEHHUE (9) peoOpaszyeTcs K BHIY

$ug U, +4u)=[(¢ ) I = ~(ab)* f (u,). (13)
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Bunno, uro ypaBHenue (13) ornuuaercs ot ypaBHeHus (12) Toiabpko
3HAKOM IPaBOX YaCTH U OYEBHIHBIMHU TIEPEOOO3HAYCHUSIMHU.

JIByMepHble  peIyKUHH, OCHOBAaHHbIe HAa HWHBAPUAHTHBIX
npeodpa3oBaHUAX.

1°. Ilepexons B (9) k mepeMEeHHBIM THIIA OCTYIIEH BOJHBI

U=U(§,77), §:X+a1t’ 77:y+a2t’ (14)

rae a, U a, — NPOU3BOJIBHBIE NOCTOSHHBIC, IPUXOAUM K JIBYMEPHOMY

ypaBHeHUIO Tha Monxa — Amriepa
U; -U.uU, =f(au,+aU,), (15)

KOTOPOE HE 3aBUCHUT SIBHO OT HOBBIX IEPEMEHHBIX & U 7).

2°. Ilepexons B (9) kK mepeMEeHHBIM aBTOMOJIEIHHOTO THUITA

ustu(gn), &=xt’, p=yt’, (16)

rae [ — NOpOU3BOJIbHAS MOCTOSIHHAS, MOJIYYUM JBYMEPHOE ypaBHEHUE
tuna Monxa — Amnepa

U;—Ugum7 =f(BSU, - (B+1)nU, +U), (17)

KOTOPOC SABHO 3aBUCHUT OT HOBBIX IICPEMCHHBIX ge un.

DOKBUBAJIICHTHYIO (DOpMY TIPEACTABICHUS PEUICHUS MOXXHO TOJYYHTh
u3 (16), B3IB BMECTO BTOPOTO apryMeHTa MpOU3BEACHHUE CTeTeHel 000X

aprymentos ¢ = P/ = x#"y” | uro mpuBoamT K AByMepHOMY
pelIeHuIo BHIa

u=tu(.g), &=xt/, ¢=x"y

3° Ilepexons B (9) K mepeMEHHBIM NPEAETBbHOIO ABTOMOJIEIBHOTO
THUIIA

u=u(.n), &=xe", n=ye”, (18)
rae [ — TpoU3BONIbHASA TMOCTOSHHAS, MOIYyYHMM Jpyroe IBYMEpHOE
ypaBHeHUE TUia MoHxxa — Ammnepa

U;] -U. U, =f(BU,-pnJ,). (19)

KOTOPOE SIBHO 3aBUCUT OT HOBBIX MIEPEMEHHBIX & U 7 .

DOKBUBAJIICHTHYIO (DOpMY TIPEACTABICHUS PEUICHUS MOXKHO TOJYYHTh
u3 (18), B3IB BMECTO BTOPOrO aprymMeHTa MpOU3BeIeHUE OO0OMX
apryMeHTOB ¢ = &7 = XY, UTO IPUBOJMT K IBYMEPHOMY PELIECHUIO BUA

u=UEQ), &=xe", (=x.
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A.J]. Honsanun

3ameuanue 1. bonee cioxHble IByMepHbIE PeIyKIMU ypaBHeHUS (9)
MOXXHO TOJdy4yuTh, 3ameHuB B (14), (16), (18) mnpocTpaHCTBEHHBIE
MEpEeMEHHbIE WX TPOU3BOJIBHBIMH JIMHEMHBIMM KOMOHMHALMSAMHU IO
npaBwiy X = a,X+by u y=a,x+b,y.

Penyknuu ¢ ajaMTHBHBIM  pa3jejileHHeM  IlepeMeHHbIX,
NPHUBOASIINE K CTAHOHAPHBIM YpaBHeHUSIM MoHxka — AMmepa.

1°. YpaBuenue (9) umeer peuieHHs C aJJAUTUBHBIM pa3feleHHEeM
IIepEMEHHBIX BU/1a

u=At+w(x,Yy), (20)

rae A — Tpou3BOJIbHAS TOCTOSIHHAs, a (GyHKOUS W OMHCHIBACTCS
CTallMOHAPHBIM HEOJHOPOJHBIM ypaBHeHHMeM MoHxa — Ammepa ¢
MOCTOSIHHOM MPAaBOM YaCThIO

w,w, —wy = f(A). (21)

2°. HerpynHO mpoBepuTh, 4TO ypaBHeHHE (9) [0MyCKaeT TOYHOE
pelieHue ¢ aJAUTUBHBIM pa3jieJieHueM nepeMeHHbx Buaa (20), kotopoe
BBIPAXKAETCS B AJIEMEHTAPHBIX (PYHKIIMSIX

u=Cx? +C2xy+%[f (A)+C2ly* +C,x+C,y+ At+C,,  (22)
1
rne A, C,, ..., C, (C, #0) — npou3BoJIbHbBIC TIOCTOSIHHBIE.

3°. Ucnonb3yst pe3ynapTaThl [4] MOXHO TOJNY4YWUTh, HaIPHUMED,
cienyromye TouHsle pemenus Buaa (20) ypasuenus (9):

J-f(A
u:Ati—C( )x(C1x+C2y)+¢(C1x+Czy)+C3x+C4y+C5,
2
2
C (C,y? +C3y+%)+1f2('ca‘) (x*+3Cx*)+C,y +C.x+C,,
1

u= At+
X+

2 —f(A
U= AtiTc()(Clx—szy2 +C,)"? +C,x+C,y+C,,
12

rae C,,...,C, — TpOW3BOJBHBIC  IOCTOSIHHBIEC, o=p(z) —
MIPOU3BOJBHAS (QYHKITHUSI.

3ameuanue 2. Tlpm f(A)<0 obmee pemieHHE HEOIHOPOIHOTO

ypaBHeHHss ~ Momxa — Ammepa  (21) MOXHO  TpEJCTaBUTH B
rapamMeTpu4eckoM BUJE [3, 4].

4°. VpaBuenue (9) gomyckaet 6onee crnoxubie, yem (20), pemieHus: ¢
0000IIIEHHBIM pa3/IeIeHUEM MTEPEMEHHBIX BUIA

u=(ax+by+c)t+w(x,y), (23)
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rae a, b, C — IpOM3BOJIbHBIE TOCTOSHHBIE, 8 QYHKIUS W OIUCHIBAETCS
HEOAHOPOJHBIM ypaBHEHHEM MoHka — AMIiepa ¢ MEepeMEHHON IpaBoil
JaCTBIO

W, W, —W2, = f(ax+by+c). (24)

IIpu b =0 ypaBuenue (24) umeer, HaPUMeEp, CIEAYIOIIHE TOYHBIE
peteHust ¢ 0000IICHHBIM pa3/IeJICHUEM TTEPEMEHHBIX

w= iyj}/—f (ax+c)dx+C.y +¢(x),

_ 2 C22 2 1 X
w=Cy +szy+Ex +2_qu (x—=t)f (at+c)dt+C,x+C,y,

1

1 (0% 1 x
w= C,y’+Cy+—=2)+—| (x-t)(t+C,) f (at+c)dt,
e Gy Gy ) Zczjo( )(t+C,)f (at+c)
rne @(X) — mnpousBonbHas ¢ynkums, C,, ..., C, — mnpousBosbHbBIC
MIOCTOSIHHBIE.

Penykuusi ¢  aJIUTHBHBIM  pa3jejieHHeM  IepeMeHHbIX,
NPUBOASAIIAS K IBYMEPHOMY HeCTAIMOHAPHOMY YPABHEHHIO.

1°. YpaBuenue (9) momyckaeT penieHus: ¢ 0000IIECHHBIM pa3aeIeHuEM
MePEeMEHHBIX BUJA

u=21ax’ +bxy +icy’ +dy+U(x,t), (25)

rae C, b, ¢, d — npousBosbHbe MocTOsIHHBIE, a GyHKIwa U =U (X,t)
OTIHMCHIBAETCS HETMHEHHBIM ypaBHEHHUEM

cU, = f(U,)+b*-ac. (26)
JIns ypaBHEHHSI MarHUTHOW TUAPOJMHAMHKH (4), YTO COOTBETCTBYET

f(z)=u, ypaBHenue (26) sBuseTCs JIMHEHHBIM  YpaBHEHHEM

TETUIONPOBOHOCTH C MOCTOSTHHBIM HCTOYHUKOM.
Hwxke onumcanbl ABa WHBapUAHTHBIX PEIICHUs NJIsi Hanboiiee 00IIero
CiTy4asi HeJTMHEHHOTO ypaBHEeHHS (26) ¢ mpou3BoabHOM GyHKIuen f(Z).

2°. B obmiem ciyuae ypaBHeHHUe (26) uMeeT perieHusl Tuma Oerymei
BOJTHBI

U=U(2), z=x+A1t,

rae A — mpom3BOJbHAs mocTosHHAs, a (yHkims U (zZ) omuceiBacTCs
aBpToHOMHBIM OJ1Y

cU” = f(aU!)+b’ —ac.
3°. VpaBuenue (26) gomyckaeT Takke aBTOMOJIENIbHbIE PEIIeHUs BUA

U=tvV(), &=xt™,
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rae ¢ysaknus V (E) onuceiBaeTcs HeaBTOHOMHBIM OJ1Y
_ 1 2
cVi=f(V-34V))+b"—ac

Penyknusi kK cranmoHapHoMy ypaBHeHHI0 MoH:ka — Amnepa ¢
HCIOJIb30BAHHEM NepeMeHHbIX THIA Oeryiieil BOJIHBI.

1°. YpaBuenue (9) momyckaeT penieHus: ¢ 0000IICHHBIM Pa3IeICHIEM
NEPCMCHHBIX KOM6I/IHI/IpOBaHHOI‘O TUIIa

u=Cx*+C,xy+C,y* +C,x+C,y+Ct+U(&,n),
E=aXx+by-At, n=ax+by-At,

rne C,;, a;, bj y A (i=1,...,6; j=1,2) — npou3BOJIbHBIC TIOCTOSHHbIC,

(27)

£ W 1 — HOBBIE TNEpEeMEHHBbIC THUMA OCTyIieid BOJIHBI, a (QYHKIHUSI
U =U(&,n) ommchiBaeTcs CTallMOHAPHBIM ypaBHEHHWEM Tumna MoOHKa —
Awmmnepa

) ) (ain _blaZ)z(Uggugq _Ufzg)—i_
+2(a,;C, +b’C, —ahbC,)U et 2(a,C; +b,C, —a,b,C,)U o+

(28)
+2[(2a,8,C; +2bb,C, — (a,b, +ba,)C, U, +4CC; - C; =
= £(Co- AU, ~2U,).
2°. PaccMOTpHM crieliManbHbIi cirydaid (27)—(28), monoxus
a=a b=b A=4 a=b=0 4=-1, n=t,
YTO COOTBETCTBYET PEIICHUIO BUA
U=C x> +C,xy +C,y* +C,x+Coy +Cit +U (&), (29)
& =ax+by-At,
rne C,, a, b, 4 (i=1,...,6) — mpousBoJbHBIE TOCTOSHHBIE. B 3TOM

ciyvae pynknus U =U (&,t) onmchiBaeTCsl HETMHEHHBIM ypaBHEHUEM
2(a’C, +b°C, —abC,)U o= (G +U, —AU,)-4CC, + C2. (30)

3°. B yactHoCTH, B35B B (29)—(30) dpyHkumio U ¢ ogHuUM apryMeHTOM
&, mpuxoauM K HenmHerHoMy OJ1Y aBTOHOMHOTO BH1a

2(a’C, +b’C, —abC,)U = f(C, — AU.)-4C,C, +CZ.

Honcranoska W (&) =U. mpuBogut ero k OJIY meporo mopsika

pa3aeNsIOIUMHUACS IEPEMEHHBIMHU.

Penyxkuus c HCI0JIb30BAHUEM HOBOM NnepeMeHHOM,
napadoIu4ecKoil Mo NPOCTPAHCTBEHHBIM KOOPAMHATAM.

1°. B mepeMeHHBIX, OJHA M3 KOTOPBIX BpeMs, a Jpyras 3aJaeTcs
napabosnnyeckoi GpyHKIMeN Mo MPOCTPAaHCTBEHHBIM MEPEMEHHBIM
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u=U(z,t), z=y+ax? (31)

rie a — MpoW3BOJIbHAS TOCTOsIHHASA, ypaBHeHue (9) pemymupyercs K
JIBYMEPHOMY YPaBHEHUIO

2au U, = f(U,). (32)

Huxe onucanbl Tpy MHBapUaHTHBIX peLIeHUs s Haubosee o01ero
ciyuast ypaBHeHus (32) ¢ mpousBosibHOM dyHknuen f(Z).

2°. PepynupoBaHHOoe ypaBHeHue (32) JOIyCKaeT peleHus ¢
aJTUTUBHBIM pa3/ieJIeHUEM EePEMEHHBIX

U :Cltig /f(cl)(z+cz)3’2+c3,
a

rae C,, C,, C,—npou3BoJbHBIC TOCTOSHHBIC.

3°. YpaBHenue (32) umeer pelieHus TUMIa 6eryiei BOJIHbI
U=U(&), E=z+At=y+ax’+At
rne A — mpou3BoibHas TocTOsiHHAs, a QyHkmms U(z) onuceiBaeTcs
aBToHOMHBIM OJ1Y
2aU U = f(AU)).

4°. bonee oOmiee, yem B 1. 3°, pemeHue ypaBHeHHS (32) MOXXHO
MOJIYy4YUTh, €CJIM UCKATh PEIICHHUE B BUIE

U=Ct+W(&), &E=z-At=y+ax’—it.
5°. YpaBaenue (32) momycKaeT TakyKe aBTOMOJICIILHOE PEIICHUE BH/Ia
U=tvV(), ¢=zt??
rae pyukuus V (&) onuckiBaeTcst HeaBTOHOMHBIM OJ1Y

2aV NV = f(V —2¢V)).

3ameuanue 3. bonee obmee, yem (9), cHIBHO HEITWHEHHOE
HECTaIlMOHAPHOE YPaBHEHHE

Uy Uy, —ug = f(u,u), (33)

rne f(u,w) — mnpousBoimbHas (QYHKIHS JBYX TIEPEMEHHBIX, TaKXKe

JOTTyCKaeT TOuHbIe pereHus Buna (31).

Penykumus o0mero Buaa ¢ MCnoJib30BAaHHEM HOBOIl NepeMeHHOi
KBaJIPATHYHOI0 BH/IA 10 MPOCTPAHCTBEHHBIM KOOPANHATAM.

1°. B mepeMeHHbIX, OJIHa U3 KOTOPBIX BpEMsl, a Apyras KBaJpaTH4HA
OTHOCHUTEJILHO MPOCTPAHCTBEHHBIX MEPEMEHHBIX,
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u=U(z,t), z=ax’+bxy+cy’+kx+sy, (34)

rme a, b, ¢, k, S— mnpousBosibHBIE MOCTOSHHBIE, ypaBHEeHHE (9)
peayLUpyeTCs K ABYMEPHOMY HECTAIMOHAPHOMY YPABHEHHIO

2(Az+B)U U, +AU? = f(U,);

35
A=4dac—-b? B=as’+ck?®—bks. (35)

OTmeTHM, YTO B 3aBUCHUMOCTH OT KO3((ULIHEHTOB KBaJIpaTUYHBIX
cmaraembix a, b, ¢ B (34), kpuBas z = const MOXKeT OBITH JUTHUIICOM
(mpu A=4ac—b®>0), runepbonoit (npu A<0) unu napabonoii (mpu
A=0).

PaccmMoTpuM HEKOTOpblE KIAacChl TOYHBIX pELIEHUH, KOTOpBIE
JomyckaeT ypaBuenue (35).

2°. PenymupoBanHoe ypaBHeHHe (35) JomycKaeT peIIeHUs C
aJINTUBHBIM pa3JIeJICeHUEM [IEPEMEHHBIX

U =Ct+{(2),

rae C — mpousBosIbHAS MOCTOSHHAS, @ GYHKIMS ¢ = £ (Z) OmUChIBaeTCS
HenmuHeHHbIM OJ1VY:

2(Az+B)¢ ¢, +AL)” = T(C),

KOTOpPOC JICTKO HMHTCIPHUPYCTCA, IIOCKOJIBKY JOITYCKAaC€T ITOHMIKCHHUC
nopsaaka M OJHOBPECMCHHO JIMHCAPHU3YCTCA C MOMOINBKO IMOACTAHOBKHU

w(z) = (£!)?. B pesynbTaTe momydum

c, . f(c
¢ =[l——+ Cpegsic,,
Az+B A
rie C, m C, — mpousBoibHBIE TOCTOSHHBIE (OTMETHM, YTO HHTETpal

MIPaBOI YaCTU MOYKHO BBIPA3UTh Yepe3 JIEMEHTAPHbIE (PYHKIIUH).
3ameuanue 4. boree o0mel pe3ynbTaT MOXHO TOTYYUTh, €CIH
HCKaTh pelieHue ypaBHeHus (35) B Buze

U=Ct+W (&), &=z-At,
rae l — IPOU3BOJIbHAA ITOCTOSHHASA.

3°. IIpu 4ac-b*#0 penynuposanHoe ypaBHeHue (35) momyckaeT
pelIeHns KBa3uaBTOMO/IEIBHOTO BUA

U=tvV(y), n=(Az+B)t", (36)

rie [ — TpouW3BOJIbHAsS TOCTOsSHHas, a ¢yHKmus V =V (n)

YJIOBJIETBOPSIET HEJNMHEHHOMY OOBIKHOBEHHOMY IU(PepeHIHATHLHOMY
YPaBHEHUIO

2NN (V)P = AE(V —7V)),  A=dac—b? (37)
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4°. TIpu 4ac—b?* # 0 npeobpasoBanue

JA
t=t, ZZ%pZ—E U=W(p,t),

A
MPUBOJUT ypaBHEHHE (35) K KAHOHUUECKOMY BHLY
sign Ap™W W = f(W,). (38)

3ameuanue 5. bonee obmee, yem (9), CWIBHO HEIWHEWHOE
HecTalMoHapHoe ypaBHeHHE (33) Takke JOMYCKaeT TOYHBIE PEIICHUS
Buaa (34).

Penykuum u TOYHbIE pelleHUs] B MOJSPHBIX, JIIUNTHYECKHX U
runepooJIMYecKuX KOOpAUHATAX.

1°. YpaBuenue (11), 3amucaHHoe B MOJSAPHBIX KOOpAMHATaX
X=TrcosS¢, Yy =rsin¢g, I0MyCcKaeT TOYHBIC PELICHHS, HE 3aBUCSIIUE OT

YIJIOBOM MEPEMEHHOM, KOTOPBIE OMTUCHIBAIOTCS IBYMEPHBIM YpPaBHEHUEM
-1 —
r-uu, = f(u). (39)

DTO ypaBHEHHME C TOYHOCTHIO J0 TMepeoO03HAUYCHHUS] HE3aBUCHUMOU
nepeMeHHO# coBnanaeT ¢ ypasuenueM (38) mpu A >0 (xBa ero Hanbonee
OOIIMX TOYHBIX PEUICHUs OmucaHbl B IiL. 2° u 3° u3 pasx. 9).

2°. YpaBuenue (11), 3ammcaHHOE B DIUIMNTHYECKHX KOOPIMHATAX
X=arcose, Yy =brsin ¢, nomyckaer TOYHbIE pEIICHHUS], HE 3aBHCSIIUE OT

YIJIOBOM IEPEMEHHOM, KOTOPBIE OMUCHIBAIOTCS IBYMEPHBIM YPAaBHEHHEM
-1 —_ 2
r ururr - (ab) f (ut)' (40)

DTO YypaBHEHHE C TOYHOCTHIO [I0 TEpeo0O3HAYCHU HE3aBUCHUMOU
nepemenHoi u pyukimn f cosmagaer ¢ ypaBuenuem (38) mpu A> 0.

3°. YpaBuenue (11), 3anucanHoe B runepOOJIMYECKUX KOOpPAMHATAX
x=ady, y=bdly, nmomyckaer TOYHBIC pPEIICHUS, HE 3aBUCSIIAE OT

HepeMeHHOﬁ ¥ , KOTOPBIC OIMUCBIBAOTCA IBYMCPHLBIM YPABHCHHUEM

£7uu, = —(ab)? f(u,). (41)

DTO ypaBHEHHE C TOYHOCTHIO [0 TEepeoOO3HAYCHUI HE3aBUCUMON
nepemeHHo# u pynkuuu f coBmamaer ¢ ypaBHenuem (38) mpu A<O0.

4°. Tlockonbky ypaBHenus (39), (40), (41) otnuyarorcs ot (38) nuuib
ONMCaHHBIMM B BBILIE ME€PEOOO3HAYEHUSMH, TO HEKOTOPObIE UX TOUYHBIE
PEILIEHUS JIETKO MOKHO IOIY4YHUTb, UCIIOJIb3Ys PE3YJbTAThI, IPUBEICHHBIC
B pas. 8.

BeiBOABI.

HccnenoBaHo  CHJIBHO  HENMHEWHOE  ypaBHEHHWE B YaCTHBIX
IIPOU3BOJHBIX C TPEMS HE3aBUCUMBIMH NTEPEMEHHBIMU
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Uy U, —u? = f(u,),

Xy
rne  f(z) — npousBonmbHast ¢yHknus. OnucaHo WHBapUaHTHOE

JecATUTIapaMETPUIECKOe IPeoOpa3oBaHUe, COXPAHSAIONINE BHJ STOTO
ypaBHeHHs. PaccMmarpeHbl IBYMEpHBIE H  OJHOMEPHBIC PEIyKIUH,
OpUBOJAIIME €ro K Oojiee TMPOCTHIM YpPaBHEHUSIM C YacTHBIMU
IPOU3BOJHBIMU C ABYMSI HE3aBUCHMBIMH MEPEMEHHBIMH (B TOM YHUCIE K
CTallMOHApPHBIM  ypaBHEHHsIM  Tunma  Momxka — Ammepa)  wid
OObIKHOBEHHBIM U depeHanbupM - ypaBHeHusM.  [lomyden  psin
pemieHUiH ¢ OOOOLICHHBIM  pPa3/IeIeHHEM IEePEeMEHHBIX, KOTOpbIE
BBIPA)KAIOTCSL B JJIEMEHTAPHBIX (YHKLHUAX, a TAKXKE HEKOTOpHIE Jpyrue
TOYHBIE pelieHus. Ba)kHO OTMETHUTh, UTO YpaBHEHHUSI pacCMaTPHUBAEMOTO
TUMAa BCTpevyaroTcss B AupdepeHInanbHOl TeOMETpUM M MarHUTHOM
THIIPOAMHAMUKE.

Paboma evinonnena no meme eocyoapcmeennoco 3adanus (Ne
eocpecucmpayuu 123021700057-0).
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Transformations, reductions and exact solutions of a
wide class of nonstationary equations with nonlinearity of
the Monge—Ampere type

© A.D. Polyanin

Ishlinsky Institute for Problems in Mechanics RAS, Moscow, 119526 Russia

Rather general nonstationary strongly nonlinear partial differential equations with three
independent variables are investigated, which contain the first time derivative and a
quadratic combination of the second derivatives with respect to spatial variables of the
Monge-Ampere type (such equations are often called parabolic Monge—Ampere
equations). Some equations of this type are found in differential geometry and electron
magnetohydrodynamics. This paper describes multiparameter transformations that
preserve the form of the considered class of nonlinear equations, which is given by an
arbitrary function. Two-dimensional and one-dimensional reductions leading to simpler
partial differential equations with two independent variables or ordinary differential
equations are also considered. Using methods of generalized separation of variables, a
number of exact solutions have been constructed, many of which can be represented in
elementary functions. The obtained results and exact solutions can be used to assess the
accuracy and analyze the adequacy of numerical methods for solving problems described
by strongly nonlinear partial differential equations.

Keywords: parabolic Monge-Ampere equations, highly nonlinear partial differential
equations, exact solutions, one-dimensional reductions, two-dimensional reductions,
generalized separable solutions, self-similar solutions
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