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Целью статьи является разработка метода распределения задач проектирования 

изделий машиностроения на заданном множестве исполнителей работ. При этом 

исполнители работ структурно и географически связаны со своими цифровыми 

платформами, образующими в совокупности экосистему проектирования. 

Разработана математическая модель, которая может успешно применяться для 

генерации архитектуры комплекса средств, покрывающих задачи инженерии 

требований, системной архитектуры и испытаний для каждого проекта, 

закрепленного за одной из платформ. В качестве метода моделирования 

обосновано применение сети Петри. Её реализация в виде программного 

приложения для PLM-системы цифровой платформы может существенно 

повысить качество управления проектами и их портфелями. 

 

Ключевые слова: цифровая платформа, распределенное проектирование, сеть 

Петри, моделирование архитектуры, экосистема проектирования 

 

Введение. Одним из драйверов роста современного 

машиностроения являются платформенные решения [1,2,3]. Они 

позволяют объединить вокруг цифровых платформ различных 

участников, включая разработчиков платформенной технологии, 

проектировщиков, обеспечивающих инновационное развитие 

продуктов, иные компании, а также различные группы 

пользователей. 

Развертывание клиент-серверной архитектуры цифровой 

платформы, реализующей методологию распределенного 

проектирования и удаленного оказания проектных услуг, стало одной 

из тенденций при организации процессов исследования и 

проектирования сложных изделий машиностроения [4,5]. 

Практический пример такой архитектуры рассмотрен в [6], а её 

фрагмент показан на рис. 1. 

Рисунок иллюстрирует структуру комплекса технических и 

программных средств поддержки процессов и работ, выполняемых 

на этапе автоматизированного проектирования. На рабочих станциях 

помимо PLM-системы установлены CAD/CAM/CAE-системы для 

выполнения соответствующих проектных работ. Сторонние 

организации, осуществляющие совместную деятельность удаленно, 

имеют доступ к необходимой информации в режиме реального 

времени и могут загружать проектные данные в процессе реализации 

собственных проектов. 
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Рис. 1. Развертывания комплекса средств распределенного проектирования 

 

Современные приложения поддерживают реконфигурирование и 

подключение к цифровым платформам функциональных сервисов 

для их применения в различных проектах. В этой связи актуальна 

задача разработки метода распределения (развертывания) множества 

работ по проекту на множестве узлов экосистемы цифровых 

платформ, представляющей собой устойчивый комплекс 

независимых участников, бизнес-процессов, инфраструктурных 

систем и инновационных проектов, взаимодействующих между 

собой при создании совместного ценностного предложения [7]. 

Целью научной статьи является математическое моделирование 

архитектуры комплекса средств распределенного проектирования 

для сравнительного анализа динамических характеристик вариантов 

реализации заданного объема проектных работ на заданном 

множестве узлов экосистемы цифровых платформ. 

Постановка задачи. Рассмотрим изображенную на рис. 2 

структуру цифровой платформы для решения задач инженерии 

требований, инженерии системной архитектуры и инженерии 

испытаний в машиностроении. Она содержит следующие 

взаимодействующие элементы: 

– подсистема управления жизненным циклом изделия; 

– подсистема принятия проектных решений; 

– подсистема автоматизированного проектирования; 

– подсистема инженерного анализа; 
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– подсистема поддержки испытательного процесса; 

– подсистема ситуационного управления; 

– подсистема хранения данных. 

Ключевым элементом архитектуры при этом является подсистема 

управления жизненным циклом изделия, обеспечивающая 

взаимосвязи: 

 приложений для создания частных технических заданий и 

подбора их исполнителей; 

 приложений для контроля и интеграции результатов работы 

по частным техническим заданиям в режиме реального времени; 

  систем автоматизированного проектирования (CAD) и 

инженерного анализа (САЕ) для разработки проектно-

конструкторской документации; 

 индустриального программного обеспечения технологического, 

испытательного и измерительного оборудования.  
 

 
Рис. 2. Структурная схема промышленной цифровой платформы 

 

Выделим в жизненном цикле проекта этап инженерии системной 

архитектуры продукта машиностроения. На этом этапе выполняются 

работы по созданию моделей и чертежей изделия, формированию его 

цифрового двойника, изготовлению и наладке прототипа изделия, по 

управлению изменениями в проекте, вплоть до изменения 

требований технического задания. Формирование чертежей и 

моделей реализуется в подсистеме автоматизированного 

проектирования на базе актуализированных требований, а затем в 

подсистеме инженерного анализа производятся необходимые 

расчёты. 

Рассмотрим распределение проектных работ в подсистеме 

автоматизированного проектирования, учитывая при этом, что 
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развертывание архитектуры комплекса технических и программных 

средств будет осуществляться при наличии свободного доступа к 

информации о компетенциях и технических возможностях сторонних 

исполнителей работ. 

Подсистема автоматизированного проектирования представлена 

комплексом программ, выполняющих следующие функции: 

 проектирование узлов и агрегатов изделия; 

 создание модели деталей и сборок; 

 твердотельное моделирование; 

 проектирование печатных плат; 

 другие. 

Каждому варианту развертывания архитектуры подсистемы 

автоматизированного проектирования на множестве потенциальных 

исполнителей (в том числе, географически удалённых узлов) будут 

соответствовать свои динамические характеристики процесса 

проектирования [8]. Таким образом, ставится задача моделирования 

динамической дискретной системы при заданных начальных 

параметрах её элементов. 

Математическая модель. При моделировании состояний 

динамических объектов применяют различные алгоритмические 

системы. Классическим примером является машина Тьюринга, 

представляющая собой расширение конечного автомата, 

реализующего пошаговые вычисления, в которых шаг определяется 

элементарной функцией перехода автомата. Недостатком машины 

Тьюринга является громоздкость представления получаемой с 

помощью нее модели сложной системы. Предпочтительным 

представляется подход построения модели с помощью 

иерархических временных раскрашенных сетей Петри. В этом случая 

получаемая алгоритмическая система более проста и удобна [9, 10]. 

Существуют и другие подходы к моделированию архитектуры 

сложных динамических систем, например, рассмотренные в [11] и 

[12]. Перспективным представляется применение клеточных 

автоматов [13]. Однако в сравнении с ними важным преимуществом 

сетей Петри является их обеспеченность математическим аппаратом 

описания иерархической динамической системы с динамической 

структурой. Это свойство является ключевым при моделировании 

архитектуры системы распределенного проектирования. 

Пусть в подсистеме автоматизированного проектирования 

выполняются следующие работы: 

1) проектирование узлов и агрегатов изделия; 

2) создание модели деталей и сборок; 

3) твердотельное моделирование. 

Определим сеть Петри C  следующим образом: 
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  ,   ,   ,   ,  C S T F M D   (1) 

где S  — конечное множество позиций (узлов) сети, 

 1, , , ,i nS s s s   , is S  — компоненты системы распределенного 

проектирования; 

T  — конечное множество переходов сети,  1, , , ,j mT t t t   , 

jt T  — события завершения работ во входных узлах перехода 
jt ; 

F  — конечное множество дуг,    F S T T S    ; 

M  — маркировка (разметка) сети,  : 0M S N  ; 

D  — конечное множество моментов времени срабатывания 

переходов сети,  1    , ,  ,  ,j mD d d d   ,   j jd d t , 
jt T . 

Каждый i -й узел сети представляет собой набор параметров, 

имеющих разные типы: 

  вып, ,is P Q T  (2) 

где P  — заданная производительность труда, выполняемых работ в 
узле; 

Q  — количественный показатель объема выполненных работ в узле 

в момент времени t ; 

выпT  — время выполнения работы в узле. 

Не следует путать моменты времени 
jd , переходы сети 

jt , время 

работы сети t  и время выполнения работы в узле  вып iT s . В общем 

случае, справедливо:  выпj j it t d T s   , причем  D T  , 

вып     D T  , выпT T  . 

Маркировка сети — функция  : 0M S N  , приписывает 

некоторым позициям сети Петри некоторые целые числа. Смена 

маркировки позиций реализуется по правилам срабатывания 

переходов. Начальная маркировка сети задается в виде вектора 

 0 01 0 0, , , , i nM m m m   , где  0   0 ,     1  ,im N i n    . Маркировка 

сети kM  определяет состояние выполнения работ в каждом узле сети 

в данный момент времени, при этом k  принадлежит счетному 

множеству достижимых маркировок сети Петри (1). На рис. 3 

изображён пример графического представления узла сети Петри. 

Присутствие метки в узле указывает на факт выполнения работ в 

установленной маркировке сети. Срабатывание перехода меняет 

маркировку сети в соответствии с правилами срабатывания 

переходов, что означает завершение работ в активных узлах 

выполненного перехода. 
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Рис. 3. Пример графического представления узла сети Петри 

 

Сеть Петри графически представляется двудольным 

ориентированным графом с двумя типами вершин: is S  и 
jt T . 

При этом, дуги графа из множества F  направлены от узлов к 

переходам и от переходов к узлам, любой узел сети может быть 

инцидентен нескольким входным, а также выходным переходам. 

Способы применения сетей Петри в моделировании динамики 

систем подробно рассмотрены в [14,15]. В данной работе 

применяются только те элементы математического аппарата 

моделирования системы с динамической структурой, которые 

необходимы для решения поставленной задачи. 

Зададим конечное множество значений трудоемкости работ в 

узлах сети: 

  1, , , ,i nTS ts ts ts   , (3) 

где its  — трудоемкость выполнения работ в узле is , 1,  , .i n   

Трудоемкость its  означает трудовые затраты (нормо-часы), 

необходимые для выполнения работы в узле is . 

Переход 
jt  считается возможным (или активным), если i iQ ts . 

Момент времени срабатывания перехода 
jd  при этом: 

       вып max    
ij i kd t T s d t  , (4) 

где  вып   i
i

i

ts
T s

P
 , is  — входной узел (2) для перехода 

jt , its  — 

трудоемкость работы (3) в узле is , iP  — производительность труда в 

узле   is , 
ikt  — переход такой, что узел is  является для него 

выходным. 

Создание модели деталей 

и сборок

N М Число метокНомер узла

Описание 

выполняемых

работ в узле
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Определим минимальное общее время выполнения работ в сети 

Петри в качестве критерия выбора допустимой архитектуры сети 

распределённого проектирования: 

  общ общ, mD d t D min  . (5) 

Пример численной реализации модели. Рассмотрим простой 

пример применения сети Петри (1) для распределения работ и 

формирования вариантов архитектуры подсистемы 

автоматизированного проектирования. Графическое представление 

сети в состоянии начальной маркировки изображено на рис. 4. Сеть 

Петри имеет семь узлов, в каждом из которых может выполняться 

работа в момент времени t , а также пять переходов: 

  3.1 3.2 3.3 3.4 3.5 3.6 3.7,  ,  ,  , ,  , S s s s s s s s , (6) 

  1 2 3 4 5, ,  ,  ,T t t t t t . (7) 

Отметим, что узлы с индексами 3.3 и 3.3а на рис. 4, показывают 

варианты выполнения в соответствующих узлах однотипных работ, 

которые могут быть включены или нет в итоговую реализацию 

архитектуры. Узлы сети Петри (1) с индексами i  и  ii c  являются 

взаимоисключающими, где  ic  обозначает добавочный символьный 

индекс для варианта узла вида is . Применительно к подсистеме 

автоматизированного проектирования присутствие узла вида 
 ii c

s  

означает, что работы, выполняемые в узле is , могут быть 

реализованы сторонней организацией. Причем в одну из возможных 

архитектур сети будет включен либо узел 3.3s , либо 3.3as , а также 

либо 3.5s , либо 3.5as . 

Зададим начальные параметры каждого узла сети. В соответствии 

с (2) имеем: 

 

       

     

   

3.1 3.2 3.3 3.3

*

3.4 3.5 3.5

3.6 3.7

1,0,0 ,  1,0,0 ,  1.1,0,0 ,   0.9,0,0 ,

1,0,0 ,   1,0,0 ,   1.1,0,0 ,

 1,0,0 ,  1.2,0,0

a

a

s s s s

S s s s

s s

    
 

    
 

  

, (8) 

где 
*S  — множество узлов S в соответствии с (6), расширенное 

вариантами выполнения работ сторонними организациями в узлах 

3.3as  и 3.5as . 

Для каждой работы в узле имеется заданная трудоемкость ее 

выполнения (3). Если какой-то из узлов сети не требуется для 

выполнения работы, трудоемкость выполнения работы в этом узле 
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считаем равной нулю. В случае, когда есть выбор, в каком из узлов 

выполнять работу, например, 3.3s  и 3.3as  для множества 
*S  в 

соответствии с (8), следует составлять несколько вариантов 

развертывания сети. Так, в данном случае имеем по два варианта для 

узлов 3.3s  и 3.5s , т.е. четыре возможных варианта развертывания 

архитектуры сети с заданными трудоемкостями работ в узлах: 

 1 3.1 3.2 3.3 3.3 3.4 3.5 3.5 3.6 3.71.  0, 2, 6, 0, 1, 5, 0, 1, 1 ;a aTS ts ts ts ts ts ts ts ts ts           

 2 3.1 3.2 3.3 3.3 3.4 3.5 3.5 3.6 3.72.  0, 2, 0, 4, 1, 5, 0, 1, 1 ;a aTS ts ts ts ts ts ts ts ts ts           

 3 3.1 3.2 3.3 3.3 3.4 3.5 3.5 3.6 3.73.  0, 2, 6, 0, 1, 0, 5, 1, 1 ;a aTS ts ts ts ts ts ts ts ts ts           

 4 3.1 3.2 3.3 3.3 3.4 3.5 3.5 3.6 3.74. 0, 2, 0, 4, 1, 0, 5, 1, 1 .a aTS ts ts ts ts ts ts ts ts ts           

 
Рис. 4. Подсистема автоматизированного проектирования, представленная 

начальным состоянием сети Петри 
 

Рассмотрим вариант 1 развертывания сети. 

Время выполнения работы «Частное техническое задание» и 

время срабатывания 1( )d t  для перехода 1t  из множества (7), 

соответственно: 

   3.1
вып 3.1

3.1

0
  0 

  1 

ts
T s

P
    ч., 1( ) 0d t   ч.  

Рассчитаем время срабатывания для перехода 2t . Время 

выполнения работы «Техническое предложение» и время 

срабатывания перехода 2( )d t :   3.2
вып 3.2

3.2

2
2

  1 

ts
T s

P
    ч., 

 2 1 вып 3.2( ) ( )   2d t d t T s    ч. 

  
 (  )

Проектирование
узлов и агрегатов
изделия Сервер А
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3.5

3.4
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0

0

0

0

0 000
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узлов и агрегатов
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моделирование
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моделирование
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Техничес-
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Рассчитаем время срабатывания перехода 3( )d t . 

Работа «Проектирование узлов и агрегатов изделия» может 

выполняться в узлах 3.3s  и 3.3as  из 
*S . Соответственно, время 

выполнения работы  вып 3.3T s  и  вып 3.3aT s  при заданной 

трудоемкости выполнения (3):   3.3
вып 3.3

3.3

6
    5.45
  1  .1

ts
T s

P
    ч., 

  3.3
вып 3.3

3.3

0
 

a
a

a

ts
T s

P
   ч. 

Выполнение работы «Твердотельное моделирование» происходит 

в узлах 3.5s  и 3.5as  из 
*S . Следовательно, время выполнения работы: 

  3.5
вып 3.5

3.5

5
    5
  1 

ts
T s

P
    ч.,   3.5

вып 3.5

3.5

0
 

a
a

a

ts
T s

P
   ч. 

Время срабатывания перехода 3( )d t , согласно (4): 

 
        

 

3 2 вып 3.3 вып 3.3 вып 3.5 вып 3.5( ) ( ) max , , ,  

2 max 5.45,0,5,0 7.45 ч.

a ad t d t T s T s T s T s 

  
 

Таким же образом вычисляется время срабатывания каждого 

перехода из множества (7): 4( ) 8.45d t   ч., 5( ) 9.65d t   ч. 

Общее время выполнения работы сети, согласно (5), совпадает со 

временем срабатывания последнего перехода 
общ 5( ) 9.65D d t   ч. 

Рассмотрим вариант 2 развертывания архитектуры сети. 

Значения времени выполнения работ в узлах 3.1s  и 3.2s , а также 

времени срабатывания переходов 1( )d t  и 2( )d t  аналогичны первому 

варианту. 

Рассчитаем время срабатывания для перехода 3t . 

Время выполнения работы «Проектирование узлов и агрегатов 

изделия»:   3.3
вып 3.3

3.3

    0
 

ts
T s

P
   ч.,   3.3

вып 3.3

3.3

4.4
 

a
a

a

ts
T s

P
   ч. 

Время выполнения работы «Твердотельное моделирование»: 

  3.5
вып 3.5

3.5

5
    5
  1 

ts
T s

P
    ч.,   3.5

вып 3.5

3.5

0
 

a
a

a

ts
T s

P
   ч. 

Время срабатывания перехода 3( )d t , согласно (4): 

 
        

 

3 2 вып 3.3 вып 3.3 вып 3.5 вып 3.5( ) ( ) max , , ,  

2 max 0,4.4,5,0 7 ч.

a ad t d t T s T s T s T s 

  
  

Время срабатывания переходов 4t  и 5t : 4( ) 8d t   ч., 5( ) 9.2d t   ч. 

Общее время выполнения работы сети, согласно (5), совпадает со 

временем срабатывания последнего перехода общ 9.2D   ч. 
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Аналогично для вариантов 3 и 4 общее время выполнения работы 

сети будет равно 9.65  ч. и 8.75  ч., соответственно. 

В таблице 1 приведены результаты моделирования вариантов 

архитектуры подсистемы автоматизированного проектирования. 

 
Таблица 1 

Результаты работы сети при различных вариантах архитектуры 

№ 
Вариант 

архитектуры 
1( )d t , 

ч. 

2( )d t

, ч. 

3( )d t , 

ч. 

4( )d t

, ч. 

5( )d t

, ч. 

общD , 

ч. 

1 1TS  0 2 7.45 8.45 9.65 9.65 

2 2TS  0 2 7 8 9.2 9.2 

3 3TS  0 2 7.45 8.45 9.65 9.65 

4 4TS  0 2 6.55 7.55 8.75 8.75 

 

Рис. 5 иллюстрирует моменты срабатывания переходов сети для 

разных вариантов развертывания. 

 
Рис. 5. Результаты работы сети при различных вариантах архитектуры 

 

Из решения задачи следует, что предпочтителен четвёртый 

вариант архитектуры подсистемы автоматизированного 

проектирования, т.е. 

 
3.1 3.2 3.3 3.3 3.4

4

3.5 3.5 3.6 3.7

0, 2, 0, 4, 1,

0, 5, 1, 1

a

a

ts ts ts ts ts
TS

ts ts ts ts

     
  

    
. 

В данном варианте распределения работы «Проектирование 

узлов и агрегатов изделия» и «Твердотельное моделирование» 

выполняются в удалённых от собственной платформы узлах 3.3as  и 

3.5as , что минимизирует общее время выполнения проекта. 
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Выводы. 

1. Разработанная на основе сети Петри математическая модель 

архитектуры одного из блоков цифровой платформы легко 

обобщается и может применяться для моделирования любых 

фрагментов системы распределённого проектирования, 

скомпонованных из блоков, показанных на рис. 2. 

2. Предложенный метод распределения задач по узлам сетевой 

ифраструктуры представляет собой алгоритм генерации архитектуры 

системы проектирования без географических ограничений на её 

узлы. 

3. Программная реализация предложенного метода генерации 

архитектуры в форме приложения к PLM-системе может 

существенно повысить качество планирования и управления 

проектами, а также улучшить динамические характеристики 

процессов проектирования изделий машиностроения. 
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engineering products among a given set of task performers. These task performers are 

structurally and geographically connected to their respective digital platforms, 



В.Ф. Белов, С.С. Гаврюшин, А.И. Занкин, В.Ю. Исайкин 

122 

collectively forming a design ecosystem. A mathematical model has been developed, 

which can be successfully applied to generate the architecture of a toolkit covering 

requirements engineering, system architecture, and testing tasks for each project 

assigned to one of the platforms. The use of Petri nets is justified as a modeling method. 

Its implementation in the form of a software application for the Product Lifecycle 

Management (PLM) system of the digital platform can significantly improve project and 

portfolio management quality. 
 

 Keywords:  digital platform, distributed design, Petri net, architecture modeling, design 

eco-system  
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