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При развитии методов прогнозирования существенное значение приобретает 

исключение из исходной информации и исследуемых процессов случайных 

эффектов. Эти эффекты связаны не только с невозможностью учета всех 

факторов, но и с тем, что часть из них нередко совсем не принимаются во 

внимание. Не стоит забывать и про случайные погрешности измерений. В 

прогнозируемых величинах вследствие указанных эффектов создается некий 

случайный фон или «шум». Фильтрация (исключение) шумов должна, естественно, 

повысить достоверность и оправдываемость прогнозов. В статье рассмотрены 

принципы фильтрации данных в масштабе реального времени. Приводится 

постановка задачи, а также основные критерии оценок, которые должны 

выполняться для получения удовлетворительного результата. Разбирается 

принцип работы двух наиболее распространённых видов фильтров – абсолютно 

оптимальных и условно оптимальных, описываются их достоинства и 

недостатки. Рассмотрено применение фильтров Калмана и Пугачева к модели с 

двумя датчиками. Представлены некоторые выводы и рекомендации о том, в 

каких случаях лучше использовать тот или иной фильтр. 

 

Ключевые слова: случайный процесс, фильтрация случайных процессов, 
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Введение. Фильтр Калмана является конечномерным 

приближением к абсолютно оптимальному фильтру, среди его 

достоинств можно выделить следующие: максимально близкие к 

истинным значениям оценки изучаемых параметров системы, 

обработка нелинейных систем, эффективность вычислений. К 

недостаткам фильтра Калмана относятся: сложность вычислений и 

возникающие отсюда ограничения для больших нелинейных систем, 

чувствительность к ошибкам моделирования. 

Дискретный фильтр Пугачева относится к условно оптимальным 

фильтрам. Принцип условно оптимальных фильтров состоит в отказе 

от абсолютной оптимальности, что ведет к снижению точности 

оценок, но существенно упрощает вычисления разностных 

уравнений. Среди его преимуществ можно выделить следующие: 

высококачественная фильтрация, широкий спектр применения, 

простота реализации, низкая сложность вычислений. К недостаткам 
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фильтра Пугачева можно отнести: ограниченный частотный 

диапазон, чувствительность к изменению модели системы, более 

низкая, по сравнению с абсолютно оптимальными фильтрами, 

точность оценок. 

Важно выделить такой тип задач, как фильтрация в масштабе 

реального времени. В задачах данного типа алгоритм фильтрации 

должен не только выдавать удовлетворительный результат, но и быть 

оптимальным с алгоритмической точки зрения, чтобы современные 

компьютеры могли как, можно быстрее выполнить его. Примером 

такой задачи является идентификация траектории и параметров 

функционирующего в условиях неопределенности объекта, например 

движущегося.  

Фильтрация случайных процессов широко используется в 

инженерных и эконометрических приложениях: от радаров и систем 

технического зрения до оценок параметров макроэкономических 

моделей. Калмановская фильтрация является важной частью теории 

управления, играет большую роль в создании систем управления. 

Так, например, в задачах управления летательным аппаратом [1], [2] 

фильтрация может уменьшить влияние шума на точность расчетов. 

Для решения задачи фильтрации в масштабе реального времени 

чаще всего используются два типа фильтров – абсолютно-

оптимальные фильтры (АОФ) и условно-оптимальные фильтры 

(УОФ) [3]. Абсолютно-оптимальные фильтры позволяют получить 

более точный результат. Например, АОФ Стратоновича, основанный 

на поиске апостериорного распределения вероятности, оцениваемого 

случайного состояния. Однако реализация этого фильтра требует 

интегрирования системы дифференциальных уравнений для 

бесконечного числа всех апостериорных моментов и пересчета при 

появлении нового измерения, что приводит к использованию 

конечномерных приближений к АОФ. 

 Практическое применение приближенных методов оптимальной 

фильтрации ограничивается высоким порядком фильтров, особенно в 

задачах большой размерности, в которых даже применение 

простейшего метода нормальной аппроксимации приводит к 

необходимости интегрировать систему уравнений высокого порядка. 

Поэтому единственным способом получения практически 

реализуемых фильтров в задачах большой размерности является 

понижение порядка фильтров. 

Для решения задач в реальном масштабе времени рассмотрим 

принцип дискретного условно оптимального оценивания Пугачева 

[4]. Этот принцип состоит в отказе от абсолютной оптимальности и 

ограничении оптимальными оценками для некоторых ограниченных 

классов допустимых оценок, которые могут быть вычислены в 

масштабе реального времени. 
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         Постановка задачи фильтрации. Фильтрация представляет 

собой математическую модель для решения ряда задач таких как: 

оценка состояния, обработка сигнала и др. Общая идея состоит в том, 

чтобы установить «наилучшую оценку» истинного значения 

состояния некоторой системы на основе неполного, потенциально 

зашумленного набора показаний этой системы. Однако в общем 

случае решение бесконечномерно. 

Математически задача фильтрации может быть сформулирована 

следующим образом: 

n-мерный вектор состояния 
n

tX R  оцениваемого объекта 

удовлетворяет стохастическому дифференциальному уравнению [5]: 

 
0 0 0( , ) ( , ) , ( )t t t t tdX a t X dt B t X dW X x    (1.1) 

m-мерный вектор измерения 
m

Y R
t
 этого состояния известен в 

тактовый момент времени t
k

: 

 ( , ),  0,1...
kk k t kY c X V k   (1.2) 

Здесь 0t t  — время функционирования, kt  — возрастающая 

последовательность известных моментов измерений, tW  —  

одномерный стандартный винеровский процесс, не зависящий от 

случайного начального условия 
0

X
t

с плотностью вероятности 0 0( )x , 

kV  — r-мерный вектор независимого дискретного белого шума.  

Будем предполагать, что зависящие от переменных t и x функции 

сноса  ,a t x  и диффузии  ,B t x  марковского процесса X
t
 

удовлетворяют достаточным условиям  существования и 

единственности сильного решения уравнения (1.1), тогда как его 

начальное условие 
0t

X  имеет конечную дисперсию [6]. 

В формуле измерителя (1.2) каждая функция  ,kc x   также имеет 

конечную дисперсию. Будем также считать все случайные величины 

абсолютно-непрерывными, что позволяет характеризовать их 

соответствующими плотностями вероятности.  

Требуется, используя в каждый момент времени kt T  из любого 

полуинтервала  1,k kkT t t   между двумя тактовыми моментами 

времени и все предыдущие измерения  0 10 , ,...,k

kY Y Y Y , найти оценку 

tZ  или всего вектора состояния tX , или только некоторой его 

наиболее важной части 
n

tX R
 . Последнюю составим из первых 

n n   компонент вектора X
t
.  
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К качеству оценки 
, 0

ˆ ( ),  k

t t kZ x Y t T   информационного вектора 

tX   в каждый момент времени предъявим следующие требования:  

несмещенность оценки: 

   00,t tM X Z t t     (1.3) 

минимум среднеквадратической ошибки: 

     0min
T

t t t t ttI M X Z L X Z t t       
 

 (1.4) 

Здесь M  — оператор математического ожидания, tL  – матрица 

весовых коэффициентов [7]. 

Абсолютно оптимальный фильтр. Если на класс оценивающих 

функций ,
ˆ ( )t kx   растущего со временем числа аргументов  1m k  

ограничений не накладывать, то получим бесконечномерный АОФ 

Стратоновича [8]. Его оптимальная в смысле (1.4) функция находится 

как апостериорное среднее: 

и автоматически обеспечивает выполнение условия 

несмещенности (1.3).  Здесь ˆ ( )k   —  апостериорная плотность 

вероятности, а интегралы здесь и далее берутся по всему евклидову 

пространству соответствующей размерности. 

 0 0, 0 0

*
ˆˆ ( ) | ( , | ) ,

k kk k
t kt k kx y M X Y y x t x y dx t T       (2.1) 

Из-за большой сложности этой процедуры получил 

распространение метод обыкновенных дифференциальных 

уравнений, получаемых для бесконечного количества всех числовых 

характеристик апостериорной плотности, образующих вектор 

достаточных координат tS R . Тогда АОФ описывается цепочкой 

из дифференциального уравнения прогноза и формулы дискретной 

коррекции, пересчитывающей при поступлении каждого измерения 

kY  старое значение 
kt

S  в новое 
kt

S  . При этом вектор оптимальной 

оценки tZ  оказывается частью вектора достаточных координат, так 

что: 

 

0
0 0

( , ), , ( , ), ,

( ) , ,

kk
t t k k k tt

nt tt

S t S t T S Y S k N

S Y Z E O S

 





 

   

    

 (2.2) 

где  ,nE O  —  матрица следующего вида: 
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1 0 0

0 1

1

0

0

 
 
 
 
 
 
 
  
 

. 

Это позволяет осуществить урезание вектора tS , в частности, до 

двух параметров гауссовского приближения к плотности ˆ ( )k  , 

являющейся оценкой ˆ
tX  всего вектора tZ , матрицы апостериорных 

ковариаций текущего состояния объекта tP . Урезание вектора tS  

дает известные уравнения линеаризованного фильтра нормальной 

аппроксимации уже с конечным 
 3

2

n n
-мерным вектором 

состояния. Дополнительная же линеаризация уравнений системы 

(1.1), (1.2) в окрестности оценки tZ  и средних значений помех tW , kV  

позволяет получить более простые уравнения обобщенного фильтра 
Калмана без изменения размерности вектора состояния. В результате 
оба фильтра оказываются довольно медленными.  

Фильтр Калмана. При использовании фильтра Калмана для 

получения оценок вектора состояния процесса по серии 

зашумленных измерений необходимо представить модель данного 

процесса в соответствии со структурой фильтра, а именно, в виде 

матричного уравнения определённого типа. Для каждого такта k  

работы фильтра необходимо в соответствии с приведённым ниже 

описанием определить следующие матрицы: эволюции процесса kF ; 

матрицу наблюдений kH ; ковариационную матрицу процесса kQ ; 

ковариационную матрицу шума измерений kR ; а при наличии 

управляющих воздействий еще и матрицу их коэффициентов kB . 

Модель системы (процесса) подразумевает, что истинное 

состояние в момент k  получается из истинного состояния в момент 

1k   в соответствии с уравнением: 

 1k k k k k kx F x B u w   ,  (2.3) 

где kF  — матрица эволюции системы (процесса), которая 

воздействует на вектор 1kx   (вектор состояния в момент 1k  ); 

kB  — матрица управления, которая прикладывается к вектору 

управляющих воздействий ku ; 
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kw — нормальный случайный процесс с нулевым вектором 

математического ожидания и ковариационной матрицей kQ , который 

описывает случайный характер эволюции системы (процесса): 

  ~ 0, kkw N Q . (2.4) 

В момент k  производится наблюдение (измерение) kz  истинного 

вектора состояния kx , которые связаны между собой уравнением: 

 k k k kz H x v  , (2.5) 

где kH  — матрица измерений, связывающая истинный вектор 

состояния и вектор произведенных измерений, kv  — белый 

гауссовский шум измерений с нулевым математическим ожиданием 

и ковариационной матрицей kR : ~ (0, )k kv N R . 

Начальное состояние и векторы случайных процессов на каждом 

такте 0 1 1{ , ,..., , ,..., }k kx w w v v  считаются независимыми. 

Условно-оптимальные фильтры.  В отличие от АОФ быстрый 

фильтр Пугачева определен при n n  , имеет порядок объекта и 

накладывает на последовательность оценивающих функций ,
ˆ ( )t kx   

ограничения рекурсивности. Его дискретная версия определяется 

нелинейным разностным уравнением и позволяет найти оценки 

только в тактовые моменты времен [9]. 

Рассмотрим принцип дискретного условно оптимального 

оценивания Пугачева. Этот принцип состоит в отказе от абсолютной 

оптимальности и ограничении оптимальными оценками для 

некоторых ограниченных классов допустимых оценок, 

удовлетворяющих некоторым простым в реализации разностным 

уравнениям, которые могут быть вычислены на основе результатов в 

масштабе реального времени. 

Первой особенностью нелинейного условно оптимального 

оценивания является то, что такое оценивание является 

многокритериальным, поскольку требуется минимизация для любого 

момента времени из некоторого интервала. 

Второй особенностью является то, что оптимальные 

коэффициенты фильтров должны определяться только априорными 

данными без использования текущих наблюдений, как это имеет 

место в фильтрах Калмана. Данные текущих наблюдений 

используются только в процессе фильтрации при рекуррентном 

решении уравнений фильтра. 

Рассмотрим систему уравнений: 
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1

1

( , , ),

( , , ).

l l l l l

l l l l l

Y w Y X V

X w Y X V




 (3.1) 

Определим класс допустимых фильтров формулой ˆ
l lX AU  и 

разностным уравнением: 

 1 ( , )l l l l l lU Y U     . (3.2) 

Здесь A  — некоторая постоянная, l  — некоторые известные, 

так называемые структурные функции, l  — произвольные матрицы 

коэффициентов фильтров, а l  — произвольные матрицы столбцы 

смещений нуля. 
Согласно Пугачеву [3], примем за оптимальный допустимый 

фильтр, найденный в результате предыдущих шагов, который 

минимизирует средний квадрат ошибки 
2

1 1
ˆ

l lM X X 
 
 

 на каждом 

шаге путем выбора l , l при данных значениях h , ,h h l  . Такой 

фильтр называется дискретным условно оптимальным фильтром или 
дискретным фильтром Пугачева. 

Дискретный фильтр Пугачева для нелинейных 

регрессионных уравнений. Записав (3.1) в форме: 

 1
ˆ ( , )l l l l l lX A Y U A      (3.3) 

Можно заметить, что средний квадрат ошибки 
2

1 1
ˆ

l lM X X 
 
 

 

будет минимальным тогда и только тогда, когда правая часть 

уравнения (3.2) представляет собой линейную  средне квадратичную 

регрессию случайной величины 1lX  на случайный вектор ( , )l l lY U .  

Таким образом, имеем следующие два уравнения для 

нахождения оптимальных значений l  и l . 

 1
ˆ( , )l l l l l lA M Y U A MX     . (3.4) 

 1 1( ) ( , ) 0T

l l l l lM AU X Y U    (3.5) 

Полагая: 

 1 1, ( , ).l l l l l lm MX p M Y U    (3.6) 

Получаем: 

 1l l l lA m A p   . (3.7) 

Подставляя в (3.4) выражение (3.1) приходим к уравнению для l  

   1 1( , ) ( , ) ( ) ( , ) 0T T

l l l l l l l l l l l l lA M Y U p Y U M X m Y U         (3.8) 
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Отсюда, обозначая: 

 
 

1 1

( , ) ( , ) ,

( ) ( , ) .

T

l l l l l l l l

T

l l l l l l

B M Y U p Y U

D M X m Y U

 

 

 

 
 (3.9) 

Находим: 

 
1

l l lA D B  . (3.10) 

Формула (3.7) определяет lA  если матрица lB  обратима. 

Последнее всегда имеет место, когда компоненты вектора ( , )l l lY U  

линейно независимы. 

Вычислим математические ожидания в (3.7)-(3.9). В результате 

получим: 

  

 

1 1

1 1

1 1

( , ), ( ( , ), ),

( ( , ), ) ( ( , ), ) ,

( , ) ( ( , ), ) .

l l l l l l l l l l

T

l l l l l l l l l l l l

T

l l l l l l l l l l

m M X V p M X V U

B M X V U p X V U

D M X V m X V U

  

   

  





 

 

 

 (3.11) 

Для вычисления по формулам (3.10) достаточно знать 

распределение случайной величины lV  и совместное распределение 

случайных величин ,l lX U . 

Для того чтобы найти совместное  распределение случайных 

величин ,l lX U , запишем (3.2) в виде: 

 1 1( ( , ), ),l l l l l l l lU X V U      . (3.12) 

Тогда одномерная характеристическая функция 

  1, ( , ) exp T T

l l lg M i X i U      (3.13) 

определится уравнениями: 

  1, 1 1( , ) exp ( , ) [ ( ( , ), ), ]T T

l l l l l l l l l l lg M i X V i X V U             (3.14) 

Начальным условием для рекуррентного уравнения (3.13) служит 

начальное значения характеристической функции: 

  1,1 1 1( , ) exp T Tg M i X i U     , (3.15) 

вычисляемое для начальных значений 1 1,X U . 

Таким образом, имеем следующий результат. 

Пусть уравнения дискретной стохастической системы (3.2) 

допускают существования одномерных моментов. Тогда, если 

матрица 1B  невырожденная, фильтр Пугачева определяется 
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рекуррентными уравнениями (3.2), (3.3), (3.7), (3.10) с (3.9) и 

уравнением (3.14) при условии (3.15). 

В результате все искомые параметры выражаются через два 

первых момента известных случайных величин и их можно найти 

заранее практически точно методом Монте-Карло, с помощью 

потактового статистического моделирования уравнений объекта 

(1.1), измерителя (1.2) и фильтра (3.6). Очевидно, что оценки УОФ 

заведомо менее точные, чем АОФ, зато практических трудностей с их 

получением в реальном времени не возникает в силу простоты 

уравнений фильтра. Недостатком обеих версий УОФ является выбор 

структурных функций, вид которой очевидным образом влияет на 

точность оценивания, лишь из некоторых эвристических 

соображений. 

Пример численного моделирования. Рассмотрим задачу 

рекуррентного оценивания неизвестного скалярного параметра   на 

основе наблюдений, поступающих от двух независимых однотипных 

датчиков, с использованием фильтра Калмана и фильтра Пугачева.  

Воспользуемся сначала фильтром Калмана для решения данной 

задачи. В этом случае уравнения системы и наблюдений имеют вид: 

 1 0, 0,1...,  ,k kx x k x      (4.1) 

 
(1) (1) (2) (2),  ,k k k k k ky x v y x v     (4.2) 

где (1) (2) (1) (2)

1 2 0, , , (0, ), (0, ), ( , ).k k k k kx y y R v N r v N r x N m P   

Оптимальная оценка ˆ
kx  неизвестного параметра на основе всех 

наблюдений (4.2) определяется дискретным фильтром Калмана с 

параметрами: 

 
1 2 1, 2,

1,  0,  [1,1] ,

[ , ],  [ , ].

T

k k k k

k k k k

F G Q H

R diag r r B B B

   

 
 

Воспользовавшись формулами (2.3)-(2.5) получаем: 

 

(1) (2)

1 1, 1 1 2, 1 1

0

2 1
1, 1

1 2 1 2 1

1 1
2, 1

1 2 1 2 1

1 2 1
1

1 2 1 2 1

ˆ ˆ ˆ ˆ( ) ( ),

ˆ ,

,
[ ( ) ]

,
[ ( ) ]

.
[ ( ) ]

k k k k k k k k

k
k

k

k
k

k

k
k

k

x x B y x B y x

x m

r P
B

r r r r P

r P
B

r r r r P

r r P
P

r r r r P



    
















    




 


 


 

 (4.3) 
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Используя метод математической индукции, получаем явное 

решение для дисперсии ошибки фильтрации kP : 

 1 2
12

12 1 2

,  .
(1 ) 2

k

P r r
P r

kr P r r






 


 (4.4) 

Применим условно оптимальный фильтр Пугачева для решения 

этой же задачи. Обозначим через (1)ˆ
kx  и (2)ˆ

kx условно оптимальные 

оценки неизвестного параметра kx   на основе наблюдений 

первого и второго датчиков, соответственно. Уравнения оценок 

будут выглядеть следующим образом: 

 

 

(1) (1) (1) (1) (1)

1 1 1

(1)

(1) (1) (1)

1| 0

(1)

1|(1) (1) (1) (1)

1 1 1 1|(1)

1 1|

ˆ ˆ ˆ( ),

ˆ ,

, ,

, 1

k k k k k

k

k k k

k k

k k k k k

k k

x x B y x

x m

P P P P

P
B P K P

r P





  





   



  



 

  


 (4.5) 

                   

и 

 

 

(2) (2) (2) (2) (2)

1 1 1

(2)

(2) (2) (2)

1| 0

(2)

1|(2) (2) (2) (2)

1 1 1 1|(2)

2 1|

ˆ ˆ ˆ( ),

ˆ ,

, ,

, 1

k k k k k

k

k k k

k k

k k k k k

k k

x x B y x

x m

P P P P

P
B P K P

r P





  





   



  



 

  


 (4.6) 

Из уравнений (4.5), (4.6) получаем явные формулы для 

дисперсий ошибок: 

 

(1) 1

1

(2) 2

2

,

.

k

k

r P
P

r k

r P
P

r k











 (4.7) 

Согласно [12] получим следующую формулу для новой оценки 

неизвестного параметра kx   на основе всех наблюдений: 

 * (1) (1) (2) (2)ˆ ˆ ˆ
k k k k kx c x c x  , (4.8) 

где 
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(2) (12) (1) (12)

(1) (2)

(1) (12) (2) (1) (12) (2)
,  

2 2

k k k k
k k

k k k k k k

P P P P
c c

P P P P P P

 
 

   
. (4.9) 

Корреляция (12)

kP  определяется уравнением: 

   (12) (1) (2) (12) (12)

1 1 1 01 1 ,  k k k kP B B P P P      . (4.10) 

Истинная дисперсия ошибки условно оптимального фильтра 

имеет вид: 

    
2 2

* (1) (1) (1) (2) (12) (2) (2)2k k k k k k k kP c P c c P c P   . (4.11) 

В таблице 1 представлены результаты вычислений дисперсий 
ошибок фильтрации при следующих значениях параметров: 

1 20.5,  1,  2.r r P    Параметр 

*

k k
k

k

P P

P



  — относительная 

ошибка условно оптимального фильтра. 
 

Таблица 1 

Результаты вычислений дисперсий ошибок фильтрации 

k 
(1)

kP  
(12)

kP  
(2)

kP  
(1)

kc  
(2)

kc  
*

kP  kP  k  

0 2 2 2 - - 2 2 0 

1 0.666 0.333 1 
2

3
 

1

3
 0.570 0.5 0.141 

2 0.4 0.133 0.666 
2

3
 

1

3
 0.302 0.285 0.058 

3 0.286 0.071 0.5 
2

3
 

1

3
 0.202 0.2 0.014 

4 0.222 0.0444 0.4 
2

3
 

1

3
 0.152 0.154 0.006 

5 0.182 0.0303 0.333 
2

3
 

1

3
 0.123 0.125 0.016 

6 0.154 0.022 0.286 
2

3
 

1

3
 0.103 0.105 0.02 

7 0.133 0.0167 0.25 
2

3
 

1

3
 0.089 0.091 0.022 

8 0.11 0.013 0.222 
2

3
 

1

3
 0.078 0.071 0.022 

 

Сравнительный анализ фильтров. Как видно из таблицы и рис. 

1-2, дисперсия ошибки условно оптимального фильтра *

kP  

практически близка к дисперсии ошибки абсолютно оптимального 
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фильтра kP  Калмана. При увеличении числа итераций относительная 

погрешность стремится к нулю. За эталонную дисперсию была 

принята дисперсия абсолютно оптимального фильтра, так как он 

заведомо дает более точные оценки. Однако, как можно заметить, 

уже на восьмой итерации разница между дисперсиями составляет 

чуть более трех процентов. Данные результаты свидетельствуют о 

том, что в задачах реального времени большой размерности в случае, 

если фильтр Калмана показывает неудовлетворительный результат в 

рамках производительности, то условно оптимальные фильтры могут 

стать достойной альтернативой. 

 

 
 

Рис. 1. Графики дисперсий фильтра Калмана и Пугачева для 40 итераций 

 

 
 

Рис. 2. График относительной ошибки условно оптимального фильтра 
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Сравнительный анализ фильтров. Как видно из таблицы и рис. 

1-2, дисперсия ошибки условно оптимального фильтра *

kP  

практически близка к дисперсии ошибки абсолютно оптимального 

фильтра kP  Калмана. При увеличении числа итераций относительная 

погрешность стремится к нулю. За эталонную дисперсию была 

принята дисперсия абсолютно оптимального фильтра, так как он 

заведомо дает более точные оценки. Однако, как можно заметить, 

уже на восьмой итерации разница между дисперсиями составляет 

чуть более трех процентов. Данные результаты свидетельствуют о 

том, что в задачах реального времени большой размерности в случае, 

если фильтр Калмана показывает неудовлетворительный результат в 

рамках производительности, то условно оптимальные фильтры могут 

стать достойной альтернативой. 

Анализ результатов. Абсолютно оптимальные фильтры, к 

которым можно отнести фильтр Калмана, обладают следующими 

преимуществами: 

1. Обеспечивает точные оценки. Фильтр Калмана предназначен 

для обеспечения точных оценок состояния системы даже при 

наличии шума и неопределенности. 

2. Обработка нелинейных систем. Фильтр Калмана может 

обрабатывать нелинейные системы, используя нелинейную модель 

пространства состояний и численные методы, такие как 

расширенный фильтр Калмана. 

3. Эффективные вычисления. Фильтр Калмана эффективен в 

вычислительном отношении и может быть реализован в приложениях 

реального времени. 

4. Оптимальная оценка. Фильтр Калмана обеспечивает 

оптимальную оценку состояния системы путем минимизации 

среднеквадратичной ошибки между оценкой и истинным состоянием. 

5. Надежность. Фильтр Калмана устойчив к шуму измерения и 

может обрабатывать отсутствующие или поврежденные данные с 

помощью вероятностной структуры. 

С другой стороны, он обладает следующими недостатками: 

1. Сложность. Фильтр Калмана требует хорошего понимания 

динамики системы и модели измерения. Разработка фильтра Калмана 

для сложных систем с несколькими состояниями и измерениями 

является достаточно сложной задачей. 

2. Чувствительность к ошибкам моделирования. Работа фильтра 

Калмана чувствительна к ошибкам моделирования, таким как 

неверные предположения о статистике шума или динамике системы. 

3. Реальные ограничения: в реальном мире допущения, 

сделанные фильтром Калмана, могут не выполняться, например 

линейная динамика или гауссовский шум. Это может привести к 

неточным оценкам. 
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4. Параметры настройки. Производительность фильтра Калмана 

сильно зависит от настройки параметров, таких как шум процесса и 

шум измерения. 

5. Ограничения для сильно нелинейных систем. Хотя 

расширенный фильтр Калмана может работать с нелинейными 

системами, он имеет ограничения для сильно нелинейных систем, 

например, с несколькими режимами работы. 

6. Фильтр Пугачева относится к условно оптимальным 

фильтрам, среди его достоинств: 

‒ высококачественная фильтрация: фильтр Пугачева 

обеспечивает высококачественную фильтрацию сигналов, что делает 

его полезным в приложениях, где требуется точная оценка 

параметров; он может отфильтровывать нежелательные шумы и 

помехи, что приводит к более чистому выходному сигналу; 

‒ широкий спектр применений: фильтр Пугачева можно 

использовать в широком спектре приложений, включая обработку 

звука, радарные системы, системы связи и медицинское 

оборудование; 

‒ простота реализации: фильтр Пугачева относительно легко 

реализовать с использованием аналоговой или цифровой схемы, что 

делает его популярным выбором для многих приложений; 

‒ упрощение вычислений: за счет отказа от абсолютной 

оптимальности фильтр Пугачева позволяет использовать 

упрощенные разностные уравнения, что позволяет быстрее получать 

оценки параметров в масштабе реального времени. 

7. Фильтр Пугачева также не лишен недостатков, среди которых 

можно выделить следующие: 

‒ требует предварительного задания нелинейной структуры 

уравнения из эвристических соображений, что допускает понижение 

точности; 

‒ сложность: также как и фильтр Калмана, фильтр Пугачева 

требует хорошего понимания динамики системы и модели 

измерения; 

‒ точность оценок: оценки заведомо менее точные, чем у 

абсолютно оптимальных фильтров. 

Выводы. Принимая все детали во внимание, можно сделать 

следующий вывод: если система не задается большим числом 

уравнений, для оптимизации работы фильтра можно использовать 

следующие подходы: можно увеличить период фильтрации, то есть 

пропускать часть тактов работы для снижения вычислительных 

затрат или использовать более производительное оборудование, 

которое позволит поддерживать вычисления в реальном времени. В 

таком случае предпочтительнее использовать фильтр Калмана или 

его различные улучшенные версии. Если же система достаточно 
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сложна и имеет множество уравнений, и вычислительных 

возможностей не хватает для расчетов временных тактов в реальном 

времени, при этом высокой точностью оценок можно пренебречь, то 

рекомендуется использовать условно оптимальные фильтры, такие 

как фильтр Пугачева. 
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numerical methods for solving the problem of continuous-

discrete filtering of random processes in real time 
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With the development of forecasting methods, the exclusion of random effects from the 
initial information and the studied processes becomes essential. These effects are 
associated not only with the impossibility of taking into account all factors, but also with 
the fact that some of them are often not taken into account at all. It is important not to 
forget about random measurement errors. In the predicted values, due to these effects, a 
kind of random offset or "noise" is created. Filtering (exclusion) of noise should, of 
course, increase the reliability and justifiability of forecasts. This article discusses the 
principles of real-time data filtering. The problem statement is given, as well as the main 
evaluation criteria that must be met to obtain a satisfactory result. In addition, the 
principle of operation of the two most common types of filters – absolutely optimal and 
conditionally optimal - is analyzed, their advantages and disadvantages are described. 
The application of Kalman and Pugachev filters to a model with two sensors is 
considered. Some conclusions and recommendations are presented on in which cases it is 
better to use one or another filter. 

 

Keywords: stochastic process, filtering stochastic processes, absolute optimal filters 
conditionally optimal filters, discrete filter of Pugachev, discrete filter of Kalman, real-
time processing 
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