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Данная работа посвящена численному решению нестационарной задачи 

оптимального размещения источников тепла минимальной мощности. 

Постановка задачи требует одновременного выполнения двух условий. Первое 

условие ― обеспечить нахождение температуры в пределе минимальных и 

максимальных температур за счет оптимального размещения источников тепла с 

минимальной мощностью в прямоугольнике. Второе условие заключается в том, 

чтобы суммарная мощность источников тепла, используемых для обогрева, была 

минимальной. Эта задача изучалась в стационарных условиях в работах других 

учёных. Однако в нестационарном случае задача не рассматривалось. Поскольку 

найти непрерывное решение краевой задачи сложно, то ищем численное решение 

задачи. Трудно найти интегральный оператор с непрерывным ядром (функция 

Грина). Найдено численное значение функции Грина в виде матрицы. Предложен 

новый алгоритм численного решения ностационарной задачи оптимального 

управления размещением источников тепла с минимальной мощностью в 

процессах, описываемых дифференциальными уравнениями с частными 

производными параболического типа. Предложена новая методика численного 

решения. Построена математическая и численная модель процессов, описываемых 

уравнением теплопроводности с постоянными коэффициентами, заданными для 

первой краевой задачи. Краевая задача изучается для двумерного случая. Для 

численного решения задачи использовалась неявная конечно-разностная схема. По 

этой схеме была создана система разностных уравнений. Сформированная 

система разностных уравнений приведена к задаче линейного программирования. 

Задача линейного программирования решается с помощью М-метода. При 

каждом значении времени решается задача линейного программирования. 

Предложен новый подход к численному решению задач. Приведена общая блок-

схема алгоритма решения нестационарной задачи оптимального управления 

размещением источников тепла с минимальной мощностью. Разработан 

алгоритм и программное обеспечение для численного решения задачи. Приведено 

краткое описание программного обеспечения. На конкретных примерах показано, 

что численное решение краевой задачи находится в заданных пределах, сумма 

оптимально размещенных источников тепла с минимальной мощностью дает 

минимум функционалу. Визуализированы результаты вычислительного 

эксперимента. 

 

Ключевые слова: уравнение теплопроводности, нестационарные задачи, 

оптимальное размещение, источник тепла, неявные схемы, М-метод 

  

Введение. Одним из самых распространенных объектов в 

различных сферах деятельности человека является система 

источников тепла, тепловой баланс в отапливаемых помещениях. 
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Математическое моделирование таких систем ставит задачу об 

оптимальном размещении источников тепла в отапливаемых 

помещениях, что связано с ресурсосберегающими инженерными 

технологиями. Задача оптимального размещения источников тепла 

отапливаемых площадей всегда была актуальной при проектных 

работах в строительстве, теплицах и других технических и 

технологических сферах. Задачи этого типа были изучены для 

стационарного случая. Однако задача оптимального размещения 

источников тепла с минимальной мощностью для нестационарного 

случая не изучена. Трудно найти точное решение этих задач. 

Поэтому в статье показано численное решение задачи. 

В работах [1-4] изучалась постановка задачи оптимального 

управления краевой задачей параболического типа, существование 

решения и решение приближенными методами. В работе [5] 

рассматривается задача оптимизации плотности источников тепла в 

стационарных процессах, описываемых эллиптическими 

уравнениями, задаваемыми третьим граничным условием. В работе 

[6] разработаны новые методы решения задачи оптимального 

размещения источников в неоднородных средах, описываемых 

уравнениями эллиптического и параболического типа. Показан метод 

выбора оптимального варианта размещения источника из 

допустимого множества на основе метода ветвей и границ. В работе 

[7] изучено влияние эффекта Коанда на скорость теплопередачи в 

одиночном цилиндре с учетом расстояния до стенки. Найдено 

оптимальное расстояние цилиндра от стенки. В работе [8] влияние 

управляющих параметров на тепловое явление в случае смешанного 

конвективного теплообмена в закрытом помещении с дискретными 

источниками тепла исследовано численно методом коллокации 

кубических сплайнов. В работе [9] рассмотрены задачи оптимального 

нагрева помещения на основе принципа максимума Понтрягина. В 

работе [10] рассмотрена задача энергоэффективного теплоснабжения 

здания в системе центрального отопления. В работах [11-13] 

предложен метод численного решения нестационарной задачи 

оптимального размещения источников тепла с минимальной 

мощностью в процессах, описываемых уравнениями 

параболического типа. Разработан алгоритм и комплекс программ 

для численного решения нестационарных задач оптимального 

управления расположением источников тепла и визуализации 

полученных результатов. В работе [14] рассмотрена краевая задача 

параболического типа. Распределение тепла в рассматриваемом теле 

контролируется функцией, которая находится на границе тела. В 

работе [15] изучена задача оптимального управления процессами, 

описываемыми уравнением теплопроводности. Управляющий 

параметр задан в граничном условии и достиг минимума 
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функционала, задаваемого интегральным квадратичным выражением. 

Показан метод нахождения допустимого управления, дающего 

минимум функционалу. 

В настоящей работе рассмотрена задача управления 

теплопроводности на основе оптимизации линейного целевого 

функционала с учетом ограничений, которая решается на основе 

аппроксимации и сведения к задаче линейного программирования. В 

работе предлагаются метод и алгоритм решения нестационарной 

задачи поддержания температуры внутри области в заданных 

пределах, путем оптимального размещения источников тепла в 

прямоугольнике. Для проведения вычислительных экспериментов 

было разработано программное обеспечение. 
Математическая постановка задачи. В области 
{ , , 0 }D a x b c y d t T        требуется найти функцию 

( , , ) 0f x y t   такую, что для любого [0, ]t T  линейный функционал 

 { } ( , , ) min,

b d

a c

J f f x y t dydx    (1) 

достигал минимума и удовлетворялись следующие условия: 

 

2 2

2 2

0

1 2

3 4

( , , ), ( , ), ( , ), (0, ],

( , ,0) ( , ), , ,

( , , ) ( , ), ( , , ) ( , ), , 0 ,

( , , ) ( , ), ( , , ) ( , ), , 0 ,

u u u
f x y t x a b y c d t T

t x y

u x y u x y a x b c y d

u a y t y t u b y t y t c y d t T

u x c t x t u x d t x t a x b t T



 

 

   
      

   

    

     

     

 (2) 

 ( , , ) ( , , ) ( , , ), ( , , ) ,m x y t u x y t M x y t x y t D    (3) 

где ( , , )u u x y t  ― температура в точке ( , )x y  прямоугольника в 

момент t ;   ― коэффициент температуропроводности;  

0 ( , )u x y , 1( , )y t , 2 ( , )y t , 3( , )x t , 4 ( , ),x t  ( , , )m x y t , ( , , )M x y t  

― заданные непрерывные функции, удовлетворяющие условия 

сопряжения 

1( , )c t   3( , ),a t  1 4( , ) ( , )d t a t  , 

2 3( , ) ( , )c t b t  , 2 4( , ) ( , )d t b t  . 

Функции ( , , )m x y t , ( , , )M x y t  имеют смысл функций минимального и 

максимального профиля температуры в области D  соответственно. 
Источник тепла описывается квадратично интегрируемой функцией 

( , , )f x y t  в пространстве 2 ( )L D . 
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Пусть  

 
2 2

2 2
.

u u u
Lu

t x y

   

   
   

 

Оператор L , определенный в 2 ( )L D , имеет обратный 1.L  Здесь 

1L  интегральный оператор с непрерывным ядром (функция Грина). 

Используя его, можно записать задачу (1)-(3) в следующем виде: 

 
2

1

( , , ) ( ), ( , , ) 0,

( , , ) ( )( , , ) ( , , ).

f L D f x y t

m x y t L f x y t M x y t

    

 
 (4) 

Конечно-разностная аппроксимация задачи. Поскольку трудно 

найти непрерывное решение задачи (1)-(4), ищем численное решение 

задачи. В этом случае, используя неявную схему, заменяем задачу (2) 

конечно-разностным уравнением. 

Введем в D  равномерную по трем переменным разностную сетку 

 
1 2 1 2 1 2{( , , ),h h h h i j kx ih y jh t k             

 10, ,i N 20, ,j N 30, }k N  

с шагами 

 1 1,( ) /h b a N  2 2/ ,( )h d c N  3./T N   

Неявная разностная схема для задачи (2) имеет вид: 

 

1

1 1 1 1 1 1 1

1 1 1 1 1
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1 2

1 2 3

0

0 1 2

1 1
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,
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ij ij i j ij i j ij ij ij k

ij

ij i j

k k

j j k N j j k

u u u u u u u u
f

h h

i N j N k N

u u x y i N j N

u y t u y t




 

      

    

 

 

     
    

 

        

    

 

2

2 3

1 1

0 3 1 4 1 1 3

), 0, , 0, 1,

( , ), ( , ), 0, , 0, 1.k k

i i k iN i k

j N k N

u x t u x t i N k N  

 














  



    

 (5) 

Введем обозначения 

 
2 2 2 2

1 2 1 2

1 2 2
, , .XY X Y

h h h h

   



 
       
 

 

Рассмотрим расширенную матрицу системы: 
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0 0 0 0

0 0 0 0

.

0 0 0 0

0 0 0 0

Y X

Y Y X

A

X Y Y

X

XY

XY

XY

XYY

 
 
 
 
 
 
 
  

 

Получим 

 
1.G A  

Аппроксимируем задачу (1)-(5) в виде задачи линейного про-

граммирования. Разделим область D  по , ,x y t  соответственно на 1N , 

2N , 3N  равных частей: 

 
3 1 2

1 1 1

N N N

k

ij

k i j

D D
  

 , 

где 

 {( , , ),k

ijD x y t  1 1 1, },,i i j j k kx x x y y y t t t         

 11, ,i N  21, ,j N  31, .k N  

В пространстве 2 ( )L D  функции 

 ( , , ),k

ij i j kf f x y t  ( , , ) k

ijx y t D , 

 1 2 3( 1, 1, 1, 1, 1, )i N j N k N      

определяются как кусочно-постоянные функции. Отсюда получим 

 
3 1 21 1

1 1 1

( , , ) .
N N N

k

ij

k i j

f x y t f
 

  

  

Пусть 

 ,pqg G ( , , ),k

ij i j km m x y t  ( , , ),k

ij i j kM M x y t  ,k k

q ijf f  

1 2( 1)( 1),N N N    ,p q  2( 1)( 1) ,q i N j    1, ,p N 1, ,q N  

 11, 1,i N   21, 1,j N   31, .k N  

Подставим выражение ( , , )f x y t  в (1) и заменим неравенство (4) 

на сеточные функции. 
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После этого получим следующую задачу линейного 

программирования: 

21 11

3

1 1

1 2 3

1

3

{ } (mes ) min, 1,2,..., ,

, 1, , 1, 1, 1, 1, 1, ,

0, 1,2,..., , 1,2,..., .

NN
k k

k ij ij

i j

N
k k k

ij pq q ij

q

k

q

J f D f k N

m g f M p N i N j N k N

f q N k N



 



  

       

  



 (6) 

Задача (6) решается M-методом [16]. Численное решение задачи 

(2) находится с помощью 

1

N
k k

ij pq q

q

u g f


 ,  1( 1) ( 1) 1i p N     , 2( 1)mod ( 1) 1 ,j q N     

где обозначение   есть символ целочисленного деления, а mod  есть 

символ остатка от деления. Найденная 
k

qf  является функцией, 

дающей минимум функционалу (1). 

Численные эксперименты. Для приближенного решения задачи 

(1)-(6) разработано программное обеспечение на языке C#. Для 

визуализации результатов использовались 3D-графики MathCAD. 

Была расмотрена следующая задача. Требуется найти 

оптимальное расположение источников тепла с минимальной 

мощностью в прямоугольнике. Задача решалась при следующих 

входных данных: , [0,1]x y , коэффициент температуропроводности 

1   м
2

/с, начальное и граничные условия определяются 

функциями: 

 2 2

0 ( , ) 2u x y x y    м/с, 2 2

1( , ) 2y t y t     м/с, 

 2 2

2 ( , ) 3y t y t     м/с, 2 2

3( , ) 2x t x t     м/с, 

 2 2

4 ( , ) 3x t x t     м/с, 

минимальная и максимальная температуры задаются функциями 

 
2 2 2( , , ) 1m x y t x y t     К, 

 
2 2 2( , , ) 4M x y t x y t     K, 

окончание времени 1.T   Расчетная сетка с числом источников 

 2 31( 1) ( 1) 9 9 10.N N N        

Минимальное значение функционала при численном решении 

равно min 9 362.J   K м/с.  
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На рис. 1 представлены результаты численного решения задачи 

(6). Представлены результаты с минимальным (границы с синим 

цветом, ниже), максимальным (границы с красным цветом, выше) и 

приближенным (зеленым цветом, посередине) значением 

температуры. На рис. 2 показано оптимальное расположение 

источников тепла с минимальной мощностью в виде гистограммы. 

 

 
 

Рис. 1. График решения задачи (6) при t T  

 

 

 
Рис. 2. Оптимальное расположение источников тепла  , ,f x y t  
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а) б) 

Рис. 3. График решения задачи (6): а ― при 0.1t  ; б ― при 0.5t   

 

Из рисунков 1 и 3 видно, что решение задачи лежит в заданном 

пределе, т.е. решение удовлетворяет неравенству (3). Видно, что 

значение ( , , )u x y t  практически равно минимальной температуре. Это 

означает, что функционал { }kJ f  достигает минимума. 

 

 
 

а) б) 

Рис. 4. Оптимальное расположение источников тепла: 

а ― при 0.1t  ; б ― при 0.5t   

 

На рис. 2 и 4 мощность оптимально размещенных источников 

тепла отображается в виде гистограммы. Все источники мощности 

выделены зеленым (рис. 2) и разными цветами (рис. 4). В этом случае 

источники большой мощности расположены в основном на границе 

внутренних узловых точек. Черные линии на рисунке образованы 

наложением источников тепла в каждый фиксированный момент 

времени. 

Выводы. Предложены методика и алгоритм решения 
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заданных пределах путем оптимального размещения источников 

тепла в прямоугольнике. Задача решена на основе численного 

моделирования процесса распространения тепла и последовательного 

решения задач линейного программирования. Результаты 

вычислительного эксперимента подтверждают достижение 

функционалом минимума и решение основной задачи. Реализация 

комплекса программ позволит анализировать оптимальность систем 

отопления на строительных площадках, визуализировать размещение 

источников тепла разной мощности, сократить время расчетов, 

широко внедрить энергосберегающие технологии, резко снизить 

энергозатраты и повысить энергоэффективность. Это способствует 

повышению точности и эффективности проектных работ. 

Работа выполнена при финансовой поддержке Узбекского фонда 

фундаментальных исследований (проект ОТ-Ф4-33). 
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Numerical modeling of the non-stationary problem of 

optimal placement of heat sources of minimum power in a 

homogeneous medium 

 B.Kh. Khayitkulov 

National University of Uzbekistan, Tashkent, 100174, Uzbekistan 

 
This work is devoted to the numerical solution of the non-stationary problem of optimal 
placement of heat sources of minimum power. The statement of the problem requires the 
simultaneous fulfillment of two conditions. The first condition is to ensure that the 
temperature is within the limits of minimum and maximum temperatures due to the 
optimal placement of heat sources with a minimum power in the rectangle. The second 
condition is that the total power of the heat sources used for heating is minimal. This 
problem was studied under stationary conditions in the works of other scientists. 
However, the problem was not considered in the non-stationary case. Since it is difficult 
to find a continuous solution to the boundary value problem, we are looking for a 
numerical solution to the problem. It is difficult to find an integral operator with a 
continuous kernel (Green's function). We find the numerical value of the Green's function 
in the form of a matrix. A new algorithm for the numerical solution of a non-stationary 
optimal control problem for the placement of heat sources with a minimum power in 
processes described by parabolic partial differential equations is proposed. A new 
technique for numerical solution is proposed. A mathematical and numerical model of 
the processes described by the heat conduction equation with constant coefficients given 
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for the first boundary value problem is constructed. The boundary value problem is 
studied for the two-dimensional case. An implicit finite difference scheme was used to 
solve the problem numerically. According to this scheme, a system of difference 
equations was created. The formed system of difference equations is reduced to a linear 
programming problem. The problem of linear programming is solved using the M-
method. For each time value, a linear programming problem is solved. A new approach 
to the numerical solution of problems is proposed. A general block diagram of the 
algorithm for solving the non-stationary problem of optimal control of the placement of 
heat sources with a minimum power is given. An algorithm and software for the 
numerical solution of the problem have been developed. A brief description of the 
software is given. On specific examples, it is shown that the numerical solution of the 
boundary value problem is within the specified limits, the sum of optimally placed heat 
sources with a minimum power gives a minimum to the functional. The results of the 
computational experiment are visualized. 

 

Keywords: heat equation, non-stationary problems, optimal placement, heat sources, 

implicit schemas, big M method 
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