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Построена модель малопараметрического уравнения состояния алмаза, найдены 

параметры этого уравнения, позволяющие достоверно описать поведение сплошных 

и пористых образцов алмаза и смеси алмаз-металл. Пористое вещество и пористая 

смесь конденсированных компонентов рассматривались как термодинамически 

равновесные смеси. Проведенное сравнение расчетных и экспериментальных 

ударных адиабат показало  применимость предложенного двухпараметрического 

уравнения состояния в широком диапазоне давлений и температур. 
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Введение. Углерод является очень распространенным 

природным материалом. Вещества из углерода имеют как аморфную 

(кокс, сажа), так и  кристаллическую (графит, алмаз) структуру, при 

этом они обладают богатым спектром свойств, зачастую 

диаметрально противоположных, например, идеальной 

прозрачностью и способностью поглощать всю направленную 

лучистую энергию. Материалы из углерода применяют как в 

качестве теплоизоляторов, так  и в качестве проводников тепла. 

Алмаз можно назвать уникальным по физическим и химическим 

свойствам. Это самый твердый и износостойкий материал, у него 

самые низкие коэффициенты теплового расширения и сжимаемости и 

самые высокие коэффициенты упругости, поверхностного 

натяжения, износостойкости. Алмаз обладает высокой химической 

резистентностью, но алмазные резцы не применяют при обработке 

сталей, поскольку в результате взаимодействия происходит 

образование карбидов. Большая часть природных алмазов 

используется для технических целей. Алмазы используются для 

производства инструментов для резки, сверления, бурения скважин в 

твердых породах, шлифовки и полировки материалов, вытягивания 

проволоки, медицинских инструментов. Спектр применения 

инструментов армированных техническими алмазами очень широк, и 

потребности промышленности и науки многократно превосходят 

добычу природных алмазов. Искусственные алмазы превосходят 

натуральные по требуемым характеристикам, поскольку при 

производстве синтетических алмазов учитывается будущая область 

их применения и алмазный материал создается с заранее заданными 
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свойствами. Отсюда возникает все возрастающая потребность 

производства искусственных алмазов с регламентированными 

свойствами. Для производства алмазов первоначально создаются 

математические модели технологического процесса. При 

математическом моделировании различных физических процессов 

кроме законов сохранения необходимы уравнения состояния 

материалов, подвергающихся воздействию. Эти уравнения должны 

как можно точнее описывать поведение материалов в области 

плотностей, давлений и температур, возникающих в опытах.  
Целью данной работы  является получение параметров уравнения 

состояния алмаза для уравнения состояния вида Ми-Грюнайзена, 
наиболее часто используемого при описании импульсных 
воздействий на среду. 

Доступность компьютерной техники и развитие компьютерных 
технологий позволяет получать широкодиапазонные 
многопараметрические уравнения состояния [1–3]. Такие уравнения 
обладают большой точностью при описании поведения материала, но 
имеют и недостатки. В числе последних необходимость нахождения  
большого количества подгоночных параметров, при вычислении 
которых появляются неоднозначные решения. Малопараметрические 
уравнения состояния [4–6] могут оказаться менее точными, иметь 
более узкий диапазон применимости, но их преимуществом является 
ясность и прозрачность физических результатов.   

В [7] изложены основы описания термодинамически 
равновесных гетерогенных смесей. Термодинамически 
равновесными считаются смеси, давления, температуры и скорости 
движения составляющих и самой смеси в которых считаются 
соответственно равными. В [7] рассмотрен случай описания 
равновесной двухфазной смеси обычным и уравнениями однофазной 
среды для газовзвеси с малой объемной концентрацией дисперсной 
фазы. В [8] описан способ построения уравнения состояния для 
смеси нескольких компонентов, находящихся в термодинамическом 
равновесии, при условии, что уравнения состояния каждой 
составляющей и смеси представлены в форме Ми-Грюнайзена. В [9] 
представлена модель для коэффициента Грюнайзена, изменение 
которого описывается логарифмической зависимостью от плотности, 
что дает правдивое описание его поведения  в ударной волне как для 
сплошных веществ, так и для сильнопористых веществ, которые при 
ударно-волновом нагружении ведут себя аномально. В [9] приведены 
зависимости, по которым вычисляются параметры уравнения 
состояния смеси через параметры и массовые концентрации 
компонентов. Массовые концентрации компонентов в 
рассматриваемых работах считаются постоянными, т.к. не 
учитываются фазовые переходы. В [10] показано, что поведение 
воздуха адекватно описывается уравнением состояния вида Ми-
Грюнайзена при сильном импульсном нагружении.  
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Математическая модель. Уравнение состояния связывает 

некоторой зависимостью термодинамические параметры, например, 

давление-температура-плотность или давление-плотность-

внутренняя энергия. Вид зависимости выбирается из практических 

соображений. При описании ударно-волновых процессов принято 

использовать уравнение состояния в форме Ми-Грюнайзена. 

Уравнение состояния в форме Ми-Грюнайзена представляет общее 

давление P  вещества в виде суммы давления, описывающего сжатие 

вещества XP  и давления, описывающего температурную зависимость 

ТP , X TP P P  . Первое слагаемое в данной работе описывается 

уравнением типа Тета: 

 
0

1

n

X

ρ
P = A

ρ

  
  
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, 

второе – выражением T TP = γρE , где ρ  ― плотность среды; 0ρ  ― 

параметр уравнения состояния (в случае конденсированного 

вещества это его плотность при нормальных условиях); константы, 

характеризующие сжимаемость вещества: А  ― коэффициент 

сжимаемости, n  ― показатель сжимаемости;   ― коэффициент 

Грюнайзена; ТE  ― тепловая энергия. Коэффициент Грюнайзена 

задается выражением 
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использование этой зависимости приводит к тому, что коэффициент 

Грюнайзена уменьшается при увеличении давления нагружения как в 

случае 0/ 1    при нормальном поведении ударной волны, так и в 

случае 0/ 1    при аномальном ее поведении, что регулируется 

знаком логарифма. Полная внутренняя энергия также представляется 

суммой двух слагаемых X TE E E  , где XE  ― упругая часть 

энергии, связанная с упругой составляющей давления зависимостью 
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тепловая часть внутренней энергии задается соотношением 

0( )vE c T T  , где vc  ― удельная теплоемкость; T  ― температура; 

0T  ― начальная температура. Тогда выражения для давления и 

полной внутренней энергии принимают вид: 
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 (1) 

В [8, 9] получены выражения для вычисления параметров 

уравнения состояния N-компонентной смеси: 
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Здесь 1 NA A , ix , ii  ― соответственно массовые 

концентрации и истинные плотности компонентов, индекс i  

относится к i–му компоненту, индекс 0  относится к начальному 

состоянию.  Для получения этих выражений использовалось 

разложение в ряд Тейлора функции, выражающей плотность каждой 

составляющей и смеси  
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полученной из первого уравнения (1) по переменным P и T, и 
выражения для плотности смеси, компоненты которой не образуют 
связи на атомарном уровне 
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Коэффициент k  используется для построения общей области 

сходимости для всех рядов. Значение 2k   гарантирует выполнение 

условия сходимости [8]. 

Полученное уравнение состояния смеси в форме Ми-Грюнайзена, 

параметры которого выражаются через параметры и массовые 

концентрации компонентов соотношениями (2), удовлетворяет 

условиям непрерывности и гладкости  зависимостей в области 

существования компонентов, сформулированным в [11].  

Уравнения Гюгонио для первоначально покоящейся среды в 

имеют вид 
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 (3) 

где 00 , 0E  ― соответственно плотность и внутренняя энергия 

единицы массы смеси перед фронтом ударной волны; u , P , E  — 

массовая скорость, давление и энергия среды за фронтом ударной 
волны; D  — скорость фронта ударной волны. Начальное давление, 
равное атмосферному, пренебрежимо мало по сравнению с 
давлениями, достигаемыми в ударных волнах, поэтому оно 
принимается равным нулю.  Добавление к соотношениям  Гюгонио 
уравнений состояния среды (1) с параметрами, определяемыми 
приведенными выше соотношениями (2), приводит к системе 

уравнений для неизвестных u , D , P , E ,  . Задавая значение 

массовой скорости среды за фронтом ударной волны, из этой системы 
уравнений можно определить значения всех искомых величин.  

Численный алгоритм решения задачи. Для каждого заданного 
значения  массовой скорости за фронтом ударной волны u:  

1. Задается интервал ],[ min maxr r , число узлов n , шаг 

( ) /max mindr r r n  . 
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2. Для minr r i dr   , 1, ,i n   вычисляются значения HP  и USP , 

где HP  ― значение давления, вычисленное с помощью соотношений 

Гюгонио (3), USP  — значение давления, вычисленное  с помощью 

уравнения состояния (1). Температура на ударной адиабате 
вычисляется из формулы 
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 
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, 

полученной из соотношений Гюгонио (3). Параметры уравнения 

состояния вычисляются с помощью соотношений (2). 

3. Из заданного интервала ],[ min maxr r  выбирается значение rr , при 

котором одновременно величины 

 1 H
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P

P
  и 1 US

H
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P
  

минимальны. В задаче 0HP   и 0USP  . 

4. Далее задаются новые значения – 3minr rr dr   и 

– 3maxr rr dr   и алгоритм повторяется с пункта 1. 

Таким образом, путем сгущения сетки алгоритм повторяется до 

достижения заданной точности 

 1 H

US

P

P
   и 1 US

H

P

P
   

где 
610  . 

Расчеты и сравнение с экспериментом. В таблице приведены 

значения  параметров уравнений состояния материалов, для которых 

проводились расчеты. Подчеркивается, что в проведенных расчетах 

ударных адиабат для сплошных и пористых образцов алмаза и 

смесей алмаз-металл использовались одни и те же параметры 

уравнений состояния компонентов для всех значений пористости. 

На рис. 1 приведена ударная адиабата сплошного алмаза в 

координатах массовая скорость вещества за фронтом ударной волны 

— скорость ударной волны. Положения экспериментальных точек на 

расчетных ударных адиабатах демонстрируют хороший подбор  

параметров уравнения состояния для математической модели. Такое 

же хорошее совпадение экспериментальных и расчетных данных 

показывает рис. 2, на котором приведены ударные адиабаты в 

координатах относительная плотность за фронтом ударной волны — 

давление за фронтом ударной волны. Здесь 0T  — начальная 

плотность конденсированного вещества. 
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Таблица 1 

Параметры уравнений состояния веществ 

Вещество 
3

0 / мкг,ρii  Па,Ai  in   /vic ,кДж кг К  0iγ  

Воздух 1.3 
3100.695 

 
2.20 0.718 0.16 

Алмаз 3103.515   

11102.144 

 
2.5 0.510 0.7 

Медь 3108.93   

10103.295 

 
4.25 0.382 2.0 

 

 
Рис. 1. Ударные адиабаты сплошного алмаза в координатах массовая 

скорость за фронтом ударной волны — скорость фронта ударной волны: 

сплошная кривая — расчетная адиабата; эксперименты 1 —  [12] 

 

 
Рис. 2. Ударные адиабаты сплошного алмаза в координатах 

относительная плотность за фронтом ударной волны — давление за 

фронтом ударной волны: обозначения как на рис. 3 
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Параметры уравнения состояния подбираются так, чтобы 
соблюдалось возможно лучшее соответствие расчетных и 
экспериментальных данных. В данной работе подбирается пара 

параметров уравнения состояния n  и 0 , влияние второй из этих 

величин наиболее ясно выявляется при высоких температурах, 
возникающих в материале. Чтобы наиболее точно описать тепловой 
вклад в уравнение состояния, необходимо провести сравнение 
расчетных и экспериментальных данных, описывающих поведение в 
ударных волнах пористых образцов. Это расширяет область 
применимости уравнения состояния. На рис. 3 в координатах  
массовая скорость за фронтом ударной волны — скорость фронта 
ударной волны и рис. 4 в координатах относительная плотность за 
фронтом ударной волны — давление за фронтом ударной волны 
приведены ударные адиабаты образцов алмаза невысокой 
пористости, рядом со сплошными кривыми, являющимися 
расчетными, проставлены значения пористостей. Пористость 
определяется отношением плотности конденсированного вещества к 
плотности пористого вещества. Рис. 3 демонстрирует хорошее 
совпадение расчетов и результатов опытов. На рис. 4 разброс данных 
расчетов и экспериментов более значимое, но надо помнить, что в 
экспериментах, как правило, производят измерения скорости ударной 
волны и массовой скорости за фронтом ударной волны. Остальные 
величины — давление, плотность, температуру — как правило, 
получают пересчетами, в которых используют соотношения Гюгонио 
и уравнения состояния, выбранные экспериментаторами.  
Аналогично случаю сплошного алмаза можно сделать вывод о 
хорошем описании предлагаемым уравнением состояния  поведения 
образцов алмаза невысокой пористости при импульсном нагружении. 

 

 
Рис. 3. Ударные адиабаты пористого алмаза в координатах массовая 

скорость за фронтом ударной волны – скорость фронта ударной волны: 

сплошная кривая – расчетная адиабата; эксперименты 1 –  [13] 1.102m  ; 

2 – [14] 1.738m  ; 3 – [14] 1.961m   
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Рис. 4. Ударные адиабаты пористого алмаза в координатах 

относительная плотность за фронтом ударной волны – давление за фронтом 

ударной волны: обозначения как на рис. 3 

 

Рис. 5 и рис. 6 демонстрируют сравнение расчетных и опытных 

данных ударно-волнового нагружения образцов алмаза повышенной 

пористости. На этих рисунках приведены две пары расчетных 

кривых: для алмаза с пористостью 6.277m   и графита с 

пористостью 4.861m  , обоим образцам соответствует одинаковое 

массовое содержание углерода 0.0998048Cx  . Расположение 

экспериментальных точек для образцов алмаза с пористостями  

5.754m    и 6.277m   приводит к выводу о произошедшем фазовом 

переходе алмаза в графит в результате действия высоких температур. 

Известно [16–20], что при температуре порядка ~ 1000 2000T C   

при атмосферном давлении происходит графитизация алмаза, эта 

температура тем ниже, чем меньше размеры частичек спрессованного 

порошка. Графитизация происходит и при высоких давлениях, что 

подтверждается скачкообразным обратным переходом алмаза в 

графит в волне разрежения. При высокой пористости образцы 

материалов, подвергающиеся воздействию ударных волн, 

претерпевают сильный разогрев. В [19] исследована зависимость 

графитизации от давления. В [20] приведены кинетические линии 

графитизации на фазовой диаграмме углерода. Согласно этим 

данным, для значений пористостей образцов алмаза, используемых в 

опытах, температуры достигли критических значений, и произошла 

частичная или полная графитизация алмаза.  Следует отметить, что 

для адиабаты графита нагружение было рассчитано из нормального 

состояния перед фронтом волны. Изменение внутренней энергии, 
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появляющееся при фазовом переходе, не учитывалось. Этот факт дает 

расхождение при сравнении расчетных (для графита) и опытных 

данных, особенно на рис. 6. На рис. 5 и рис. 6 приведены 

экспериментальные точки, полученные при ударно-волновом 

нагружении образцов графита с пористостью 4.861m   (обозначены 

цифрой 3 на графиках). Хорошо виден излом на адиабате, 

соответствующий фазовому переходу графита в алмаз в волне 

нагружения. 

 

 
Рис. 5. Ударные адиабаты алмаза и графита в координатах массовая 

скорость за фронтом ударной волны – скорость фронта ударной волны: 

сплошные кривые – расчетные адиабаты; эксперименты: 

алмаз 1 –  [14] 6.277m  ; 2 – [15] 5.754m  ; графит 3 – [13] 4.861m   

 

 
Рис. 6. Ударные адиабаты алмаза и графита в координатах давление за 

фронтом ударной волны – плотность за фронтом ударной волны: 

обозначения как на рис. 5 
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Значительное различие экспериментальных и расчетных данных 

на рис. 6 обусловлено различной степенью графитизации алмаза и 

неучетом скачкообразного изменения энергии и плотности при 

фазовом переходе. 

Для апробирования модели уравнения состояния  

многокомпонентной среды, предложенной в [8, 9] проведены расчеты 

ударно-волнового нагружения пористых смесей медь-алмаз. 

Результаты сравнения расчетных и опытных данных приведены на 

рис. 7 и рис. 8. Расчеты проводились для образцов меди, алмаза и 

смеси медь-алмаз с пористостями 1.194m  .  Массовое содержание 

меди в смеси — 71.8, алмаза — 28.2, пористость образцов в опытах 

варьировалась в пределах  1.194 1.234m   . Положение опытных 

точек на графике 5, где приведены наиболее достоверные 

экспериментальные данные, демонстрирует адекватность модели 

уравнения состояния. Более заметное расхождение расчетов и 

экспериментов на рис. 8 обусловлено непрямым получением данных 

для точек и вариативностью значений пористости образцов. 

 

 
Рис. 7. Ударные адиабаты алмаза, меди и смеси медь-алмаз в 

координатах массовая скорость за фронтом ударной волны – скорость 

фронта ударной волны: сплошные кривые – расчетные адиабаты 1.194m  ; 

эксперименты 1 –  [15] 1.194  1.234m    
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Рис. 8. Ударные адиабаты алмаза, меди и смеси медь-алмаз в 

координатах относительная плотность за фронтом ударной волны – 

давление за фронтом ударной волны: обозначения как на рис. 7 

 

Заключение. Построено двухпараметрическое уравнение 

состояния в форме Ми-Грюнайзена, коэффициент Грюнайзена 

которого представлен в виде логарифмической зависимости от 

плотности, что позволяет адекватно описывать поведение как 

сплошных, так и пористых образцов алмаза при ударно-волновом 

нагружении. Достоинство этой модели состоит в простоте, ясности и 

предсказуемости физических результатов. Проведенное сравнение 

экспериментальных данных и результатов расчетов для сплошных и 

пористых образцов алмаза и смеси медь-алмаз позволяет сделать 

вывод о применимости предлагаемой модели уравнения состояния. 
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Modeling of the low-parameter equation of state in the 

Mie-Grüneisen form for diamond and diamond-metal 

mixtures 

 R.K. Belkheeva 

Novosibirsk State University, Novosibirsk, 630090, Russia 

 

A model of the low-parameter equation of state of diamond was constructed, and the 

parameters of this equation were found, which allow to describe reliably the behavior of 

solid and porous diamond samples and diamond-metal mixture. Porous substance and 

porous mixture of condensed components were considered as thermodynamically 

equilibrium mixtures. The comparison of calculated and experimental shock adiabats 

showed the applicability of the proposed two-parameter equation of state in a wide range 

of pressures and temperatures. 

 

Keywords: porous mixture, thermodynamic equilibrium, parameters of the equation of 

state, Grüneisen coefficient, shock adiabat 
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