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МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

 
Рассмотрено применение обобщенного разложения полиномиального хаоса (ПХ) и 
модели на основе полиномов Колмогорова-Габора в задачах регрессии. При выборе 
разложения ПХ использовалась схема Винера-Аски, задающая соответствие 
между законом распределения признаков и ортогональным полиномиальным 
базисом. Для вычисления коэффициентов разложения применялись неинтрузивные 
методы: наименьших квадратов, эластичная сеть, а также индуктивный 
эволюционный алгоритм Ивахненко.  В качестве эталонной функции 
полиномиальной нейронной сети использованы полиномы Колмогорова-Габора. 
Ошибки модели и скорость работы вычислялись на тестовой выборке. Проведено 
сравнение моделей на линейной транспортной задаче в условиях 
неопределенности: коэффициент диффузии и снос моделировались равномерно 
распределенными случайными величинами. Показано, что при небольшом 
интервале изменения значений случайных величин обе модели дают хорошую 
эффективность, но модель ПХ демонстрирует меньший                   разброс 
ошибок и быстрее по времени. Для уравнения распада со случайными 
коэффициентами, распределенными по гауссовскому закону, изучено влияние 
корреляции этих коэффициентов на скорость сходимости. Продемонстрировано, 
что при зависимых коэффициентах наилучшие показатели наблюдаются у 
моделей ПХ более высокого порядка. На основе сравнительного моделирования 
установлено, что применение ПХ однозначно предпочтительнее в случаях: малой 
размерности пространства входных признаков, известном законе распределения 
входных данных, при коррелированности признаков. Также показано, что 
применение ПХ при большой размерности пространства входных признаков 
неэффективно из-за быстрого увеличения числа членов в разложении, приводящего 
к резкому росту времени на обработку задачи. В этом случае однозначно 
предпочтительнее оказалась регрессионная модель на основе полиномов 
Колмогорова-Габора в сочетании с МГУА. 

 
Ключевые слова: полиномиальный хаос, полиномиальная нейронная сеть, метод 
группового учета аргументов, полиномы Колмогорова-Габора, линейные 
транспортные задачи, уравнение распада 
 

Введение. Полиномиальный хаос — метод представления 
случайной величины в виде разложения по ортогональному базису 
[1]. Винер впервые определил «однородный хаос» как оболочку 
полиномиальных функционалов Эрмита гауссовского процесса [2], 
при этом полиномиальный хаос рассматривался как элемент этого 
множества. Согласно теореме Камерона-Мартина [3] ряды Фурье-
Эрмита, построенные по достаточно произвольному функционалу, 

сходятся в 2L , что дает возможность представить стохастический 

процесс с помощью  ортогональных полиномов Эрмита. Почти сразу 
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после этого были предприняты попытки применить полиномиальный 
хаос для моделирования неопределенности в физических 
приложениях. Так Ганем и Спанос использовали разложение хаоса 
Эрмита в методе конечных элементов для моделирования 
неопределенности, возникающей в различных задачах механики 
твердого тела [4–6]. Уже в этом веке в работе [7] Сю и Карниадакис 
применили полиномиальный хаос для моделирования 
неопределенности в задачах гидродинамики. Те же авторы 
использовали обобщенный полиномиальный хаос Аски, 
распространяющий идею разложения случайной величины по 
ортогональному базису на негауссовы меры [7]. 

При дальнейшем расширении области приложений обобщенного 
полиномиального хаоса естественным образом возникает вопрос о 
сравнении этого метода с уже существующими, изучение его 
преимуществ и недостатков. Так в обобщенной линейной 
регрессионной модели в качестве базисных функций широко 
применяются полиномы Колмогорова-Габора [8–16], являющиеся по 
сути тензорными произведениями степеней входных переменных. 
Темой настоящей работы является сравнительный анализ этих двух 
полиномиальных моделей применительно к некоторым прикладным 
задачам. В частности, рассмотрена транспортная задача и уравнение 
распада [17]. 

Постановка задачи сравнительного моделирования. 
Рассмотрим общую задачу регрессии, схематично изображенную на 
рис. 1.  В традиционной постановке задачи [18, 19] отклик модели 

( )iY  считается случайным в силу наличия аддитивной ошибки ( )i , 
искажающей «правильную» зависимость отклика от значений 

входных переменных  ( ) ( ) ( ) ( )

1 2, ,...,=i i i i

dX X XX  через базисные функции 

   ( ) ( )

1 ,..., :i i

m X X  

 ( ) ( ) ( )

1

( ) .
m

i i i

kk

k

Y  


   X   (1) 

Альтернативная постановка задачи трактует отклик модели  как 
случайную величину, принадлежащую определённому пространству 
(например, пространству стохастических величин с конечной 
дисперсией), и затем представленную в виде разложения по 
некоторому базису: 

 
0

,j j

j

Y a




    (2) 

где j  — множество случайных переменных, образующих базис; 

ja   — коэффициенты разложения случайного отклика Y  в этом 

базисе. 
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Рис. 1. Обобщенная схема задачи регрессии 

 

В частности, особое внимание уделено базисам, составленным из 
ортонормированных полиномов случайных величин. В этом случае, 
ряд (2) называется разложением полиномиального хаоса. При этом 
подходе ошибка уже не является аддитивным членом как в 
соотношении (1), а возникает в силу необходимости ограничиться 
конечным числом членом разложения (2). Этот подход предполагает 
учет характера распределения случайных входных данных путем 
выбора подходящего базиса. 

Разложение полиномиального хаоса. Пусть   — пространство 
элементарных событий, пусть :   — случайная величина, 

  — пространство случайных величин. Пусть 1{ }i i 

  — бесконечное, 

но исчисляемое множество независимых нормированных 
гауссовских случайных величин. 

Разложение ПХ случайной величины ( )   принимает вид: 

  
0

( ) ( ) ,k k

k

   




  ξ   (3) 

где k  — детерминированные коэффициенты; k  — случайные 

полиномы, ортогональные в пространстве 2L  с весом )(f ξ  [20], 

 , ( ) ( ) ( ) ,i j i j ij i jf d           ξ ξ ξ ξ   (4) 

пусть p  обозначает порядок разложения ПХ. Конечномерное 

разложения ПХ случайной величины конечного порядка 

определяется формулой 

 
1 2

0

( ) ( ), { , ,..., },
P

k k d

k

    


  ξ ξ ξ   (5) 

где базисный размер P  связан с d  и p  соотношением  

 
)
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! !
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    (6) 

В табл. 1 приведены наиболее распространенные классы 
ортогональных полиномов из схемы Аски [21], соответствующие 
обобщениям полиномиального хаоса для основных законов 
распределения. 
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Таблица 1 

Соответствие типов полиномиальных хаосов Винера-Аски  

и законов распределения  

Вид  

распределения  

случайных 

 величин 

Плотность 
Ортогональные  

полиномы 

Ортогональный 

 базис { }j   

Нормальное 

2

2
1

2

x

e



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( )

!

kHe x

k
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I x
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( )kP x    1

( )

2 1

kP x

k 
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

   
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( 1)
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k

k
L x
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I x
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
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,
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p
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 
  

 

Обозначим через { }k  одномерные ортогональные полиномы из 

схемы Аски и предполагая, что входные случайные величины 
независимы, построим многомерный базис обобщенного 

полиномиального хаоса { }i  с помощью тензорных произведений 

соответствующих  одномерных полиномов: 

 
1 2

11

( , ,..., ) ( ), | | .
k

d d
i i i

i d k k

kk

a p     


      (7) 

Определение коэффициентов при моделирования полино-            
миального хаоса. Для определения коэффициентов ПХ выделяют 
два класса методов. 

1. Интрузивные представлены методом Галеркина. При его 
реализации генерируется система детерминированных уравнений, в 
которой коэффициенты разложения полиномиального хаоса 
являются неизвестными и находятся проецированием на случайное 
пространство, натянутое на полиномиальный базис. Полученная 
таким образом система решается с помощью подходящих численных 
методов [22, 23].  

2. Неинтрузивные (метод наименьших квадратов (МНК), 
эластичная сеть, и т.п.) требуют реализации только 
детерминированного кода для разных значений ввода. 
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 Метод наименьших квадратов (МНК). Пусть 0( ,..., )T

p β  

— вектор искомых коэффициентов ПХ в усеченном разложении 

выходной переменной y ;  приближение β  для коэффициентов β  

находится по формуле: 

 

2

( ) ( )

1 0

arg min ( ) , 1.
n P

i i

k k

i k

y n P
 

 
     

 
 

β

β ξ   (8) 

Однако, МНК при коррелированных данных не всегда дает 

хороший результат. Более этого, даже в случае некоррелированных 

данных, часто возникает эффект переобучения на 

детерминированных входных данных [24]. 

 Эластичная сеть (Elastic net) представляет собой 

модифицированный метод Лассо (Least absolute shrinkage and 

selection operator) [8, 18, 19]. Регрессионная модель Лассо 

предусматривает штрафной параметр   в целевой функции для 

улучшения обусловленности: 
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  (9) 

Недостатком модели Лассо является невозможность обработки 

мульти-коллинеарных данных, поэтому Zou и Hanstie [25] для 

устранения этого недостатка предложили эластичную сеть: 
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(10) 

Эластичная сеть сжимает коэффициент регрессии дважды и 

приводит к увеличению смещения оценки. Как видно из 

соотношения (10), в случае 2 0   модель становится регрессионной 

моделью Лассо (9), а в случае 1 0   — гребневой. 

Метод группового учета аргументов. Метод группового учета 

аргументов (МГУА), представленный на рис. 2, также известный как 
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полиномиальная нейронная сеть, представляет собой 

самоорганизующийся и индуктивный эволюционный алгоритм [8]. 

Этот эвристический метод моделирования был предложен советским 

ученым Ивахненко [9]. Самоорганизованная форма минимизирует 

необходимость в предыдущих знаниях. Модели не нужно указывать 

какие-либо начальные предположения, такие как количество 

нейронов и скрытых слоев, что снижают субъективность и сложность 

моделирования. 
 

  
 

Рис. 2. Сетевая архитектура метода группового учета аргументов 

 

Входные данные сначала делятся на обучающий набор и набор           
тестирования. Данные образца обучения используются для оценки           
коэффициентов полинома Колмогорова-Габора (К-Г). Набор 
тестирования поставляется в сеть МГУА для проверки ошибок. Затем 
характеристические переменные обучающего набора попарно 
рекомбинируются. После рекомбинации каждая пара 
характеристических переменных является группой и обучается как 
нейрон сети. Выход каждого нейрона оценивается и проверяется по 
внешнему критерию. Далее устраняются нейроны, которые были 
показали себя худшими, в то время как нейроны с хорошей 
производительностью сохраняются и используются в качестве 
следующего слоя. Затем весь процесс реструктуризации, обучения, 
тестирования и отбора снова выполняется на следующем уровне. Сеть 
МГУА, как и все нейросети, работает до тех пор, пока ошибка 
прогноза нейронов перестает уменьшаться [21, 26]. 

Связь между входом и выходом каждого нейрона может быть 
представлена полиномом К-Г 

 
1 1 1 1 1 1

ˆ ... .
m m m m m m

n i in ij in jn ijk in jn kn

i i j i j k

y a x a x x a x x x
     

       (11) 

 Обозначим   — значение внешнего критерия. Чем меньше 𝜔, 
тем лучше нейрон и лучше эффект подгонки полинома К-Г. Более          
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бедные нейроны отвергаются, а «хорошие» нейроны сохраняются и 

становятся входом следующего слоя. Между тем, минимальный min  

этого слоя записан и сохранен. Когда min  этого уровня больше не 

уменьшается по сравнению с предыдущим уровнем, это указывает на 
то, что ошибка прогнозирования сети стабилизировалась; сеть 
перестает расширяться и выводит результат предыдущего уровня 
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n n

n
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y y
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 
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





  (12) 

где P  — количество наборов тестирования. 

Линейная транспортная задача в условиях 

неопределенности. Мы проиллюстрируем использование 

разложения ПХ и МГУА в        моделировании выходных данных 

линейной транспортной задачи в условиях неопределенности. 

Пусть ( , , )  — подходящее вероятностное пространство с 

множеством элементарных событий   и вероятностной мерой , 

определенной на  -алгебре . Пусть ( ), ( ),      — 

случайные величины, определенные на этом пространстве. 

Рассмотрим следующую смешанную краевую задачу для уравнения в 

частных производных:  
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  (13) 

где (0;1) 0, [( ) , ]x t T  , скорость )(v   и диффузия 0( , ) 0x     

представляют собой случайные поля с конечной дисперсией, 

уравнение (13) имеет место -почти-наверное в  . В частности, 

рассмотрим случай, когда ( )   является постоянной в пространстве. 

В работе [17] приведено решение этой задачи с пространственно-

независимыми для начальной функции 
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  (14) 

И это решение имеет следующий вид: 
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Для моделирования выберем следующие значения параметров: 

0 00,75; 0,25; 0,1; 1x T     . Также считаем, что 

~ [0,05;0,15],R  ( )u    и ~ [0,95;1,05]R , v  . Полиномиальное 

выражение для решения уравнения (13) имеет вид: 

 
1

( , , , ) ( , ) ( , ).
P

k k

k

u x t u x t   


    (16) 

Реализация данного подхода будет включать в себя: 

равномерную сетку 0 10 , ,..., 1lA         с шагом 

1 0( ) / , 100l lh l     для времени t  и 0 10 , ,..., 1mx x xB      с 

шагом 2 0( ) /mh x x m  , 100m   для координаты x .  

В качестве примера рассмотрим модели: МГУА на основе 
эластичной сети с квадратичной эталонной функцией; модель 
полино- миального хаоса степени 2 и 6. Будем сравнивать 
эффективность моделей, вычисляя ошибки для тестового набора и 
время работы на однопоточной программе.  

Модели реализованы в программе, написанной на языке Python, 
которая запускается на компьютере со следующей конфигурацией: 
процессор Intel(R) Core i5-9600KF; оперативная память RAM 16Gb; 
видеокарта NVIDIA GeForce RTX 2060. 

Ниже приведены результаты работы программы на 100 
различных случайных наборах, каждый из которых состоит из 1000 
входных данных, разделенных на обучающий и тестовый в 
соотношении 8:2. 

Как видно на рис. 3 и 4 при небольших вариациях интервала 
значений случайных величин обе модели МГУА и ПХ возвращают 
результаты с высокой эффективностью. Однако, модели ПХ 
демонстрируют меньший разброс ошибок вдоль ( [0, ]0;1) T . То же 

относится и ко времени выполнения.   
Моделирование уравнения распада со случайными коэффи-

циентами. Рассмотрим теперь скалярное однородное 
дифференциальное уравнение 

  '( ; , ) ( ; , ) , 0 1, (0) 0y t y t t y             (17) 

с двумя случайными переменными , ) ~ ( , )(  μ Σ , где вектор 

средних μ  и ковариационная матрица Σ : 
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Пусть коэффициент корреляции {0;0,5;0,9}, 0,25      . 

  

а б 

 

в 

Рис. 3. График ошибок при моделировании решения линейной транспортной 

задачи в условиях неопределенности: 

а — ошибка модели ПХ степени 6; б — ошибка модели ПХ степени 2; 

в — ошибка модели МГУА 

 

  

а б 

0,0

x
0, 4

0, 2

1,00,80,6
0,0

t
0, 4

0, 2

1,0
0,8

0,6

8,5
8,4
8,3
8,2
8,1
8,0
7,9
7,8

1010

0,0

x

0, 4
0, 2

1,0
0,8

0,6
0,0

0, 4
0, 2

1,0
0,8

0,6

5,5
5,4
5,3
5,2
5,1
5,0

510

0,0

x

0, 4
0, 2

1,0
0,8

0,6
0,0

0, 4
0, 2

0,8
0,6

2,5
2,0
1,5
1,0
0,5

510

t

t

1,0

0,0

x
0, 4

0, 2

1,00,80,6
0,0

t
0, 4

0, 2

1,0
0,8

0,6

0,34
0,32
0,30
0,28
0,26
0,24
0,22
0,20

0,0

x

0, 4
0, 2

1,0
0,8

0,6
0,0

0, 4
0, 2

1,0
0,8

0,6

7,5
7,0
6,5
6,0
5,5
5,0

210

t



Т.В. Облакова, Фам Куок Вьет 

102 

 

в 

Рис. 4. График времени работы при моделировании решения  

линейной транспортной задачи в условиях неопределенности: 

а — время выполнения модели ПХ степени 6;  

б — время выполнения модели ПХ степени 2; 

в — время выполнения модели МГУА 

 

Мы хотим исследовать влияние корреляции между случайными 

переменными на скорость сходимости моделей ПХ разного порядка и 

квадратичной модели МГУА. Мы используем эластичную сеть для 

вычисления коэффициентов ПХ вместо МНК. 

Ниже на рис. 5, 6, 7 приведены результаты работы программы на 

50 различных случайных наборах, каждый из которых состоит из 

1000 входных данных, разделенных на обучающий и тестовый в 

соотношении 8:2. 
 

 
 

 

Рис. 5. График ошибок при моделировании решения уравнения распада 0    
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Рис. 6. График ошибок при моделировании решения уравнения распада 0,5    

 

 
 

 

Рис. 7. График ошибок при моделировании решения уравнения распада 0,9    

 

Как видно на проведенных рис. 5, 6 и 7 ошибки всех моделей 

имеют в среднем порядок: 
5(10 )O 

.  

Кроме того, при высокой корреляции данных модель ПХ степени 
6 оказалась более эффективной и стабильной, тогда как при 
отсутствии корреляции это преимущество принадлежит модели 
МГУА. 

Результаты моделирования. Суммируя результаты 
моделирования в рассмотренных задачах, приходим к следующим 
выводам. 
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Применение полиномиального хаоса (ПХ) однозначно 
предпочтительнее в случаях: 

 малой размерности пространства входных признаков; 

 известном законе распределения входных данных; 

 коррелированности признаков. 
При этом метод вычисления коэффициентов играет 

второстепенную роль.  
Применение ПХ при большой размерности пространства 

входных признаков неэффективно из-за быстрого увеличения числа 
членов в разложении (5), приводящего к резкому росту времени на 
обработку задачи. В этом случае однозначно предпочтительнее 
регрессионная модель на основе полиномов Колмогорова-Габора в 
сочетании с методом группового учета аргументов (МГУА).  
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Polynomial chaos and regression based on Kolmogorov-

Gabor polynomials: comparative modeling  

© T.V. Oblakova, Pham Quoc Viet
 

Bauman Moscow State Technical University, Moscow, 105005, Russia 

 
The application of the generalized expansion of polynomial chaos (PC) and models based 
on Kolmogorov-Gabor polynomials in regression problems is considered. When choosing 
PC expansion, the Wiener-Askey scheme was used, which sets the correspondence 
between the feature distribution law and the orthogonal polynomial basis. To calculate 
the expansion coefficients, non-intrusive methods were used: least squares, elastic 
network, as well as Ivakhnenko's inductive evolutionary algorithm. Kolmogorov-Gabor 
polynomials are used as a reference function of a polynomial neural network. Model 
errors and performance were calculated on a test set. Models were compared on a linear 
transport problem under uncertainty: the diffusion coefficient and drift were modeled by 
uniformly distributed random variables. It is shown that with a small interval of variation 
in the values of random variables, both models give good efficiency, but the PC model 
demonstrates a smaller spread of errors and is faster in time. For the de-cay equation 
with random coefficients distributed according to the Gaussian law, the influence of the 
correlation of these coefficients on the rate of convergence is studied. It is shown that 
with dependent coefficients, the best performance is observed in higher-order PC models. 
On the basis of comparative modeling, it has been established that the use of PC is 
unambiguously preferable in the following cases: a small dimension of the space of input 
features, a known law of distribution of input data, and correlated features. It is also 
shown that the use of PC with a large dimension of the space of input features is 
inefficient due to the rapid increase in the number of terms in the expansion, leading to a 
sharp increase in the time to process the task. In this case, the regression model based on 
the Kolmogorov-Gabor polynomials in combination with the GMDH turned out to be 
clearly preferable.  
 
Keywords: polynomial chaos, polynomial neural network, group method of data 
handling, Kolmogorov-Gabor polynomials, linear transport problems, decay equation  
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