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Моделируется противоточный вихрь газовой центрифуги. Математическая модель 
движения вязкого теплопроводного газа включает в себя уравнение для плотности, 
скоростей и удельной энергии в цилиндрической геометрии. После введения сетки 
частные производные по пространству заменяются конечными разностями, и 
задача сводится к системе обыкновенных дифференциальных уравнений (ОДУ). 
Такая методика называется методом Прямых (Lines Method). Поскольку течение 
сверхзвуковое, а расчетная область включает в себя тонкие погранслои, то система 
ОДУ получается жесткой благодаря наличию разновременных процессов и 
затуханию. На языке математики это означает существенное различие 
собственных чисел матрицы Якоби и отрицательные действительные части. 
Поэтому для решения задачи оказалось целесообразным применение неявного 
метода Гира для системы ОДУ без расщепления задачи по физическим процессам и 
направлениям. Эффективным методом решения задачи обращения Якобина 
оказывается применение метода циклической редукции в варианте матричной 
прогонки. В качестве примера продемонстрировано противоточное течение, 
возникающие благодаря температурному градиенту. 
 
Ключевые слова: противоточная газовая центрифуга, сверхзвуковое течение 
вязкого теплопроводного газа, неявная консервативная схема, метод Гира 
  

Введение. Если газообразную смесь изотопов пропускать через 
высокоскоростные центрифуги, то центробежная сила разделит более 
легкие или тяжелые частицы на слои, где их и можно собрать. 
Тяжелые молекулы располагаются во внешних слоях, легкие во 
внутренних. Большое преимущество центрифугирования состоит в 
зависимости коэффициента разделения от абсолютной разницы в 
массе, а не от отношения масс. Степень разделения пропорциональна 
квадрату отношения скорости вращения к скорости молекул в газе. 
Отсюда очень желательно как можно быстрее раскрутить 
центрифугу. Типичные линейные скорости вращающихся роторов 
600 м/с для стали и 1100 м/с для нейлона превышают скорость звука 
для разделения изотопов урана в гексофториде [1]. 

Элементарный эффект разделения изотопов из-за действия 
центробежной силы и градиента давления вдоль радиуса может быть 
существенно улучшен за счет наложения осевого противоточного 
движения в плоскости ( , )r z . Отдельная центрифуга становится 

подобна миниатюрному каскаду. Противоток может установиться 
благодаря следующим возбуждениям [1]: тепловое возбуждение 
крышками и стенками, возбуждение входящими потоками. И даже 
воздействие силы тяжести на молекулы с разными массами также 
приводит к образованию движения в плоскости ( , )r z . 
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Поскольку относительная разница в массах изотопов урана 235 U ,  
238 U  мала, исходную задачу можно разделить на две задачи: сначала 

исследовать течение однокомпонентного вязкого газа, затем для 

полученного стационарного газодинамического течения рассмотреть 

задачу о диффузии легкого компонента смеси и посчитать 

пространственное распределение концентраций. 

Целью настоящего исследования является первая задача 

моделирования течения в рамках неявной схемы интегрирования 

уравнений Навье-Стокса с учетом теплопроводности в 2D случае на 

нерегулярной неравномерной сетке. Первоначально планировался 

метод расчета на основе разделения задачи по физическим процессам 

и направлениям. Перенос считался по явной схеме высокого порядка 

точности годуновского типа, а вязкость и теплопроводность как 

отдельные задачи по неявной схеме [2]. Методика в принципе 

работоспособная, несмотря на наличие тонких погранслоев, 

уменьшающих временные шаги для расчета переноса по явной схеме. 

Однако, благодаря противотоку, разделение задачи по направлениям 

приводит к большим возмущениям из-за разделения на направления 

и очень малым временным шагам при условии сохранения точности. 

Выход на стационарное решение затруднен [3]. Поэтому было 

принято решение разработать полностью неявную конечно-

разностную схему для вязкого теплопроводного газа в 2D. Частные 

производные по пространству заменены конечными разностями, 

жесткая система обыкновенных дифференциальных уравнений 

(ОДУ) решается методом Гира [4, 5]. Похожая методика получения 

стационарного решения на основе итерационного процесса без 

расчета эволюции газовой динамики использовалась в работе [6]. 

Количество современных работ по моделированию течения в 

газовой центрифуге в открытой печати оказалось ограниченным, как 

в силу специфических приложений разделения изотопов урана, так и 

сложности задачи моделирования сверхзвукового течения с учетом 

вязкости, теплопроводности с необходимостью учета тонких 

погранслоев. Моделирование последних лет включает построение 

упрощенных аналитических моделей нестационарных решений для 

верификации численных алгоритмов [2015Bogovalov], использующих 

полунеявные методы решения системы уравнений в частных 

производных с помощью конечных разностей с заранее неизвестной 

устойчивостью: как в 2D постановке [2022Zeng], так и в 3D 

постановке [2016Borman]. Описываемая в данной работе двумерная 

полостью неявная методика обладает необходимой устойчивостью, 

для ее верификации достаточно стационарного решения. Следует 

также отметить метод гомотопического анализа, основанный на 

концепции гомотопии из топологии для генерации решения 
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сходящихся рядов для нелинейных систем, вероятно впервые 

предложенный для изучения течения в газовой центрифуге в работе 

[2018Gu]. Естественно целью построения моделей является проверка 

влияния на противоточный вихрь температурного возмущения, 

торможения крышек центрифуги либо ее размеров [2020Gu].  

Математическая постановка задачи, принятые допущения. 

Для вывода уравнений вязкой теплопроводной газовой динамики в 

криволинейных координатах используем основные определения 

Римановой геометрии [12, 13].  

Метрический тензор в ортогональных координатах ix  имеет 

диагональный вид 

1 1 1

11 22 33 11 22 33, ( , , ),  ( , , ),ij

ij i j
g g g g g g g g

x x

    
   

  

r r
diag diag  

символы Кристоффеля определяются следующим образом: 

1 1
,

2 2

jk ij jk ijk kk ik ik
ij j i k j i k

kk

g g g gg g
g

x x x g x x x

      
        

       
 

градиент вектора есть  

1
,

2

i i
ij jji i s s i jii

j jsj j s j i
sii

g gu u g
u u u u u

x x g x x x

    
        

     
  

дивергенция вектора есть 

| |1
,

| |

ii
i k j

i kji i

g uu
u u

x xg


    

 
 

дивергенция тензора есть  

.
ij

ij i sj j is

i is isi
i x

 
       

 
  

Запишем уравнения газовой динамики с вязкостью и 

теплопроводностью [14, 15, 16, 17] в криволинейной системе 

координат:  

закон сохранения массы 

( ) 0,i

i u
t





 


 

закон сохранения импульса  

0,
j

ij

i

u

t


  


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и закон сохранения энергии 

 ( ) ( ) ,i ij k ij

i i jk i j

E T
E P u g u g

t x


   

       
  

 

  От полной энергии, которая не сохраняется благодаря трению 

газа о стенки, удобнее перейти к уравнению для внутренней энергии 

(иначе в полной энергии огромная кинетическая энергия 

суммируется с небольшой внутренней), т.е. 

 .i i ij l ij

i i jl i i j

T
u P u g u g

t x


     

          
   

 

В уравнениях обозначена удельная полная энергия  

/ 2i k

ikE u g u  , 

( , )T    ― коэффициент теплопроводности, тензор плотности 

потока импульса 

ij i j ij iju u Pg      

включает вязкий тензор напряжений  

2
2

3

ij ij ij m ij m

m me g u g u  
      

 
. 

Уравнение состояния идеального газа  

  B1 ,  =1.065.P nk T      

Используется только вторая вязкость, коэффициент которой   

можно найти в работе [3], также как и коэффициент 

температуропроводности  : 

B
B 3/2 2

0

7

41 1
,  ,

3

1
0.447 10  cm,  .

0.05

p

p

Am kTk T
mk T

m D

D
Am

 
  




  

  

 

Далее нужно сделать важное замечание о неправильной 

физической размерности компонент векторов скорости в Римановой 

геометрии iu , связанных выражением с общепринятой физической 

скоростью с правильной размерностью компонент 

.ii iiv g u  
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Далее в цилиндрических координатах 

2( ) ( cos , sin , ),  (1, , 1),  | | ,ijr r z g r g r   r x  

для 2D ( / 0   ) случая подробно распишем уравнения, 

содержащие вязкость 

  

2

2 2

2 2

2 2 2
2 ,

3 3

r r r
r z

r r r r z

v v v P v
v v

t r z r r

v v v v rv
r

r r r r r z r r z






   
    

    

      
      

       

 

2
3

2 2

1 ( / )
,r z

v v v v r v
v v r

t r z r r r z

     
        

       
        

 

2 2

2

1 2 1 1
,

3 3

z z z
r z

z z r

v v v P
v v

t r z z

v v rv
r

r r r z r r z





   
   

    

    
    

      

 

вязкий нагрев в уравнении для внутренней энергии 

 

2 22

2

2 2 2

2 2 2

1
2

3

1 ( / )

2

{[

]
.[ ]}

ij l r r z
jl i

r r r z r z

r z

v v v
g u

r r z

v v v v v v

r r r z r z

v r v v v
r

r z z r

 

    
       

   

       
          

       

       
        

       

 

Независимые переменные  , rv , v , zv ,  .  Расчетная область 

min0 20 cmr r   , 0 80 cmz  . На внешней границе задается 

температура и прилипание скорости (угловая скорость на крышках и 

боковой стенке задана), на внутренней границе min 0r   непротекание 

(нормальная скорость ноль, тангенцальная непрерывна) и нет потока 

тепла / 0T r   .  

Численный алгоритм решения задачи. Для расчетов вводится 

неравномерная сетка 

max max maxsin( /(2 )),  10 ,ir r i i i i    

max max max

1-cos
sin( / )),  0 ,

2
iz z k k k k    
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в узлах которой заданы сеточные функции независимых переменных. 

Все пространственные производные заменяются центральными 

конечными разностями, кроме того дополнительно к физической 

вводится искусственная вязкость 

0 1

, if 0,

0, if 0.

P
x c c x 



 
     

 

v v

v

div div

div
 

Получающая система ОДУ для неизвестных функций во всех 

узлах сетки 

 , ,ty F y  

является устойчивой, если для  ее интегрирования использовать 

неявный метод Гира [4]. Точнее говоря, область устойчивости 

включает всю полуплоскость Re( ) 0t  , где   есть собственные 

числа Якобина, только для неявных методов первого и второго 

порядков, однако есть менее жесткое определение ( )A   

устойчивости, когда область устойчивости включает конус 

arg( )t   , которое полезно т.к. позволяет интегрировать 

уравнения схемой вплоть до 6-го порядка с большим временным 

шагом. Метод Гира это неявный метод предиктор-корректор с 

разностями назад для автоматического выбора порядка от 1-го до 6-

го для достижения максимальных шагов интегрирования при 

заданной точности [4, 5].  
Существенная проблема полностью неявной схемы состоит в 

большом ранге матрицы, составленной из единичной матрицы плюс 

Якобиан 




F

y
, помноженный на временной шаг, который требуется 

обращать на каждом шаге: 

 1 1, ,.. .n n nI t   
  
 

F
y G y y

y
 

 Ранг матрицы равен числу переменных, помноженных на число 

узлов сетки. Однако матрица является разреженной и представима в 

3-диагональном виде 

   1 1 max, , , , , ,1 ,i i i i i i i i i
A B C u v w i i       y y y f y  

где iy  включает все наборы сеточных функций  , , , ,r zv v v   для 

всех 
max

1 k k  при фиксированном i . Таким образом задача 
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сводится к обращению 
max

i  матриц размером  
2

max5i . Матричная 

прогонка требует порядка  
3

max max5i k  операций. 

Примеры численного решения задачи. Для проверки схемы 

выбрано стационарное двумерное решение [3] 

   
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Параметры * , *P  определяются из уравнения состояния, 

заданной комнатной температуры 0 300T   К и задания атмосферного 

давления на границе. 

Рис. 1 демонстрирует сходимость метода при увеличении числа 

расчетных интервалов. Ошибка определяется как корень из суммы 

квадратов всех сеточных функций, ортонормированных на 

абсолютные величины (для скоростей нормировка на максимум 

абсолютной величины скорости или скорости звука). Интересно 

отметить, что данное стационарное решение с искусственным 
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заданием переменной угловой скорости на границе на больших 

временах десятки секунд также приводит к появлению небольшого 

противотока [3]. 

 

Рис. 1. Зависимость относительной ошибки решения в Эвклидовой 

норме всех независимых переменных во всех узлах сетки от числа 

интервалов max maxi k в момент t = 0.01 с для тестового двумерного решения 
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Рис. 2. Графики зависимостей аксиальных скоростей  от радиуса на 

полувысоте цилиндра max( , / 2)zv r z z  для разных скоростей вращения 
-1

* 400,500,600,700 см сv  . Вертикальные линии (точка инверсии) 

проведены для значений 19.775, 19.797, 19.823, 19.834 r  см 

 
Рис. 3. Графики зависимостей плотности от радиуса на полувысоте 

цилиндра max( , / 2)zv r z z  для разных скоростей вращения 
-1

* 400,500,600,700 см сv   демонстрируют большие градиенты физических 

величин в расчетной области 
 

Более содержательным примером является задание постоянной 

угловой скорости с возбуждением противотока с помощью разницы 

температур 1% между верхней (горячее) и нижней (холоднее) 

крышками, а также линейным изменением по высоте на боковой 

стенке. Начальное условие выписано выше (одномерная зависимость 

от r  без учета зависимости решения от координаты z ) 
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температурным градиентом на внешней границе путем 

интегрирования уравнений газовой динамики находится 

стационарное решение, устанавливающееся за время порядка 1 с. 

Рис.2 демонстрирует зависимости аксиальных скоростей  от радиуса 

на полувысоте цилиндра max( , / 2)zv r z z  для разных скоростей 

вращения 
-1

* 400,500,600,700 см сv  . Точки инверсии получаются 

для значений 19.775, 19.797, 19.823, 19.834 r  см, соответственно. 
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Направление аксиальной скорости вихря у боковой стенки совпадает 

с направлением градиента температуры. Рис. 3 демонстрирует 

демонстрируют большие градиенты плотности по всей в расчетной 

области. Основной газ располагается около боковой стенки, внутри 

находится вакуум. 
Выводы. В работе сформулированы уравнения движения вязкого 

теплопроводного газа в криволинейных координатах. Предложена 
полностью неявная схема расчета таких течений в 2D постановке в 
цилиндрических координатах, пригодная для расчетов тонких 
погранслоев и проведения длительных эволюционных расчетов плоть 
до получения стационарного решения при наличии в задаче 
процессов затухания.  

В качестве интересного приложения метода рассмотрено 
возникновение противоточного вихря в газовой центрифуге. Метод 
оттестирован на 2D стационарном решении.  

Продемонстрировано влияние на возникновение противотока 
небольшого температурного градиента. В сравнении с работами 
других авторов, использующих расщепление по направлениям и 
физическим процессам, предложенная методика совмещает расчет 
эволюции с получением стационарного решения в случае его 
существования. Т.е. позволяет решить вопрос устойчивости 
стационарного решения.  

Ограниченность метода связна с большими затратами времени 
CPU на обращение матриц. Однако вычисления легко векторизуются 
с помощью интерфейса MPI для многопроцессорных систем с общей 
памятью. Кроме того существует возможность векторизации 
циклической редукции с помощью интерфейса MPI на параллельных 
компьютерах кластерной архитектуры. 
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2D model and the numerical method of countercurrent 

flow in a rotating viscous heat-conducting gas 

 A.G. Aksenov 

ICAD RAS, Moscow, 123056, Russia 

 

A countercurrent vortex of a gas centrifuge is simulated. The mathematical model of the 

motion of a viscous heat-conducting gas includes an equation for density, velocities and 

specific energy in cylindrical geometry. After the introduction of the grid, the partial 

derivatives over the space are replaced by finite differences, and the problem is reduced 

to a system of ordinary differential equations (ODES). This technique is called the Lines 

Method. Since the flow is supersonic, and the design area includes thin boundary layers, 

the ODE system is stiff due to the presence of different-time scales and a decay. In the 
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language of mathematics, this means a significant difference between the eigenvalues of 

the Jacobi matrix and the negative real parts. Therefore, to solve the problem, it is useful 

to use the implicit Geer method for the ODE system without splitting the problem into 

physical processes and directions. An effective method for solving the Jacobin matrix 

inversion is the use of the cyclic reduction method in the matrix variant. As an example, 

the countercurrent flow arising due to the temperature gradient is demonstrated. 

Keywords: countercurrent flow in a gas centrifuge, supersonic flow in viscous heat-

conducting gas, implicit conservative scheme, Gear's method 
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