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Рассмотрено обтекание точечного источника, локализованного в нижнем слое 

двухслойной жидкости со свободной поверхностью. Получены выражения для воз-

мущения свободной поверхности жидкости, связанного с проявлением внутренней 

волны.  Действующий в жидкости источник представлен как суперпозиция точеч-

ных импульсных источников. Такой подход позволил найти возмущение поверхности 

потока как суперпозицию возмущений, вызываемых точечными импульсными               

источниками.  Использованное приближение вполне оправдано в случаях моделиро-

вания реальных источников возмущений, находящихся на значительных глубинах, 

поскольку такие источники вызывают малые возмущения морской поверхности. 

Установлено, что проявляющиеся на поверхности потока внутренние волны обра-

зуют клиновидную структуру. Угол раствора клина выходящих на поверхность 

внутренних волн уменьшается с ростом скорости потока. Найдена зависимость 

угла раствора волнового клина от числа Фруда, определяемого по скорости потока 

и толщине верхнего слоя жидкости. Рассмотренная задача представляет теоре-

тический и практический интерес, поскольку более сложные модели реальных воз-

мущений поверхности морской среды при обтекании различных неоднородностей 

могут быть построены как суперпозиции модельных элементарных возмущений от 

точечных источников.  

 

Ключевые слова: поток двухслойной жидкости, точечный источник, проявление 

внутренней волны на поверхности жидкости 

  

Введение. Используемые для мониторинга морской среды радио-

локаторы и лазерные системы позволяют измерять различные харак-

теристики свободной поверхности океана.  При этом процессы, проте-

кающие в толще водной среды, на большой глубине, не доступны для 

непосредственного наблюдения. Изучение таких процессов по данным 

дистанционного зондирования морской поверхности представляет            

собой важную научную и практическую проблему [1]. Физически 

обоснованное и математически корректное исследование этой про-

блемы должно основываться на решениях гидродинамических задач о 

возмущении морской поверхности различными источниками, локали-

зованными в водной среде. Значительный интерес представляют воз-

мущения, возникающие при обтекании морскими течениями различ-

ных неоднородностей, например, неровностей дна. Существенное вли-

яние на характер возмущений поверхности оказывает стратификация 

морской среды. В реальных условиях открытого моря наблюдаются 
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скачкообразные изменения плотности воды с глубиной, связанные, 

прежде всего, с наличием сезонного и главного термоклинов. При об-

текании неоднородностей на границе слоёв жидкости с разными плот-

ностями возникают внутренние волны [2–7]. Эти волны имеют длину 

порядка сотен метров, оказывают воздействие на морскую поверх-

ность и поэтому могут быть зарегистрированы средствами дистанци-

онного зондирования, находящимися на авиационных и космических 

носителях [8–11]. К развитию и усовершенствованию методов наблю-

дения внутренних волн по их проявлениям на морской поверхности 

наблюдается устойчивый интерес [12–20].  

Численное моделирование генерации внутренних волн может осу-

ществляться на основе решения уравнений гидродинамики при точ-

ном соблюдении условий непротекания на границе находящейся в по-

токе неоднородности, например, [21, 22]. Существенное упрощение 

этой задачи состоит в замене моделируемых неоднородностей в жид-

кой среде эквивалентной системой гидродинамических особенностей 

[23–25]. При таком подходе расчёт волн, порождаемых неоднородно-

стью в жидкой среде, может быть основан на определении элементар-

ных волн от каждой из моделирующих эту неоднородность гидроди-

намических особенностей. Если рассматриваемая неоднородность вы-

зывает волны небольшой амплитуды, то они представляет собой су-

перпозицию элементарных волн. Точечная гидродинамическая осо-

бенность характеризуется небольшим числом параметров, например, 

точечный источник полностью задаётся своими координатами и ин-

тенсивностью, то есть объёмом выбрасываемой в единицу времени 

жидкости [26, 27]. Задача о поверхностных волнах, возникающих при 

обтекании точечного источника в однородной жидкости, привлекла 

внимание многих исследователей, ее подробное решение и история       

вопроса содержатся в монографии [28]. Генерация внутренних волн в 

толще стратифицированной жидкости точечным источником рассмот-

рена в монографиях [6, 7]. Приведенные там решения получены в при-

ближении «твердой крышки», то есть в предположении о том, что по-

верхность жидкости не движется и совпадает с горизонтальной плос-

костью. Такой подход вполне оправдан, если речь идет исключительно 

о внутренних волнах в толще жидкой среды, поскольку он суще-

ственно упрощает математическую сторону задачи. Однако при изу-

чении поверхностных возмущений приближение «твердой крышки» 

заведомо не применимо. 

На свободной поверхности моря могут возникать волны двух ти-

пов: баротропные и бароклинные [5]. Волны первого типа, получив-

шие название баротропных, в силу относительно небольшого перепада 

плотности морской среды, слабо зависят от ее стратификации и прак-

тически совпадают с волнами в однородной среде, порождаемыми  

рассматриваемыми источниками возмущений. Волны второго типа, 
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называемые бароклинными, существенно зависят от стратификации 

водной среды и, наряду с баротропными волнами, проявляются на 

морской поверхности. Обычно обтекаемые морским течением неодно-

родности находятся на достаточно большой глубине, поэтому порож-

дают малые возмущения морской поверхности. В силу этого, полное 

волновое поле на морской поверхности, вызванное обтекаемой неод-

нородностью, представляет собой суперпозицию баротропных и баро-

клинных возмущений. С учетом сказанного выше, решение доста-

точно точно описывает баротропные волны на поверхности слабо 

стратифицированной жидкой среды, в частности, морской [28].              

В настоящей работе рассматривается пространственная задача о гене-

рации бароклинных волн на поверхности двухслойной жидкости, об-

текающей точечный источник, локализованный в ее нижнем слое. 

Предлагаемый подход основан на решении задачи об импульсном то-

чечном источнике в нижнем слое жидкости [29]. Непрерывно действу-

ющий в жидкости источник представлен как суперпозиция импульс-

ных источников, а возникающая от непрерывно действующего источ-

ника волна — как суперпозиция волн от импульсных источников. На 

основе такого подхода получено весьма простое интегральное пред-

ставление решения задачи о бароклинных волнах на поверхности 

двухслойной жидкости, позволившее провести его численное иссле-

дование.  

Постановка задачи и основные соотношения. Рассмотрим                 

сначала неподвижную тяжёлую двухслойную жидкость со свободной 

поверхностью.  Обозначим плотность жидкости в верхнем слое через 

1 , в нижнем — через 2 . Будем считать, что 1 2  , то есть жид-

кость находится в состоянии устойчивого равновесия. Пусть в нижнем 

слое жидкости локализован неподвижный точечный источник пере-

менной интенсивности  Q Q t . Направим ось z  вверх и проведём её 

через рассматриваемый источник. Если жидкость не ограничена по го-

ризонтали, а её течение вызвано исключительно источником, то задача 

обладает цилиндрической симметрией. То есть ни одна из величин, ха-

рактеризующих поле гидродинамических возмущений от источника, 

не зависит от полярного угла α, отсчитываемого от любой фиксиро-

ванной прямой, лежащей в горизонтальной плоскости. В силу этого 

обстоятельства естественно искать возмущения жидкости источником 

в цилиндрической системе координат  , ,r z . 

Пусть в невозмущённом состоянии свободная поверхность жид-

кости совпадает с плоскостью 0z  , граница раздела жидких слоёв — 

с плоскостью z H  , а источник находится в точке  0,0, h . Если в 

некоторый момент времени источник начинает свою работу, то под 

его воздействием на свободной поверхности жидкости и на границе 
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раздела жидких слоёв возникают волны. При достаточно большом 

удалении источника от границы раздела слоев жидкости эти волны 

имеют амплитуды, много меньшие их длин. В рамках этого допуще-

ния, именуемого приближением малых волн, поле скорости жидкости 

является потенциальным в каждом слое [30]. Точнее, в нижнем слое 

это поле потенциально всюду, кроме точки локализации источника. 

Если источник, находящийся в точке  0,0, h  нижнего слоя жид-

кости, выбрасывает в момент времени 0t   жидкость объема dV , то, 

как показано в [29], на поверхности жидкости, вместе с баротропной, 

возникает бароклинная волна 

             0

0

  , , , , cos ;dS r t s r t dV s r t G t J r d    


     (1) 

 
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  

    
 

 
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 

11
  exp ;    

2 1 1 2 1

1
  ;

1

th Hth H
G h

th H th H

gth H

th H

  
 
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  
 

 


  
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




(2) 

где 0J  — функция Бесселя нулевого порядка, 1 2  /   . 

Точечный источник постоянной интенсивности Q выбрасывает в 

момент времени   жидкость бесконечно малого объема dV Qd  и, 

таким образом, генерирует элементарную волну 

    , ,  ,dS r t Qs r t d       (3) 

эволюционирующую при t   по закону (1) – (2). 

Если точечный источник находится в потоке, имеющем в непо-

движной системе отсчета xOy , связанной с источником, скорость v в 

положительном направлении оси x, то элементарная кольцевая волна, 

возникшая в момент времени  , сносится потоком и, в соответствии с 

(3), эволюционирует в подвижной системе отсчета XOY , связанной с 

центром волны, по закону 

   2 2,  , dS dS R t R X Y    .  (4) 

Поскольку  x X t    , y Y  в неподвижной системе отсчета 

xOy , связанной с источником, элементарная волна (4) эволюциони-

рует по закону  

   
2 2  ,  .dS Qs x v t y t d  

 
     

 
  (5) 



В.Н. Носов, А.С. Савин 

96 

Если источник начинает свою работу в момент времени 0t  , то в 

момент времени 0t   на поверхности потока, в соответствии с (5), об-

разуется волна 

 2 2

0

( , , ) ( ( ( )) ), )

t

S x y t Q s x v t y t d         

или, с учетом выражений (1), (2), 

       
2 2

0

0 0

( , , ) cos   .

t

S x y t Q G t J x v t y d d      


 
     

 
   (6) 

Изменив в формуле (6) порядок интегрирования, получим выра-

жение 

       
2 2

0

0 0

( , , ) cos   .

t

S x y t Q G t J x v t y d d      


 
     

 
    (7) 

Переходя в (7) к пределу  t  , находим, что   при длительной 

работе источника на поверхности потока устанавливается волна 

         2 2

0

0 0

, cos   .S x y Q G J x v y d d     
 

      (8) 

Путем предельного перехода  t   в (8) находим волну далеко 

вниз по потоку за источником  

        2 2

0

0

, cos   .
Q

S x y G x J y d d
v v


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
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 
    (9) 

Выразив внутренний интеграл в (9) с помощью известных формул 

теории функций Бесселя [14], получим, что далеко за источником 

устанавливается бароклинная волна 

    
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2
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   (10) 

Наклон волны в каждом сечении constx  , находится из формулы 

(10)  

    
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0
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S Q x
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Выражения (10), (11) справедливы при условии 1   , задаю-

щем область определения подынтегральных функций, в противном 
случае они равны нулю [31].  Нетрудно показать, что это условие вы-
полняется при 

  min 1 .gH       

  Как правило, в реальных морских условиях 0,993  , 30 м.H 

Это означает, что максимальное значение величины min  составляет 

1,4 м с . Иными словами, в условиях реального моря генерация баро-

клинной волны (10), (11) заведомо происходит при скорости потока, 

большей 1,4 м с . 

Численный анализ полученных результатов. Приведем фор-
мулы (10), (11) к безразмерному виду. Положим  

 , , , .x XH y YH h LH H p      

Введем обозначения 
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Здесь Fr  — число Фруда, определенное по скорости потока и тол-
щине верхнего слоя жидкости. Из формулы (10) следует выражение 
для безразмерного отклонения свободной поверхности жидкости от 
равновесного положения в произвольной точке с безразмерными ко-

ординатами X , Y  
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  
 



  (12) 

Вычислив частную производную выражения (12) по Y , получаем 

формулу для наклона волны в каждом сечении constX    
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  (13) 

На рис.1 в качестве примера представлены графики зависимостей 

наклона поверхности жидкости  ,Y YD D X Y  от Y  в различных           

сечениях 700, 1500, 3000X  , построенные при 0,997  ; 6L  ; 

0, 2R H  ; 0,15Fr  . Как показали численные расчеты, аналогичные 

картины наблюдаются и при других значениях параметров. Из полу-

ченных результатов следует, что в каждом сечении constX   в 

направлении от оси OX  распространяется волновой пакет, сосредото-

ченный в относительно узкой области.  Прямые вычисления показали, 

что отношение расстояния центра волнового пакета от оси OX  к ко-

ординате X , определяющей сечение, остается практически постоян-

ным. Это означает, что в системе координат, связанной с источником, 

волновые возмущения наиболее ярко выражены в окрестностях пря-

мых, исходящих из точки, лежащей над источником и образующих не-

который угол   с осью OX . Зависимость этого угла от числа Фруда 

показана на рис. 2.  Видно, что при увеличении числа Фруда угол рас-

твора волнового клина за источником уменьшается.  При фиксирован-

ной толщине верхнего слоя жидкости увеличение числа Фруда озна-

чает возрастание скорости потока. 
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Рис. 1. Графики зависимостей наклона поверхности жидкости 
YD  от Y   

в различных сечениях: 

а — 700X  ; б — 1500X  ; в — 3000X    
 

 

Рис. 2. График зависимости угла полураствора волнового клина от 
 числа Фруда 
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Заключение. Для расчета бароклинных волн на поверхности по-

тока двухслойной жидкости, обтекающего неподвижный точечный 

источник в нижнем слое, получены сравнительно простые выражения, 

содержащие только однократные интегралы. В результате расчетов на 

основе полученных выражений установлено, что далеко вниз по по-

току за источником бароклинные волны на поверхности жидкости об-

разуют характерный клин. В силу монотонного убывания угла рас-

твора волнового клина при возрастании числа Фруда, связь между 

этим углом и числом Фруда является взаимно однозначной.  Этот эф-

фект может быть положен в основу определения числа Фруда и, сле-

довательно, скорости потока, обтекающего источник возмущения, по 

измеренному на морской поверхности углу расхождения выходящих 

на поверхность внутренних волн. Кроме того, решение задачи об об-

текании точечного источника дает основу для получения оценок воз-

мущений от более сложных неоднородностей и поэтому представляет 

интерес при разработке требований к аппаратуре дистанционного зон-

дирования морской поверхности.  
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Numerical study of the effect of an internal wave on 

 the surface of a two-layer flow flowing  
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The flow around a point source localized in the lower layer of a two-layer liquid with a 

free surface is considered. Expressions are obtained for the perturbation of the free surface 

of the liquid associated with the manifestation of an internal wave. The source operating 

in the liquid is represented as a superposition of point pulse sources. This approach made 

it possible to find the perturbation of the flow surface as a superposition of perturbations 

caused by point pulse sources. The approximation used is quite justified in cases of mod-

eling real sources of disturbances located at considerable depths, since such sources cause 

small disturbances of the sea surface. It is established that the internal waves appearing 

on the flow surface form a wedge-shaped structure. The angle of the wedge solution of the 

internal waves coming to the surface decreases with increasing flow velocity. The depend-

ence of the angle of the wave wedge solution on the Froude number determined by the flow 

velocity and thickness of the upper liquid layer is found. The considered problem is of 

theoretical and practical interest, since more complex models of real disturbances of the 

surface of the marine environment during the flow of various inhomogeneities can be con-

structed as superpositions of model elementary disturbances from point sources. 

  

Keywords: flow of a two-layer liquid, point source, manifestation of an internal wave on 

the surface of the liquid 
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