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Проведено сравнение динамики цепочки пятен перемешанной вязкой жидкости в 

стратифицированной среде, с различными начальными интервалами между пят-

нами. Для математического моделирования используется метод расщепления для ис-

следования течений несжимаемой жидкости (МЕРАНЖ). Конечно-разностная схема 

метода имеет второй порядок аппроксимации по пространственным переменным, 

минимальную схемную диссипацию и дисперсию, обладает свойством монотонности. 

Приведены результаты сравнения динамики функции тока в зависимости от началь-

ного интервала между пятнами. 

 

Ключевые слова: несжимаемая вязкая жидкость, соленость, стратификация, при-

ближение Буссинеска, метод расщепления 

  

Введение.  В стратифицированной среде атмосферы и океана 

наблюдаются блиннообразные горизонтальные пятна перемешанной 

жидкости, возникающие при опрокидывании внутренних океаниче-

ских волн [1]. Пятно перемешанной жидкости имеет повышенную со-

леность и давление. Пятно стремительно образуется и долгое время 

существует, постепенно сплющиваясь. Горизонтальный размер пятна 

значительно превышает его размер по вертикали [2–5]. Избыточное 

давление внутри пятна вызывает его коллапс в форме интрузий в окру-

жающую океаническую среду. Мгновенное распределение гидрофизи-

ческих параметров (плотности, температуры, солености) по глубине 

никогда не бывает гладким, а носит ступенчатый характер: участки, 

где гидродинамические характеристики постоянны, сменяются участ-

ками с большими их градиентами. Это связано с тем, что в турбулент-

ном потоке с сильно устойчивой стратификацией турбулентность рас-

пространена не повсеместно, а пятнами. Неоднородный и сильно ани-

зотропный характер турбулентности в условиях сильной устойчивой 

стратификации был предсказан А.Н. Колмогоровым еще в конце 40-х 

годов. Блиннообразные пятна оказываются резко ограниченными и 

долго живущими в океане. Пятна эволюционируют, постепенно сплю-

щиваясь и внедряясь в окружающую среду языками  интрузиями. 

Перемешанность жидкости в пятне создает в нем избыточное по срав-

нению с окружающей средой давление, которое и порождает движу-

щую силу интрузии. Под влиянием этой силы происходит расплыва-

ние (коллапс) пятна. Возникновение и развитие пятен перемешанной 
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жидкости в стратифицированной среде представляет существенный 

интерес в связи с изучением тонкой структуры океана, а также иссле-

дованием динамики следа за движущимся подводным объектом. 

Математическая постановка задачи, принятые допущения. 
Рассмотрим плоскую нестационарную задачу о течении, которое воз-
никает при коллапсе области A однородной жидкости под действием 
силы тяжести. Область A окружена устойчиво и непрерывно страти-
фицированной по плотности жидкостью (рис. 1). Плотность изме-               
няется по линейному закону. 
 

 
Рис. 1. Начальное  1, ,0s y  и установившееся  , ,s x y t   

поля возмущения солености 

 

Течение развивается в однородном поле силы тяжести с ускоре-

нием свободного падения g . Невозмущенное линейное распределение 

плотности: 
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характеризуется масштабом стратификации:  
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где частота плавучести N g  , период плавучести 2bT N ; 

0 1R     начальный радиус пятна, s   возмущение солености (стра-

тифицирующего компонента), включающее коэффициент солевого 
сжатия. 

Выберем в качестве характерного линейного размера радиус пятна 
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момент времени, характерное время 1N   и перейдем к безразмерным 
переменным: 
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( , , , , , , ), , , / ,

, , , .

f x y t u v p x xR y yR t t N

u uR N v vR N p p R N



  

   

   
  

Положим p   давление за вычетом гидростатического. Тогда 

уравнения Навье-Стокса, начальные и граничные условия в безразмер-

ных переменных в приближении Буссинеска принимают следующий 

вид (тильда опущена)  (2), где 2

0 0Re R N    число Рейнольдса, 

2

0Fr R N g   число Фруда, 
0Sc sk    число Шмидта, sk   

коэффициент диффузии соли,    коэффициент динамической вяз-

кости, 0C R    отношение масштабов: 
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Решение задачи будем искать в прямоугольной области 

 , : 0 ,x y x X Y y Y      , которая показана на рисунке 1. На левой 

и правой границах области (рис. 1, линии 1, 3) заданы условия перио-
дичности течения. На верхней границе задано условие твердой 
крышки (рис. 1, линия 2). На нижней границе области (рис. 1, линия 4) 
задано состояние покоя. 

Численный алгоритм решения задачи. При решении задачи             

использовался метод расщепления для исследования течений несжи-

маемой жидкости (МЕРАНЖ) [6]. Конечно-разностная схема метода 

обладает вторым порядком аппроксимации по пространственным         

переменным, минимальной диссипацией и дисперсией, работоспособ-

ностью в широком диапазоне чисел Рейнольдса и Фруда и важным 

свойством монотонности. 
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Схема расщепления: 
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Предварительно по начальным данным рассчитывается возмуще-

ние солености 1s  (6). Схема состоит из четырех этапов, которые по-

вторяются на каждом временном шаге. На этапе I решаем уравнение 

(3) в предположении, что передача импульса осуществляется только 

за счет конвекции, диффузии и сил плавучести. На этапе II решаем 

уравнение Пуассона (4) в силу соленоидальности вектора скорости, 

где v   рассчитанное на этапе I промежуточное поле скорости, реше-

ние уравнения (4) получаем методом верхней релаксации. На этапе III 

решаем уравнение (5) в предположении, что передача импульса про-

исходит только за счет градиента давления. На этапе IV решаем урав-

нение (6) и вычисляем возмущение солености 1ns   по найденному 

полю скорости 1n
v . 

Конечно-разностная схема. Рассматриваемая область течения 

покрывается равномерной прямоугольной расчетной сеткой ячеек по 

x  и y : 

 
1/ 2

1/ 2
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i x x x

j y y y

x ih h i L Lh X

y jh h j M Mh Y
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  

   
  

где xh    шаг сетки по оси x , yh   шаг сетки по оси y , L  и M   

количество ячеек сетки в горизонтальном и вертикальном направле-

ниях. 

Точка с координатами  ,i j  находится в центре ячейки. Ячейка 

расчетной сетки характеризуется давлением ,i jp , (и, возможно, темпе-

ратурой, энергией и т.д.) и дивергенцией ,i jD , которая определяет 

наличие источника или стока в объеме в зависимости от его знака. 

В данной работе применена конечно-разностная схема задачи 

схлопывания пятен в стратифицированной жидкости для двумерного 

случая из работы [7]. Давление ,i jp  вычисляется в центре ячейки. Ско-

рость ,i jv  вычисляется на границах ячейки. Горизонтальная составля-

ющая скорости определяется в середине правой и левой граней 
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ячейки. Вертикальная составляющая скорости определяется в сере-

дине верхней и нижней граней ячейки. Знание нормальной составля-

ющей скорости на границе ячейки позволяет напрямую рассчитать по-

ток импульса через эту границу. 

Результаты. Проведено математическое моделирование дина-

мики цепочки пятен с различными разрывами в стратифицированной 

жидкости. В начальный момент времени пятно имеет форму круга             

радиуса 0 1R  . Пятна расположены в ряд вдоль горизонтальной оси 

встык или на некотором расстоянии друг от друга (рис. 2, a). Под дей-

ствием гравитации цепочка пятен со временем преобразуется в гори-

зонтальную полосу (рис. 2, б). 
 

  

а б 

Рис. 2. Состояние цепочки пятен перемешанной жидкости показано 

в изоклинах возмущения солености (красным показан максимум значений, 

а фиолетовым  минимум); показана область 0 8; 2,3 2,3x y     : 

а  начальное состояние; б  конечное состояние 

 

Область расчета 0 2; 8 8x y      покрыта прямоугольной рас-

четной сеткой размером 100 800  с шагом 0,02h  . На левой границе 

0x   и правой границе 2x   расчетной области ставятся условия пери-

одичности. На верхней границе выполняются условия твердой крышки. 

На нижней границе среда находится в состоянии покоя. Заданы              

коэффициенты и параметры: 

 

2 5 2

0 0,01 см с; 1,41 10 см с;

2 c; 10 см;

Sc 709,2; Re 3162; Fr 1.

s

b

k

T

 


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Получены цветные изображения полей функции тока. Шкала зна-

чений функции тока соответствует цветам радуги: красным показан 

максимум значений, а фиолетовым  минимум. 

Сравним динамику цепочки пятен солености с различными разры-

вами, когда в начальный момент времени цепочка имеет характери-

стики согласно табл. 1. Вариант 1 рассматривает цепочку без разры-

вов. В варианте 2 радиус пятна больше расстояния между пятнами.              



Математическое моделирование цепочки пятен с различными интервалами… 

85 

В варианте 3 радиус пятна меньше расстояния между пятнами, но раз-

мер пятна превышает расстояние между пятнами. 

Таблица 1 

Параметры вариантов расчета 

№ варианта Начальный радиус пятен Начальное расстояние между пятнами 

1 1,0 0 

2 0,8 0,4 

3 0,6 0,8 

 

При 1t   поля функции тока в трех рассматриваемых вариантах 

имеют схожие 4 возмущения в центральной части, диагонально сим-

метричные (рис. 3, а; 4, а; 5, а). Возмущения отстоят от центра тем 

дальше, чем больше начальный радиус пятен. При 3t   экстремумы 

поля функции тока варианта 1 меняются местами, на месте минимума 

наблюдается максимум, а на месте максимума  минимум; возмуще-

ния отодвигаются от центра (рис. 3, б). В варианте 2 и 3 (для цепочки 

с разрывами) удваивается количество возмущений. При чем в вари-

анте 2 два вида возмущений разной интенсивности (рис. 4, б), а в ва-

рианте 3 их четыре вида (рис. 5, б). При 4t   остается 4 экстремума во 

всех вариантах, за исключением варианта 3, где помимо основных 4 

заметны менее выраженные возмущения (рис. 3, в; 4, в; 5, в). При 5t   

над возмущениями начинает образовываться еще пара возмущений, 

симметрично снизу тоже начинает образовываться пара возмущений 

(рис. 3, г; 4, г; 5, г). Наблюдается диагональная симметричность интен-

сивности в расположении возмущений. При 6t   в варианте 1 возму-

щения попарно схлопываются и увеличиваются в размере (рис. 3, д). 

В вариантах 2 и 3 (для цепочки с разрывами) наблюдается сложная пе-

рекомпановка возмущений. В варианте 2 крупные экстремумы пере-

мещаются на границу возмущений, оставляя в центре области боль-

шое количество небольших по размеру возмущений (рис. 4, д). В ва-

рианте 3 экстремумы остаются в центре, несколько уменьшаясь в раз-

мере, а остальные возмущения увеличивают свою интенсивность (рис. 

5, д). При 8t   наблюдается 4 заметных возмущения и две пары менее 

интенсивных возмущения рядом. В варианте 1 возмущения расходятся 

от центра (рис. 3, e). В вариантах 2 и 3 возмущения остаются в центре, 

их неправильная форма выдает завершающую стадию слияния сосед-

них возмущений, при этом в окрестности начинают образовываться 

новые возмущения (рис. 4, e; рис. 5, e). 
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Рис. 3. Динамика поля функции тока при коллапсе цепочки пятен для параметров: 
2 5 2

0 01; 0,01 см с; 1,41 10 см с; Sc 709,2; Re 3162; Fr 1:sR k          

а  1t  ; б  3t  ; в  4t  ; г  5t  ; д   6t  ; е  8t    
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Рис. 4. Динамика поля функции тока при коллапсе цепочки пятен для параметров: 
2 5 2

0 00,8; 0,01 см с; 1,41 10 см с; Sc 709,2; Re 3162; Fr 1:sR k          

а  1t  ; б  3t  ; в  4t  ; г  5t  ; д   6t  ; е  8t    
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Рис. 5. Динамика поля функции тока при коллапсе цепочки пятен для параметров: 
2 5 2

0 00,6; 0,01 см с; 1,41 10 см с; Sc 709,2; Re 3162; Fr 1:sR k          

а  1t  ; б  3t  ; в  4t  ; г  5t  ; д   6t  ; е  8t    
 

При 9t   возмущения функции тока начинают распространяться 

все дальше в окрестности, увеличиваются в размере за счет слияния 

соседних возмущений (рис. 6, а; 7, а; 8, а). В варианте 1 при 11t                 

количество возмущений удваивается, и они смещаются от центра                  

расчетной области вверх и вниз (рис. 6.b). В вариантах 2 и 3 просле-

живается повторение предыдущих состояний, но с более крупными по 

размеру возмущениями, которые остаются в центре области (рис. 7, б;                   

8, б). При 20t   возмущения распространяются в периферийную об-

ласть (рис. 6, в; 7, в; 8, в), в вариантах 1 и 2 экстремумы группируются 

в центре, а в варианте 3 отстоят от центра. При t  от 40 до 60 возмуще-

ния распространяются по всей области (рис. 6, г, д; 7, г, д; 8, г, д).                

Возмущения зарождаются в центре расчетной области и переме-                   

щаются к границе с близкой скоростью при сравнении настоящих ва-

риантов, оставляя за собой след многочисленных, но малоинтенсив-

ных возмущений. При 20t   возмущения интенсивнее в верхней по-

ловине расчетной области 0y  ; причем в варианте 1 разница заметна 

лишь в периферийных областях 4y   и 4y   . 
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Рис. 6. Динамика поля функции тока при коллапсе цепочки пятен для параметров: 
2 5 2

0 01; 0,01 см с; 1,41 10 см с; Sc 709,2; Re 3162; Fr 1:sR k          

а  9t  ; б  11t  ; в  20t  ; г  40t  ; д   60t    
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Рис. 7. Динамика поля функции тока при коллапсе цепочки пятен для параметров: 
2 5 2

0 00,8; 0,01 см с; 1,41 10 см с; Sc 709,2; Re 3162; Fr 1:sR k          

а  9t  ; б  11t  ; в  20t  ; г  40t  ; д   60t    
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Рис. 8. Динамика поля функции тока при коллапсе цепочки пятен для параметров: 
2 5 2

0 00,6; 0,01 см с; 1,41 10 см с; Sc 709,2; Re 3162; Fr 1:sR k          

а  9t  ; б  11t  ; в  20t  ; г  40t  ; д   60t    

 

Выводы. Динамика цепочек пятен без разрывов, с небольшим и с 
заметным разрывами характеризуются постепенным распространением 
возмущений функции тока по всей области расчета, колебательным ха-
рактером движения, локальными экстремумами функции тока. Цепочка 
пятен без разрывов имеет наиболее простую динамику и выраженное 
колебательное движение. Цепочки пятен с разрывами отличаются более 
сложным движением. Притом скорость распространения возмущений 
не зависит от величины разрыва в начальной цепочке пятен солености. 
С увеличением разрыва в цепочке пятен солености со временем прояв-
ляется несимметричность поля функции тока относительно оси абс-
цисс; для цепочек пятен с разрывами возмущения интенсивнее в верх-
ней половине расчетной области, для цепочки пятен без разрывов воз-
мущения отличаются интенсивностью в верхней и нижней четвертях 
расчетной области, сохраняя равнозначную интенсивность в централь-
ной части. Таким образом функция тока характеризует характер 
движения, область возмущений и интенсивность динамики. 

Работа выполнена в рамках Госзадания ИАП РАН. 
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The Mathematical modeling of a spots chain with differ-

ent intervals in a stratified fluid 

 V.A. Gushchin, I.A. Smirnova 

ICAD RAS, Moscow, 117485, Russia 

 

A comparison is made of the spots chain dynamics of mixed liquid in a stratified envi-

ronment, with different initial intervals between spots. For mathematical modeling, the 

SMIF method (splitting method for studying incompressible fluid flows) is used. The fi-

nitedifference scheme of the method has the second order of approximation in terms of 

spatial variables, minimal scheme dissipation and dispersion, and has the property of mon-

otonicity. The results of comparing the dynamics of the stream function depending on the 

initial interval between spots are presented for the same values of the Reynolds and Froude 

numbers. 
 

Keywords: incompressible viscous fluid, salinity, stratification, Boussinesq approximation, 

splitting method 
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