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Приведены исследования (m,k)-метода, одностадийной комплексной схемы Розен-
брока, метода конечных суперэлементов и явного четырехстадийного метода 
Рунге — Кутты применительно к решению жестких систем обыкновенных диффе-
ренциальных уравнений. Анализ тестовых расчетов показал, что лучшим выбором 
для систем с большим числом жесткости является одностадийная комплексная 
схема Розенброка (CROS). Метод конечных суперэлементов (МКСЭ) является «точ-
ным» для решения линейных систем обыкновенных дифференциальных уравнений, 
лучшим вспомогательным методом для его реализации является (4,2)-метод. По-
строен и протестирован вариант метода конечных суперэлементов для решения 
нелинейных задач, оказавшийся непригодным для задач большой жесткости. 
 
Ключевые слова: обыкновенные дифференциальные уравнения, численное решение, 
жесткие системы, метод конечных суперэлементов, (4,2)-метод, CROS. 

 
Введение. Постановка задачи. Рассмотрим задачу Коши для авто-

номной системы обыкновенных дифференциальных уравнений (ОДУ): 
( ), u f u  0(0) ,u u  00 ,t t                            (1) 

где u  — вектор-столбец  1( ), ..., ( )n
T

t u tu , причем известно, что дан-

ная система является жесткой. 
Далее будут встречаться и неавтономные системы. 
Будем считать линейную систему ОДУ  u Au  ( A  — постоянная 

матрица n n ) жесткой, если выполняются два следующих условия [1]: 
1) все собственные числа i матрицы A  имеют отрицательную 

действительную часть, т. е. Re 0,i  1, 2, ..., ;i n  
2) число  

1

1

max Re

min Re

k
k n

k n
k

S  

 





 

велико. Число S называют жесткостью задачи.  
Если ( )tA A  и ( ),k k t  то вводят понятие жесткости на вре-

менном интервале. В этом случае число 
0(0, )

sup ( )
tt

S t


должно быть 

большим. В случае нелинейных систем для определения жесткости 
можно провести локальную линеаризацию. 
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Не все задачи, называемые в литературе жесткими, соответству-
ют данному определению. Часто жесткими называют все задачи, ре-
шение которых содержит компоненты с резко различными характер-
ными временами изменения [2]. 

Особенность жестких задач заключается в том, что стандартные 
явные методы интегрирования систем ОДУ не являются пригодными 
для их решения. В то же время большинство привлекающих внима-
ние задач являются жесткими, чем и обусловлен интерес к методам 
их численного решения. Целью данной работы является анализ чис-
ленных методов поиска решения поставленной задачи и оценка каче-
ства работы методов в зависимости от ее характера. 

В настоящей работе проведено сравнение численных методов 
решения жестких систем ОДУ: (4,2)-метода, МКСЭ, метода Рунге — 
Кутты четвертого порядка точности и одностадийной комплексной 
схемы Розенброка. Сравнение выполнено на основе решения тесто-
вых задач. Для оценки работы методов выбран набор тестов, обла-
дающих разной степенью жесткости [3]. Предложен  и протестирован 
вариант МКСЭ для нелинейных задач. 

Методы решения жестких систем ОДУ. 
1. (m,k)-метод [4]. Пусть заданы целые положительные числа m  

и ,k k m . Обозначим через mM  множество целых чисел i, удовле-

творяющих условию 1 i m  , а через kM и iJ  — подмножества из 

mM  следующего вида [4]: 

 1 2|1 ...k i m kM m m m mM m     
 
; 

 1 | 1, , ,i j m j k jJ m j m mM M i    2 .i m   

Тогда семейство ( , )m k -методов записывается в виде 

1
1 ;n n i

m

i
iy p


 y k ;n n D E f  

1

1

,
i

n i n ij j

i

j
jj

ij
J

k y




 
     
 

  D f k k ;ki M  

1 ,
i

n i i ij j
j J

k


  D k k mi M \ ,kM  

где   — шаг интегрирования решаемой задачи; ny  — приближенное 

решение при nt t ; E — единичная матрица размерностью ;n

( ) /n ny y   f f  — матрица Якоби векторной функции ( )yf ,a ,ip ij и 

ij  — вещественные коэффициенты, определяющие свойства точно-

сти и устойчивости ( , )m k -метода. 
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Рассмотрим реализованный в данной работе L -устойчивый (4,2) -
метод четвертого порядка точности [4]. Он выглядит следующим 
образом: 

1

4

1

,n n i i
i

p


  y y k ;n na   D E f  

1 ( );n nD k f y 2 1;n D k k 3 31 1 32 2 32 2( ) ;n n     D k f y k kk

4 3 42 2,n  D k k k  

а коэффициенты ,a ,ip 2 ,j 3k , 1 4,i  3 4,j  1 2k   имеют сле-

дующие значения [4]: 0,57281606248213;a  1 1,27836939012447;p   

2 1,00738680980438;p    3 0,92655391093950;p   

4 0,33396131834691;p    31 1,00900469029922;   

32 0,25900469029921;    32 0,49552206416578;    

42 1,28777648233922.    
При таких значениях коэффициентов схема обладает четвертым 

порядком точности и L-устойчивостью. 
2.  Одностадийная комплексная схема Розенброка (CROS). Об-

щий вид многостадийных схем семейства Розенброка [5] имеет сле-
дующий вид: 

1
1

;
s

n n m m
m

b


  y y w  

1 1

1 1

, , ,
m m

mm u n mk k n m m n mk k n m
k k

a c c a t at
 

 

    
        

  
   

  
 E f y w y ww f  

где uf  — матрица Якоби решаемой задачи; s  — число стадий метода;

, , , ,mk m m mk ma a b c c  — заданные комплексные (вообще говоря) числа. 
Формулы перехода на новый временной слой для однопарамет-

рического семейства одностадийных схем Розенброка имеют сле-
дующий вид: 

1 Re ;n n   y y k   1, ( )( ) , ,u n ny t t a  f yE f k  

где Rek  — действительная часть вектора k с комплексными коор-
динатами; E  — единичная матрица;   — шаг метода;   и 1a  — чи-
словые параметры, определяющие свойства схемы. 

Данная схема обладает точностью 2( )O   при 1Re R
1

2
ea    , 

поэтому выберем 1
1

2
a   и приведем исследование свойств системы в 

зависимости от значения коэффициента .  
Выясним, при каких значениях параметра   данная схема является 

А-устойчивой (приведенные далее рассуждения основаны на [6–10]). 
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Функция устойчивости одностадийной комплексной схемы Ро-
зенброка имеет вид [5]: 

1 (1 )
(

1
) ,R

  






 

а по определению схема является А-устойчивой, если )( 1R    при 

Re( ) 0.   Пусть ,a ib    1 2.i     Запишем условие А-устой- 

чивости и получим допустимые значения  : 

1 2

1 2

1 (1 )( )

1 ( )( )
1.

a ib i

a ib i

 
 

   


  
 

После преобразований получим следующее неравенство: 

   2 2 2 2
1 2 1 2 12 2 .a        

Поскольку 1 0,   окончательно приходим к условию А-устойчи-

вости для CROS: 
1

)(
2

R .e    

Напомним, что схема является Lp-устойчивой, если она А-

устойчива и выполняется следующее условие: ) (( ), 0pR O p     
при    и Re 0  [9]. 

Комплексная схема Розенброка является L1-устойчивой, если па-
раметр   лежит на правой половине окружности с центром в точке 

1
,0

2
 
 
 

 и радиусом 
1

,
2
а на концах этой полуокружности 

1
,

2

i 


1

2

i   


 обладает свойством L2-устойчивости [5]. 

Запишем итоговый вид CROS, для определенности выбрав 
2

1 i
 


: 

1 Re ;n n   y y k
1

( ) ,
2 2

, .u n n
i

t t
       

  


 


E yf k f y  

В точках 
1

2

i
   и 

1

2

i
   CROS имеет второй порядок аппрок-

симации и обладает L2-устойчивостью. Но при попытке совместить 
эти качества схемы при переходе к действительным числам оказыва-
ется, что такой переход без потери какого-либо из свойств невозмо-
жен: L2-устойчивость не является достижимой в случае действитель-
ных коэффициентов, поэтому приходится делать выбор между 
вторым порядком аппроксимации и L1-устойчи-востью. Значения ко-
эффициента  , при которых выполняется одно из описанных выше 
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свойств, равны соответственно 
1

2
   (пересечение прямой Re(

1
)

2
   с 

осью действительных чисел) и 1   (пересечение полуокружности 

1 1
,

2 2
  Re(

1
)

2
   с осью действительных чисел). 

Из приведенных рассуждений следует, что схема CROS с ком-
плексными коэффициентами обладает лучшими качествами, чем ана-
логичная схема с действительными коэффициентами. 

3. Четырехстадийный явный метод Рунге — Кутты. Этот метод 
обладает четвертым порядком точности. Переход к решению на но-
вом слое происходит по следующим формулам [1]: 

1 ;n n  y y K  1 2 3 4
1

,
6

2 2   K k k k k  

где  

1 ( , );n ntk f y 2 1 ;,
2 2n nk t
  

 


  


k f y 3 2 ;,
2 2n nk t
  

 


  


k f y

 4 3 .,n nk t   k yf  

4. Метод конечных суперэлементов [11−14]. Пусть поставлена за-
дача Коши (1) для линейной системы с постоянными коэффициентами

 ( ) .f u Au  Точное решение данной задачи имеет вид 0( ) ,tt e Au u

00 t t   [11]. 

Рассмотрим интервал 0tt
N

  , входящий во временной интервал 

всей задачи, 00 .t t    Пусть .kt tk   Тогда 0( ) kt
kt e Auu

0 1... ( ) t
k

k

t t te e e u t e   
 

A A A Au . Таким образом, для нахождения зна-

чения функции )( ktu  в конце данного интервала требуется знать значе-

ние функции 1( )kt u  в конце предыдущего интервала и значение мат-

ричной экспоненты .te A  Для ее нахождения введем n  (размерность 
исходной задачи) вспомогательных задач следующего вида: 

1, ;

(0) (0,0.., 1,..,0) ,

m m k k

T
m

m

t tt  
 

 



A 


 

где 1 .m n   Эти вспомогательные задачи можно решать с малым 
шагом t  стандартными методами, используемыми для решения 
систем ОДУ. Тогда решение поставленной задачи на слое kt  можно 
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представить следующим образом: 1,
1

( ) ,k k m

n

m
mt


 u u  где 1,k mu  — m-я 

компонента вектора 1.ku  
Данный метод называют методом конечных суперэлементов, так 

как в описанном виде он совпадает с МКСЭ Федоренко [11–14], на-
зываемым также методом матричной экспоненты [11]. 

Тестовые задачи. Рассмотрим примеры, использованные в дан-
ной работе для тестирования описанных методов [3]. 

Тест 1 
Дана система 

   
   
     
     

1 0 1

2 0 1 1 1 1 2 1 3

3 0 1 1 1 1 2 1 1 3

4 0 1 1 1 1 2 1 1 2 3 2 2 4 2 5

5 0 1 1 1 1 2 1 1 2 2 3 2 4 2 2 5

;

;

2

2 ;

2 .

;

2

u u

u

u

u u u

u u u

u u u

u u u u u

u u

u

u

 

      

      

      

 

  

   


     


     

     

              

 

Пусть 2 3(0) (0)u u  и 4 5(0) (0)u u . Тогда точное решение данной 

системы линейных ОДУ (при 0 1t  ) имеет следующий вид: 

 
   

 
   

0

1

1

2

2

1 1

2 1 2 1 1

3 1 2 1 1

4 3 4 2 2

5 3 4 2 2

( ) (0)

( ) ( ) (0) (0) cos ;

( ) ( ) 2 (0) (0) sin / 4 ;

( ) ( ) (0) (0) cos ;

( ) ( ) 2 (0) (0) sin / 4 .

;t

t

t

t

t

t u e

t u t u e t

u t u t u u e t

u t u t u u e t

u t u t u e

u

u

t

u

u











 


   
      


   


     

 

Собственные значения матрицы системы: 1 0;   2,3 1 1;i    

4,5 2 2.i     

Рассмотрим пять случаев различных параметров исследуемой 
системы. 

Случай 1: плохо обусловленная задача. Начальные условия: 

1(0) 0,1;u  2 3(0) (0) 1;uu   4 5(0) (0) 0,5,u u   значения параметров: 

0 10;  1 4;  1 20 ;   2 5;  2 100.   

Определим число обусловленности M задачи с матрицей A  сле-

дующим образом: 1M  A A  [15]. Тогда число обусловленности 

матрицы рассматриваемой системы имеет значение 241M   (здесь и 
далее оценка проведена с использованием октаэдрической нормы [1]). 
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Собственные значения задачи: 1 10;   2,3 4 20 ;i   
 4,5 5 100 .i    

Все их действительные части являются положительными, а значит, за-
дача не является жесткой в смысле приведенного  определения. 

Случай 2: хорошо обусловленная задача. Начальные условия: 

1(0) 1;u  2 3(0) (0) 1,5;u u  4 5(0) (0) 2,5.u u   Значения параметров:

0 2;   1 1;  1 1;  2 1;   2 10.   

Число обусловленности матрицы 105.M   Собственные числа 
матрицы: 1 2;    2,3 1 ;i  

 4,5 1 10 .i     Не все их действитель-

ные части отрицательны, поэтому данная задача не является жесткой. 
Случай 3: быстроосциллирующая задача. Начальные условия: 

1(0) 0,5;u  2 3(0) (0) 0,8;u u  4 5(0) (0) 2.uu    Значения параметров: 

0 2;   1 1;  1 1;  2 1;   2 1000.   

Число обусловленности задачи 10499.M   Собственные числа: 

1 2;    2,3 1 ;i  
 4,5 1 1000 .i    Данный случай аналогичен пре-

дыдущим, задача не является жесткой. 
Случай 4: жесткая задача. Начальные условия: 1(0) 10;u 

2 3(0) (0) 11;u u  4 5(0) (0) 111,u u    значения параметров: 0 100;  

1 1;   1 1;  2 10000;   2 10.   

Число обусловленности матрицы 79956.M   Собственные числа: 

1 100;    2,3 1 ;i   
 4,5 10000 10 .i    Число жесткости задачи 

410 .S   
Случай 5: жесткоосциллирующая задача. Начальные условия: 

1(0) 100;u  2 3(0) (0) 101;u u  4 5(0) (0) 201.u u   Значения парамет-

ров: 0 10000;   1 1;  1 1;  2 100;   2 1000.   

Число обусловленности задачи 175084.M   Собственные числа: 

1 10000;    2,3 1 ;i  
 4,5 100 1000 .i    

Тест 2 
Рассмотрим следующую линейную систему ОДУ: 

1 1 1

2 1 1 2

3 2 3

4 3 2 4

5 4 2 5

6 5 2 6
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;

;
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u u
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u u
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Точное решение этой системы имеет вид ( 0 1t  ): 

 
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


























 

 









  

 

При начальных условиях 1 2(0) (0) 1;uu   3 4(0) (0)uu  

5 6(0) (0) 1000u u    и значениях параметров 1 1,   2 10 000    

данная система линейных ОДУ является жесткой. Число обусловленно-
сти решаемой задачи 20 006,M   жесткость 10 000.S   

Тест 3 
Дано:  .u u    

Точное решение: ( ) (0) .tu t u e  
Начальное условие решаемой задачи ( 0 1t  ): (0) 1,u    пара-

метр   принимает четыре значения: 1;10;100;1000  , от которых 
зависит сложность решаемой задачи. 

Тест 4 
Рассмотрим систему 

1 1

2 2

;

.

u

u

u

u

 




 

 
 Точное решение задачи: 

1 1

2 2

( ) (0) ;

( ) (0) .

t

t

u t u e

u t u e





 



 

Начальные условия ( 0 1t  ): 1 2(0) (0) 1.uu   Параметр  , регу-

лирующий жесткость задачи, принимает четыре значения: 
1;10;100;1000. 

 
Зависимость чисел обусловленности и жесткости от параметра 

выглядит следующим образом: ,M   .S    
Тест 5 
Рассмотрим систему 

1 2

2 1 2
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Начальные условия ( 0 1t  ): 1 2(0) (0) 1.uu   Точное решение 

задачи: 

2
1

2
2

(1 2 )sin
2 cos ;

2

(2 1)sin
2

( )

cos ,
2

( )

t

t

bt
bt

u t e

t e

b

bt
bt

u
b













 

   
 

 
 
   





 
 
 

 

где 2 .4 1b     
Параметр задачи   принимает четыре значения: 1;10;100;1000.   

Чем выше значения параметра  , тем сильнее осциллирует решение 
задачи. Случай 1000  соответствует жесткоосциллирующей задаче. 

Результаты тестовых расчетов. Ниже для каждого из рассмот-
ренных методов приведена абсолютная ошибка численного решения 
в зависимости от используемого при вычислениях временного шага. 
Абсолютная ошибка   вычислялась по следующей формуле: 

max || || ,i i
i

  u y где iu , iy  — векторы точного и численного ре-

шений на i-м временном слое, || . ||  — кубическая норма вектора [1]. 

1. (4,2)-метод. В табл. 1–5 приведена абсолютная погрешность   
(4,2)-метода, полученная при использовании различных временных 
шагов .  

Таблица 1 

Тест 1 Вариант 1 Вариант 2 Вариант 3 Вариант 4 Вариант 5 

51, 00 10    102, 78 10  159, 29 10  71, 71 10  58, 64 10 58, 64 10  
54, 00 10   86,94 10  141, 22 10  54, 35 10  21, 48 10 21, 48 10  
41, 60 10    51, 78 10  139, 42 10  21, 09 10  1, 32  1, 32  

46, 40 10   34, 54 10  102,39 10  19, 44 10  9,84  11, 01 10  
32,56 10   1,11 86, 09 10  1, 66  6, 39  14,38 10  

 
Из результатов для теста 1, представленных в табл. 1, видно, что 

(4,2)-метод на малых шагах (до 54,00 10   ) адекватно работает для 
всех типов задач. При увеличении шага интегрирования в случаях 
жесткой и жесткоосциллирующей задач абсолютная ошибка стано-
вится велика, и численное решение начинает сильно отличаться от 
точного. 
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Таблица 2 

Тест 2 5
2, 00 10

    
5

8, 00 10
   4

3, 20 10
   3

1, 28 10
   3

5,12 10
    

  21, 20 10  1, 57  15,39 10  19, 39 10  13, 71 10  
 

Задача, поставленная в тесте 2, является жесткой. При ее реше-
нии с использованием малых шагов интегрирования численное ре-
шение не сильно отличается от точного (см. табл. 2), но при увеличе-

нии шага (от 58,00 10   ) наблюдается рост абсолютной ошибки до 

довольно большого значения ( 210 ). 
Таблица 3 

Тест 3 1   10   100   1000   

31, 00 10   141, 08 10  119,87 10  48, 64 10  33, 34 10  
11, 00 10   78, 64 10  33, 34 10  11, 01 10  22, 05 10  

Таблица 4 

Тест 4 1   10   100   1000   

31, 00 10   141, 08 10  119,87 10  48, 64 10  33, 34 10  
11, 00 10   78, 64 10  33, 34 10  11, 01 10  22, 05 10  

Таблица 5 

Тест 5 1   10   100   1000   

31, 00 10   141, 43 10  92, 28 10  42, 31 10  1, 24  

11, 00 10   61, 48 10  11,16 10  1,15  1, 28  

 

При оценке результатов решения тестовых задач 3–5 (см. табл. 3–5) 
заметим, что (4,2)-метод успешно решает задачи со значениями пара-
метра 1;10;100,   при решении задач с параметром 1000  в тесте 5 
наблюдается резкое увеличение численной ошибки метода. 

2. CROS. В табл. 6–10 отображена зависимость абсолютной 
ошибки численного решения   метода CROS от выбранного шага 
интегрирования .  

Таблица 6 

Тест 1 Вариант 1 Вариант 2 Вариант 3 Вариант 4 Вариант 5 

51, 00 10   31,54 10  98, 60 10  21, 04 10  25, 69 10  25, 69 10  
54, 00 10   22, 47 10  71,38 10  11, 65 10  17, 26 10  17, 29 10  
41, 60 10   13,95 10  62, 20 10  1, 57  5, 58  5, 60  

46, 40 10   6, 32  53,51 10  1, 96  3, 43  12, 73 10  
32, 56 10   18, 73·10  45, 62 10  1, 67  1·3 0110,   15,17 10  
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По результатам, представленным в табл. 6, видно, что применение 
метода CROS для решения плохо обусловленной задачи (вариант 1), 
жесткой (вариант 4) и жесткоосцилирующей (вариант 5) задач на ша-
гах интегрирования от 41,60 10    приводит к довольно большой аб-
солютной ошибке.  

Таблица 7 

Тест 2 5
2, 00 10

    
5

8, 00 10
   4

3, 20 10
   3

1, 28 10
   3

5,12 10
    

  2,12  12, 24·10  16, 65 10  11, 04 10  17, 34 10  
 

При решении задачи с большой жесткостью (тест 2) даже на ма-
лых шагах интегрирования  применение CROS приводит к большой 
ошибке численного решения (см. табл. 7). 

Таблица 8 

Тест 3 1   10   100   1000   
31, 00 10   86,13 10  66, 09 10  45, 69 10  23, 21 10  
11, 00 10   45, 66 10  23, 21 10  21, 63 10  41, 96 10  

Таблица 9 

Тест 4 1   10   100   1000   
31, 00 10   86,13 10  66, 09 10  45, 69 10  23, 21 10  
11, 00 10   45, 69 10  23, 21 10  21, 63 10  45, 69 10  

Таблица 10 

Тест 5 1   10   100   1000   

31, 00 10   71,10 10  41, 39 10  11, 41 10  1, 46  

11, 00 10   31, 03 10  17, 01 10  1, 30  1, 30  

 

При решении тестовых задач 3 и 4 даже на крупных шагах интег-
рирования   и при больших значениях параметра ошибка решения, 
полученного с помощью одностадийной комплексной схемы CROS, 
не является значительной. Аналогичные результаты получаются и 
при решении тестовой задачи 5 со значениями параметра 1   и 

10.   В случаях 100   и 1000   возникает резкое увеличение 
абсолютной ошибки. 

3.Четырехстадийный метод Рунге — Кутты. В табл. 11−15 
приведены абсолютные ошибки   метода Рунге — Кутты в зависи-
мости от используемого шага интегрирования .  

Таблица 11 

Тест 1 Вариант 1 Вариант 2 Вариант 3 Вариант 4 Вариант 5 

51, 00 10   166,15 10  181, 52 10  102, 29 10 54, 70 10  57, 45 10  
54, 00 10   135, 09 10  188,80 10  72, 23 10  21, 52 10  22, 41 10  
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Окончание табл. 11 

Тест 1 Вариант 1 Вариант 2 Вариант 3 Вариант 4 Вариант 5 

41, 60 10   106, 73 10  155,98 10  41,55 10  9, 67  11, 53 10  
46, 40 10   71, 63 10  121, 50 10  24, 04 10  441,37 10  442, 31 10  
32, 56 10   34, 65 10  99, 27 10  1, 92  567·11 0,91  5674, 73 10  

 
Из результатов применения четырехстадийного метода Рунге — 

Кутты видно, что он является непригодным для решения быстроос-
циллирующих задач (вариант 3), жестких задач (вариант 4) и жестко-
осциллирующих задач (вариант 5). 

Таблица 12 

Тест 2 5
2, 00 10

    
5

8, 00 10
   4

3, 20 10
   3

1, 28 10
   3

5,12 10
    

  21,16 10  4, 81  171, 47 10  412, 03 10  10607,16 10  

 
Тест 2 является жесткой задачей, о чем свидетельствуют и ре-

зультаты табл. 12. Можем наблюдать резкий рост абсолютной ошиб-
ки численного решения. 

Таблица 13 

Тест 3 1   10   100   1000   

31, 00 10   153, 09 10  113, 09 10  73, 33 10  37,12 10  
11, 00 10   73, 32 10  37,12 10  221, 50 10  592, 65 10  

Таблица 14 

Тест 4 1   10   100   1000   

31, 00 10   154,34 10  113, 09 10  73, 33 10  37,12 10  
11, 00 10   74, 69 10  37,12 10  221, 50 10  592, 65 10  

Таблица 15 

Тест 5 1   10   100   1000   

31, 00 10   154,56 10  106, 98 10  57,13 10  1, 25  

11, 00 10   74, 20 10  26, 77 10  233, 61 10  595, 33 10  

 
Использование метода Рунге — Кутты четвертого порядка точно-

сти для решения тестовых задач 3−5 со значениями параметра α = 1 и 
α = 10 приводит к довольно малым ошибкам численного решения. 
При увеличении сложности решаемой задачи ( 100,  1000  ) на-
блюдаем рост абсолютной ошибки численного решения на шагах, 

больших 31,00 .10    
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4. МКСЭ. В табл. 16–20 приведены абсолютные ошибки МКСЭ в 
зависимости от выбранного шага интегрирования ,  размер исполь-

зуемой ячейки 2101t   . 
Решение вспомогательных задач получено с помощью метода 

Рунге — Кутты четвертого порядка точности и (4,2)-метода. Резуль-
таты, приведенные в таблицах первыми, получены с использованием 
(4,2)-метода, а результаты, приведенные вторыми, — с помощью ме-
тода Рунге — Кутты четвертого порядка точности (тоном выделены 
меньшие ошибки). 

Таблица 16 

Тест 1 
t


 Вариант 1 Вариант 2 Вариант 3 Вариант 4 Вариант 5 

61, 00 10 
 

41, 00 10  

122, 74 10
12·19 5 0, 4 

158, 95 10
15·15 6 0, 4   

111, 76 10
12·15 1 0, 2 

99,87 10
9·3 0910,   

99,87 10
9·3 0910,   

64, 00 10 
 

32, 50 10
 

113, 34 10
11·11 8 0, 0 

159, 40 10
15·15 2 0,3   

94, 36 10
9·1 3310,   

62, 41 10
7·8 1110,   

62, 41 10
7·8 1110,   

68, 00 10 
 

31, 25 10  

101, 25 10
11·13 0 0,9 

159,33 10
15·15 0 0,1   

86, 97 10
8·2 1310,   

53, 64 10
5·1 3410,   

53, 64 10
5·1 3410,   

52, 00 10 
 

25, 00 10
 

94, 33 10
91, 33 10

159, 41 10
155,12 10  

62, 72 10
78, 32 10

31, 20 10
45,80 10  

31, 20 10
45,80 10  

58, 00 10 
 

21, 25 10  

61,11 10
73, 39 10

146, 66 10
142, 28 10

46,94 10
42,13 10

11,57 10
12, 40 10  

11,57 10
12, 40 10  

Таблица 17 

Тест 2 6
2, 00 10

   
6

5, 00 10
   

5
1, 00 10

   
5

4, 00 10
  5

8, 00 10
   

t


 35, 00 10  32, 00 10  31, 00 10  22, 50 10  21, 25 10  

  
61, 56 10
7·4 9910,   

55,81 10
5·2 0010,   

48, 64 10  
43, 33 10  

11, 48 10  
11, 08 10  

1, 57  
2, 40  

Таблица 18 

Тест 3 
t


 1   10   100   1000   

61, 00 10  41, 00 10  

168, 65 10
16·15 7 0, 4   

151,18 10
16·19 2 0, 4   

151,18 10
16·19 0 0, 5   

141, 08 10
15·13 6 0,5   

51, 00 10  31, 00 10  

167, 74 10
15·11 3 0, 0   

151,17 10
16·19 0 0, 5   

141, 08 10
15·13 6 0,5   

119,87 10
11·13 9 0, 0   
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Окончание табл. 18 

Тест 3 
t


 1   10   100   1000   

41, 00 10  21, 00 10  

168, 22 10
165,12 10  

141, 08 10
153, 56 10  

119,87 10
113, 09 10  

78, 64 10
73, 32 10  

31, 00 10  11, 00 10  

141, 08 10
153, 56 10  

119,87 10
113, 09 10  

78, 64 10
73,33 10  

33, 34 10
37,12 10  

Таблица 19 

Тест 4 
t


 1   10   100   1000   

61, 00 10  41, 00 10  

168, 65 10
16·15 7 0, 4   

151,17 10
16·19 2 0, 4   

151,17 10
15·11 7 0, 0   

141, 08 10
15·13 6 0,5   

51, 00 10  31, 00 10  

167, 74 10
15·11 3 0, 0   

151,17 10
15·11 3 0, 0   

141, 08 10
15·13 6 0,5   

119,87 10
11·13 9 0, 0   

41, 00 10  21, 00 10  

168, 22 10
165, 01 10  

141, 08 10
153, 56 10  

119,87 10
113, 09 10  

78, 64 10
73,33 10  

31, 00 10  11, 00 10  

141, 08 10
153, 56 10  

119,87 10
113, 09 10  

78, 64 10
73, 32 10  

33, 34 10
37,12 10  

Таблица 20 

Тест 5 
t


 1   10   100   1000   

61, 00 10  41, 00 10  

151, 44 10
16·15 0 0, 7   

141,19 10
15·15 6 0, 0   

147, 46 10
15·15 7 0, 0   

112, 41 10
12·17 5 0,1   

51, 00 10  31, 00 10  

151, 00 10
15·11 9 0, 2   

156,93 10
14·11 5 0, 0   

122,31 10
13·17 8 0, 9   

72, 34 10
7·7 1510,   

41, 00 10  21, 00 10  

151, 08 10
165, 09 10

132,36 10
147, 02 10  

82, 33 10
97,12 10  

32, 32 10
47,15 10  

31, 00 10  11, 00 10  

141, 43 10
154,92 10

92, 28 10
106, 97 10  

42, 31 10
57,13 10  

1, 24  
1, 25  

 
В табл. 21–24 показана зависимость абсолютной ошибки МКСЭ при 

фиксированном (малом) шаге интегрирования   от выбранного размера 
ячейки. Рассмотрены жесткие случаи (тест 2, а также тесты 3–5 при

1000  ). В таблицах через t  обозначен размер ячейки, через   — 
шаг суммирования метода. 
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В приведенных результатах для всех тестов отсутствуют резуль-

таты для 6105     и 6101t    из-за нецелесообразности использо-
вания МКСЭ при столь близких значениях размеров ячейки и шага 
суммирования. 

Таблица 21 

Тест 2 1
101t

   
2

101t
  3

101t
  4

101t
  5

101t
   

6
101t

   

7105     91, 92 10  91,92 10 91, 92 10 91,92 10 91, 92 10  91,92 10  
6101     83, 09 10  83, 09 10 83, 09 10 83, 09 10 83, 09 10  83, 09 10  
6105     52, 00 10  52, 00 10 52, 00 10 52, 00 10 52, 00 10  − 

Таблица 22 

Тест 3 1
101t

   
2

101t
  3

101t
  4

101t
  5

101t
   

6
101t

   

7105     
168, 23 10  168, 23 10 168, 23 10 168, 23 10 168, 23 10  168, 05 10  

6101     
153, 56 10  153, 56 10 153, 56 10 153, 56 10 153, 56 10  153, 56 10  

6105     
121, 92 10  121, 92 10 121, 92 10 121, 92 10 121, 92 10  − 

Таблица 23 

Тест 4 1
101t

   
2

101t
  3

101t
  4

101t
  5

101t
   

6
101t

   

7105     
157,17 10  168, 23 10 168, 23 10 156, 78 10 155, 72 10  141,89 10  

6101     
154, 60 10  153, 56 10 153, 56 10 153, 56 10 153, 99 10  158, 03 10  

6105     
121, 92 10  121, 92 10 121, 92 10 121, 92 10 121, 92 10  − 

Таблица 24 

Тест 5 1
101t

   
2

101t
  3

101t
  4101t   5

101t
   

6
101t

   

7105     
111, 59 10  134, 47 10 134, 47 10 111, 59 10 111, 59 10  111, 59 10  

6101     
111, 66 10  127,15 10 127,15 10 111, 66 10 111, 66 10  111, 66 10  

6105     
94, 47 10  94, 47 10 94, 47 10 94, 47 10 94, 47 10  − 

 
Табл. 21–24 демонстрируют очень слабую зависимость результа-

тов расчетов от используемого размера ячейки .t  
Анализ полученных результатов. Для сравнения результатов, 

полученных с помощью (4,2)-метода (см. табл. 1–5) и метода CROS 
(см. табл. 6–10), рассмотрим два случая. Первый — решение задач с 
малым числом жесткости. В этом случае лучший результат показывает 
(4,2)-метод, поскольку обладает четвертым порядком точности, в то 
время как CROS — только вторым. 

Второй случай — решение жестких задач. Если допустимо ис-
пользование малых шагов интегрирования, то предпочтительнее вы-
брать (4,2)-метод. При необходимости использования более крупных 
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шагов следует применять комплексную схему CROS. Она является 
L2-устойчивой схемой, в то время как (4,2)-метод L-устойчив. 

Для оценки возможности применения явного метода Рунге — 
Кутты четвертого порядка точности рассмотрим результаты, приве-
денные в табл. 11–15. При решении мягких задач (тест 1, вариант 2; 
тесты 3–5 при значениях параметра 1,  10  ) с использованием 
больших   (относительно рассматриваемого диапазона шагов интег-
рирования) ошибка численного решения довольно мала. Но при при-
менении метода Рунге — Кутты к жестким или осциллирующим за-
дачам (тест 1, варианты 1, 3, 4, 5; тест 2; тесты 3–5 при 100, 

1000  ) наблюдается резкое возрастание ошибки численного ре-
шения даже при использовании средних шагов интегрирования   из 
рассматриваемого диапазона. Поэтому явный четырехстадийный ме-
тод Рунге — Кутты не является приемлемым для решения жестких 
задач. 

Далее обсудим выбор метода, используемого в качестве вспомога-
тельного для МКСЭ. В данной работе выбор совершался между явным 
методом Рунге — Кутты четвертого порядка точности и (4,2)-методом. 
Результаты расчетов представлены в табл. 16−20. Метод Рунге — Кут-
ты на малых шагах применительно к задачам умеренной жесткости 
показывает лучшие результаты, чем (4,2)-метод, но его применение 
требует больше машинного времени. Это связано с тем, что при реали-
зации метода Рунге — Кутты четвертого порядка для получения чис-
ленного значения искомой функции на новом временном слое требу-
ется четыре вычисления правой части решаемой задачи, а при 
реализации (4,2)-метода — всего два. 

Однако при увеличении числа жесткости и шага интегрирования 
задачи результаты (4,2)-метода приближаются к результатам метода 
Рунге — Кутты, и разница между ними становится незначительной 
(тест 1, варианты 4, 5; тест 2; тесты 3–5 при 1000  ). На задачах с вы-
соким уровнем жесткости метод Рунге — Кутты будет вести себя не-
корректно, в то время как (4,2)-метод благодаря L-устойчивости будет 
давать удовлетворительные результаты. Исходя из этих рассуждений, 
(4,2)-метод выбран в качестве вспомогательного метода для МКСЭ. 

Проведение расчетов, результаты которых представлены в табл. 21–
24, предполагало определение оптимального соотношения между ша-
гом интегрирования и размером ячейки МКСЭ. Однако при таких ма-
лых шагах точность вычислений напрямую зависит от размера шага ин-
тегрирования, поэтому зависимость ошибки метода от размера ячейки в 
исследуемом диапазоне не была установлена. 

Применение МКСЭ для нелинейных задач. МКСЭ для линей-
ных задач представляет собой довольно простой в реализации и луч-
ший по получаемым результатам алгоритм. Попробуем обобщить 
МКСЭ на нелинейные задачи. 
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Пусть исходная задача поставлена следующим образом: 

0

( ), 0 ;

(0) .
t t T  

 

u F u

u u
                                        (2) 

Для применения МКСЭ проведем линеаризацию в окрестности 
вектора 0:u  

0 0 0( ) ( ( )) ,    AuF u u F u Fu A  

где A  — матрица Якоби поставленной задачи при 0u u , 0 F

0 0)( .= u AuF  

Тогда вместо исходной задачи требуется решить вспомогательную: 

0

0

,0 ;

(0) .
t t T   

 

u Au F

u u
                                 (3) 

Точное решение задачи (3) имеет следующий вид: 
1 1

0 0 0( ) ,te     Au A F u A F  

поэтому сначала используем МКСЭ для нахождения ,teA  а далее на-
ходим уже сам вектор решения задачи (3). Для ответа на вопрос, со-
ответствует ли решение вспомогательной задачи (3) решению по-
ставленной нелинейной задачи (2), построим алгоритм контроля 
точности МКСЭ для нелинейных задач. 

Перед переходом на каждый новый временной шаг метода будем 
проверять относительную ошибку нормы невязки метода на текущем 
численном решении. Должно быть выполнено следующее условие: 

0

0

( )
,

( )

y 
 


 

F y

F y

A F
                                   (4) 

где y  — найденный вектор приближенного решения задачи (3) в те-
кущий момент времени;   — некая наперед заданная точность вычис-
лений; ε0 — малая постоянная, ε0 ≥ 0. При выполнении условия (4) 
происходит переход на следующий временной шаг. Если же условие 
(4) не выполнено, то происходит очередная линеаризация задачи (2) и 
переход к новой временной ячейке .t  

Тестирование нелинейного МКСЭ. Рассмотрим тестовый при-
мер, иллюстрирующий работу МКСЭ применительно к нелинейным 
системам ОДУ. 

Тест 6 
Представлена система 

2
1 1 2

2
2 1 2

1 2

(

( ) ( ) ( );

( ) ( );

(0

)

) (0) 1.

u t t u t

u t t

u

u

u

u

u t

  

   
 





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Точное решение данного тестового примера имеет следующий вид: 

1

2

,

( ) .

( ) t

t

u

u t e

t e







 

Жесткость поставленной задачи зависит от выбора параметра .  
Поэтому рассмотрим относительные ошибки численного решения, 
полученного МКСЭ для нелинейных задач, в зависимости от пара-
метра ,  шага метода ,  а также выбранного размера ячейки ,t  
приведенных в табл. 25–28). 

В качестве вспомогательного метода для МКСЭ использован 
(4,2)-метод. 

Заданная точность линеаризации 310 ,   время исследования 

0 1.t   
В каждой ячейке таблицы в первой строке указана относительная 

ошибка МКСЭ, во второй — средний размер реально используемой 
методом ячейки. 

Таблица 25 

0,1   1
1·10

   
2

1·10
   

3
1·10

   
4

1·10
   

5
1·10

   

11·10t    
3,3210–6 

1,0010–1 
3,6510–6 

1,0010–1 
3,3310–6 

1,0010–1 
3,6610–6 

1,0010–1 
3,3310–6 

1,0010–1 

21·10t      
3,3710–8 

1,0010–2 
3,3310–8 

1,0010–2 
3,3710–8 

1,0010–2 
3,3310–8 

1,0010–2 

31·10t      – 
3,3310–10 

1,0010–3 
3,3410–10 

1,0010–3 
3,3310–10 

1,0010–3 
 

По полученным результатам, представленным в табл. 25, можно 
сделать вывод о том, что при решении мягких задач ошибка МКСЭ 
обусловлена выбранным размером ячейки; повторная линеаризация 
внутри самой ячейки не происходит. 

Таблица 26 

1   1
1·10

   
2

1·10
   

3
1·10

   
4

1·10
   

5
1·10

   

11·10t    
2,9210–3 

1,0010–1 
5,2210–4 

4,0010–2 
3,3810–4 

3,2510–2 
3,3310–4 

3,2010–2 
3,3210–4 

3,2010–2 

21·10t    – 
3,3210–5 

1,0010–2 
3,2810–5 

1,0010–2 
3,3210–5 

1,0010–2 
3,2810–5 

1,0010–2 

31·10t    – – 
3,3310–7 

1,0010–3 
3,3310–7 

1,0010–3 
3,3310–7 

1,0010–3 
 

По первой строке результатов в табл. 26 видно, что при исполь-
зовании ячейки большого размера по сравнению с выбранным шагом 
погрешность метода обусловлена выбранной константой  в оценке 
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нормы невязки приближенного решения, поэтому выбор очень мало-
го шага  по сравнению с используемым размером ячейки t  не яв-
ляется целесообразным. Это объясняется тем, что накопление ошиб-
ки линеаризации происходит независимо от выбранного шага, что 
влечет за собой переход на новую временную ячейку. 

Таблица 27 

10   1
1·10

   
2

1·10
   

3
1·10

   
4

1·10
   

5
1·10

   

11·10t    
2,40107 

1,0010–1 
1,0110–2 

1,0010–2 
3,5810–3 

4,0010–3 
2,6710–3 

3,3010–3 
2,5510–3 

3,2210–3 

21·10t    – 
1,0110–2 

1,0010–2 
3,5910–3 

4,0010–3 
2,6510–3 

3,3010–3 
2,5510–3 

3,2210–3 

31·10t    – – 
3,0610–4 

1,0010–3 
3,0610–3 

1,0010–3 
3,0610–4 

1,0010–3 

 
По данным табл. 27 можно сделать вывод о том, что при решении 

задач средней жесткости с помощью МКСЭ с использованием малого 
размера ячейки погрешность метода обусловлена размером ячейки, а 
выбранный шаг имеет лишь косвенное значение. И наоборот, при 
больших размерах ячейки погрешность метода напрямую зависит от 
используемого шага. 

Таблица 28 

50   1
1·10

   
2

1·10
   

3
1·10

   
4

1·10
   

5
1·10

   

11·10t    
1,00 

1,0010–1 
9,9910–1 

1,0010–2 
3,6710–2 

4,0010–3 
6,8710–3 

7,0010–4 
4,2410–3 

6,5010–4 

21·10t    – 
9,9910–1 

1,0010–2 
3,6710–2 

1,0010–3 
6,8710–3 

7,0010–4 
4,2410–3 

6,5010–4 

31·10t    – – 
3,6710–2 

1,0010–3 
6,8710–3 

7,0010–4 
4,2410–3 

6,5010–4 

 
Из табл. 28 видно, что применение крупных шагов  внутри ячейки 

в случае жестких задач нежелательно. 
Решение дифференциального уравнения Ван-дер-Поля. Од-

ним из классических примеров нелинейных дифференциальных 
уравнений второго порядка, относящихся к жесткому типу при 
большом значении некоторого параметра , является уравнение Ван-
дер-Поля [16]. Это уравнение играет важную роль в прикладных за-
дачах, так как к нему сводятся дифференциальные уравнения, описы-
вающие динамику развития колебаний в различных колебательных 
системах, например автогенераторах на электронных лампах, бипо-
лярных и полевых транзисторах. Рассмотрим результаты, которые 
дает МКСЭ применительно к этой задаче. 
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Уравнение Ван-дер-Поля выглядит следующим образом: 

2( 1) 0.u u u u                                            (5) 

Представим его в виде системы ОДУ: 

1 2

2
2 1 2 1

;

(1 ) .

u u

u u u u

 

    

                                       (6) 

При исследовании численного решения задачи (6) выясняется, 
что период решения поставленной задачи возрастает с ростом . Это 
усложняет численный анализ уравнения Ван-дер-Поля. Поэтому 

масштабируем решение, используя замену ;
t

t 



1 1( ) ( );z t u t  

2 2( ) ( )z t u t   [16]. В уравнениях для удобства заменим z  на u , t  на 

t  и получим конечный вид задачи Ван-дер-Поля: 

1 2

2
2 1 2 1

1 10

2 20

;

((1 ) );

(0) ;

(0) .

u u

u u u u

u u

u u

 

     




 

                                    (7) 

Время исследования работы системы (7) 20.t   
Жесткость задачи (7) увеличивается с ростом параметра . Для ее 

численного анализа выберем специализированные алгоритмы: МКСЭ 
для нелинейных систем ОДУ и (4,2)-метод. 

Рассмотрим результаты (представленные графически далее) работы 

алгоритмов при различных значениях 2,  размерах ячейки (в случае 

использования МКСЭ) t  и шага  методов, а также оценим реальный 
размер ячейки t, используемый программой, реализующей МКСЭ. 

Для сравнения получаемых двумя методами численных результа-
тов введем ошибку  МКСЭ относительно (4,2)-метода следующим 

образом: 
max

,
max

j j
j

i
i




 
y y

y
 где yi — вектор численного решения, 

полученного (4,2)-методом на i-м шаге алгоритма; jy  — вектор чис-

ленного решения, полученный на i-м шаге с помощью МКСЭ. 
Из физического смысла уравнения Ван-дер-Поля очевидно, что 

его решение имеет периодический характер. Поэтому введем еще 
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один тип исследуемой ошибки: 
max

,
max

j j
j

i
i


 





y y

y
 где iy  — вектор 

численного решения на первом периоде колебаний (выбран из-за 
наименьшего уровня накопления численной ошибки); jy  — вектор 

численного решения на всех последующих периодах. 

Ниже приведена серия задач с различными значениями 2,  опи-
саны входные параметры и приведены графические представления 
решения задачи (7) (фазовые траектории численного решения). Кон-

станта контроля точности линеаризации 310  . 
Результаты решения ряда задач приведены в табл. 29. 

Таблица 29 

Задача 2  t  

Реально ис-
пользуемый 
МКСЭ раз-
мер ячейки 

t  

Ошибка 
МКСЭ отно-
сительно 

4,2-метода 

Ошибка пе-
риодичности 

  для МКСЭ 

Ошибка пе-
риодичности 

  для 4,2-
метода 

1 100 10–2 10–3 2,410–3 1,0210–3 2,6710–1 1,6510–1 

2 1000 10–3 10–4 6,8710–4 6,7110–1 4,6610–3 3,3610–1 

3 10000 10–3 510–5 2,3910–4 1,12 1,02 1,04 

4 15000 10–3 510–5 1,9510–4 1,24 1,03 1,00 

5 17500 10–3 510–5 1,7510–4 1,08 1,03 1,10 

6 20000 10–3 510–5 6,2410–4 1,52101 2,67101 1,00 

 
Решения задачи 1 приведены на рис. 1, задачи 6 — на рис. 2. 

 

Рис. 1. Решение задачи 1 с помощью МКСЭ (а) и (4,2)-метода (б) 
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Рис. 2. Решение задачи 6 с помощью МКСЭ (а) и (4,2)-метода (б) 
 

На основании полученных при численном решении результатов 
можно сделать следующий вывод: МКСЭ (в его использованном ва-
рианте) для нелинейных задач работает корректно лишь при решении 
задач умеренной жесткости. Это объясняется тем, что при каждой 
очередной итерации в МКСЭ при выходе ошибки предыдущей ли-
неаризации за установленный предел происходит очередная линеари-
зация поставленной нелинейной задачи. Но при большом числе же-
сткости системы ОДУ его решение имеет резко изменяющийся 
характер. Поэтому даже при выполнении линеаризации на каждой 
итерации МКСЭ ее погрешность превышает допустимую, что влечет 
за собой и ошибку численного решения. Следовательно, при решении 
нелинейных задач с большой жесткостью желательно применять 
(4,2)-метод. 

Заключение. При решении систем ОДУ с большим числом жест-
кости лучшим выбором является CROS. 

МКСЭ является точным методом решения линейных систем ОДУ в 
том смысле, что если решение вспомогательных задач метода является 
точным, то и итоговое решение задачи точно. При нахождении соответ-
ствующих решений численно в качестве вспомогательного метода сле-
дует применять (4,2)-метод из-за его высокой точности. 
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Предложенная реализация МКСЭ для нелинейных задач коррект-
но работает на задачах умеренной жесткости, для решения задач вы-
сокой жесткости необходимо применять альтернативные методы. 

Ряд дополнительных подробностей о выполненных тестовых рас-
четах представлен в [17]. 
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The paper is aimed at research of the (m,k)-method, CROS, finite superelement method 
and 4-stage explicit Runge–Kutta method for solving stiff systems of ordinary differential 
equations. Analysis of tests results showed that the best choice for systems with high stiff-
ness is CROS. The finite superelement method is the «precise» method for solving linear 
systems of ordinary differential equations, the best supporting method for its implementa-
tion is (4,2)-method. The variation of the finite superelement method has been built and 
tested for solving nonlinear problems, this method proved to be unsuitable for problems 
with high stiffness. 
 
Keywords: ordinary differential equations, numerical solution. stiff systems, finite super-
element method, (4,2)-method, CROS. 
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