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Новый метод вычисления жесткости на кручение 

 в модели естественно-закрученного стержня  
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На начальных этапах проектирования лопаток компрессоров, винтов, режущих              

инструментов целесообразно применение конечно-элементной модели, основанной 

на модели естественно закрученного стержня. Эта модель позволяет учесть              

влияние угла естественной закрутки на жесткость детали. Жесткость на круче-

ние стержня существенно влияет на параметры жесткости конечно-элементной 

модели. Показано, что поправка жёсткости на кручение, полученная на основе                

соотношений технической теории естественно закрученных стержней, позволяет 

при небольших углах естественной закрутки получать результаты, хорошо согла-

сующиеся с трёхмерным расчётом закрученного стержня МКЭ.  При больших 

удельных углах начальной крутки, техническая теория даёт завышенные значения 

жесткости на кручение. В статье предложна модификация соотношений              

технической теории для определения жесткости на кручение с учетом больших              

углов начальной крутки. 

 

Ключевые слова: стержневые модели, жёсткость на кручение, техническая                 

теория естественно закрученных стержней 

 

Введение. Стержневые модели актуальны при проектировании 

трехмерных конструкций, в которых один характерный размер              

превалирует остальными. Форма конструкции описывается осевой        

линией, проходящей через выбранные характерные точки сечений 

стержня (например, центры масс или центры кручения поперечных    

сечений). Все перемещения точек стержня являются функциями                

координаты, отложенной вдоль оси стержня. В такой постановке 

стержневые модели со сложными пространственными осевыми                  

линиями различными формами поперечных сечений рассматривались 

в ряде работ [1–18]. 

Существующие программные комплексы МКЭ позволяют произ-

водить исследование напряженно-деформированного состояния            

различных стержневых конструкций, в которых эффекты кручения и 

изгиба развязаны. Это позволяет применять зависимости для                 

жесткости на кручение, основанные на представлениях теории             

кручения стержней Сен-Венана [3, 4]. Однако, как показано в работах 

[1, 2] тонкостенные стержни и естественно-закрученные стержни 

(рис.1) при деформировании проявляют ряд особенностей, которые 

необходимо учитывать при расчете конструкций МКЭ. Здесь и далее 

будут сохранены обозначения из работы [1].  

К таким стержням относится широкий класс деталей (лопатки 
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компрессоров и турбин, винты, стержни реакторов, теплообменники, 

режущие инструменты и т.д.). Главной особенностью естественно          

закрученных стержней является связь кручения с изгибом и растяже-

нием. Существенным для модели закрученного стержня является             

точность определение крутильной жёсткости. 
 

 

 

а б 

Рис. 1. Естественно закрученный стержень: 

а — лопатка компрессора, моделируемая естественно закрученным  

стержнем; б — конечный элемент естественно закрученного стержня [1] 

 

Математическая постановка задачи, принятые допущения. 

Рассмотрим призматический стержень ось, которого совпадает с осью 

z   декартовой системы координат. Оси ,x y  параллельны главным 

осям поперечных сечений стержня. Контуры поперечных сечений 

стержня (сечения с constz  ) описываются уравнением  , 0f x y  .  

Связь удельного угла крутки zd

dz


 с приложенным крутящим               

моментом M при чистом кручении описывается формулой 

 ,z z
кр кр

d d
M K GJ

dz dz

 
    (1) 

где G  — модуль сдвига материала, а 
крJ  — геометрическая жёсткость 

на кручение, z  — угол закрутки относительно оси z  (рис. 1б).  

В задаче Сен-Венана о чистом кручении стержня 
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0x y z xy       , а перемещения имеют вид zd
u zy

dz


  , 

zd
v zx

dz


 ,  ,zd

w x y
dz


  , где  ,x y  — функция депланации                        

поперечного сечения. 

Определение напряженно-деформированного состояния стержня 

и его жесткости при кручении может быть сведено к решению                   

уравнений Пуассона [19], записанных как для неизвестной функции 

депланации  ,x y , или для функции напряжений  F , такой что 

 

,
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Жёсткость на кручение сечения 
крJ  определяют  [19,20]: 

 через функцию депланации 

 ;кр

S

J x x y y dS
y x

    
       

    
   (2) 

 или функцию напряжений 

 
1

2 ,
N

кр i i

iS

J FdS C S


 
  
 

   (3) 

где iS — площадь, ограниченная i-м внутренним контуром, а iC —     

значение F на i-том контуре многосвязного сечения. 

Для определения жесткости на кручение призматического 

стержня 
крJ  в работах [1, 19, 20] предложены алгоритмы решения                

задачи о чистом кручении методом граничных элементов через             

определение функции депланации или функции напряжений. 

Если влияние стеснённости кручения или естественной крутки 

стержня несущественно, ось стержня может быть выбрана произ-

вольно, и за неё удобно принять ось центров масс поперечных                 

сечений. Для тонкостенных стержней и естественно закрученных 

стержней за ось стержня удобнее брать ось центров кручения [3]                  

поперечных сечений стержня. В работах [19, 20] предложен алгоритм 

для определения центра кручения произвольного многосвязного                     

сечения. 

Для описания формы естественно закрученного стержня введем 

винтовую систему координат (рис. 1б), связанную с декартовой                        

системой зависимостями 
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Здесь 0  — начальная крутка, а ,   — главные локальные коорди-

наты поперечного сечения на расстоянии   от торцевого сечения. 

Точки с совпадающими координатами   и   в разных сечениях   об-

разуют винтовые линии. Уравнение  , 0f     описывает контуры 

поперечных сечений. 
Производные в двух системах координат связаны соотношениями 
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Для краткости, аналогично [2], в выражении для производной 
z




 

введём обозначение  

 . 
  
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  

   
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Тензоры напряжений в локальных координатах сечения и глобаль-
ных координатах связанны следующим образом  

 ,
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где матрица поворота 
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Решение задачи о кручения естественно закрученного стержня  
методами теории упругости для случая малой начальной крутки                    
получил П.М. Риз [6]. Для малой начальной крутки касательные 

напряжения 
z , 

z  и деформации 
z , 

z  с точностью до 0                         



Ю.М. Темис, И.З. Зиятдинов 

68 

совпадают с касательными напряжениями кручения призматического 
стержня, однако, помимо депланации и поворота поперечных сечений, 
также деформируются контуры поперечных сечений и все компо-
ненты тензоров напряжений и деформаций отличны от нуля [6].  

Гипотеза о недеформируемых контурах. Для практических               

расчётов разработаны различные варианты [1, 2, 5] приближённых              

технических теорий естественно закрученных стержней. В этой работе 

за основу принимается вариант технической теории, представленный 

в работах [1, 2]. Значимыми принимаются напряжения z , 
z , 

z  и 

деформации z , 
z , 

z , остальными напряжениями и деформациями 

пренебрегают. Область применимости этой гипотезы исследована в 

настоящей работе трёхмерными расчётами МКЭ. 

Так как деформации контура поперечного сечения достаточно 

малы и имеют различные значения в разных точках сечения, то за              

критерий применимости гипотезы была принята ошибка в                            

определении потенциальной энергии деформации модели, вырезанной 

из закрученного стержня. Рассмотрены варианты параметризирован-

ных конечно-элементных моделей стержней одинаковой длины с                

вытянутыми прямоугольными и эллиптическими поперечными                     

сечениями (рис. 2). Углы начальной крутки моделей подбирались              

таким образом, чтобы безразмерный параметр  
2

0R , где 2R  —  мак-

симальный размер сечения (рис. 2), изменялся от 0 до 0,6 с шагом 0,1. 

Определялась погрешность потенциальной энергии деформации Δ   

  * ,i i i

S S

U U dS U dS      (8) 

где S — площадь сечения,  

  
1

2
i z z z z z zU                             

— точное выражение для плотности потенциальной энергии, а 

  * 1

2
i z z z z z zU              

— приближённое выражение с применением гипотезы о деформациях 

и напряжениях неизменяемого сечения. 

Из результатов, представленных на (рис. 2) видно, что для                    

значений  
2

0R  вплоть до 0,3 модуль погрешности, при пренебреже-

нии деформациями контуров сечений, не превышает 0,5 %. Для малых 

 
2

0R  пренебрежение плоскими деформациями и напряжениями даёт 

заниженное значение потенциальной энергии деформаций                      
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поперечного сечения, а для больших значений параметра завышенное. 

Это связано с тем, что при малых  
2

0R  вклад деформаций контура 

сечения несущественен, а для больших значений этого параметра        

применение гипотезы равносильно дополнительному закреплению 

контура сечения. 

 
 

 
 

Рис. 2. Оценка применимости гипотезы о недеформируемых контурах  

поперечных сечений 

 

Из результатов, представленных на (рис. 2б) видно, что для значе-

ний  
2

0R  вплоть до 0,3 модуль погрешности, при пренебрежении   

деформациями контуров сечений, не превышает 0,5 %. Для малых 

 
2

0R  пренебрежение плоскими деформациями и напряжениями даёт 

заниженное значение потенциальной энергии деформаций попереч-

ного сечения, а для больших значений параметра завышенное. Это 

связано с тем, что при малых  
2

0R  вклад деформаций контура                        

сечения несущественен, а для больших значений этого параметра                 

применение гипотезы равносильно дополнительному закреплению 

контура сечения. 

Техническая теория естественно закрученных стержней.                   
Выражения для деформаций в технической теории естественно закру-

ченных стержней [1, 2] имеют вид  
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где 0 0 0, ,u v w  — перемещения центров кручения поперечных                  

сечений. 

Оценим влияние начальной крутки на деформации стержня. При 

чистом кручении на торцах стержня выполняется условие 

 0.z

S

dS    (10) 

С учётом выражения для деформации z   
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где 
yS , xS  — статические моменты поперечного сечения, которые не 

равны нулю в случае несовпадения центров кручения и масс попереч-

ного сечения. Так как в наиболее простом случае симметричного                 

поперечного сечения статические моменты равны нулю, то из (11)           

следует 

 0
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1
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Таким образом, за параметр поперечного сечения, определяющего 

степень влияния начальной крутки на деформацию растяжения можно 

естественно закрученного стержня можно взять величину интеграла 

 .
S
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С учётом (2) и (6) вычисление этого интеграла даёт 
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          

     

 
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  (13) 
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где r  — расстояние до центра кручения, а 
2

p

S

J r dS   — момент             

сечения [1, 2]. 

Из (13) очевидно, наибольшее значение естественная крутка имеет 

для стержней с 
p крJ J , то есть для стержней с вытянутым попереч-

ным сечением. Также в случае стержней с вытянутыми поперечными 

сечениями применимо упрощённое выражение для z   

 
2 2

20 0 0
02 2

.z
z

dw d u d v d
x y r

dz dz dz dz


       (14) 

На основе технической теории естественно закрученных стержней 

в работах [1, 2] с использованием МКЭ, были исследованы статиче-

ское равновесие и собственные формы и частоты колебаний лопаток 

компрессоров ГТД. Как показали расчёты, результаты, полученные 

при помощи модели естественно закрученного стержня при неболь-

ших значениях  
2

0 0,1R  , соответствовали результатам, получен-

ным на основе  геометрически нелинейных моделей оболочки и                   

трёхмерным объемным моделям. 

Жёсткость на кручение естественно закрученного стержня            

определяется аналогично жёсткости стеснённого кручения в теории 

тонкостенных стержней В.З. Власова [3]. Поправки к касательным 

напряжениям определяются из уравнения равновесия 

 
0 0,

z z z z    


   

   
   

   
  (15) 

граничного условия на боковой поверхности 

 0 0,z z z

f f f
    

  

  
  

  
  (16) 

и условий на торцах 

 

 

0, 0,

0,

.

z z

S S

z

S

z z

S

dS dS

dS

dS M 

 



 

 



 

 





  (17) 

В рассматриваемом случае симметричного сечения с учётом, что 

0z







, для касательных напряжений справедлива зависимость 
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0

0

,

.

z
z z

z
z z

d F
G

dz

d F
G

dz






  




  




 




 



  (18) 

Откуда с учётом (13) выражение для крутящего момента M имеет 

вид 

 

  2 2 2

0

2

2

0 ,

pz z
z z кр

S S

pz
кр r

Jd d
M dS GJ E r r dS

dz dz S

Jd
GJ E J

dz S

 

 
  




 
      

 

  
      

  

 
  (19) 

откуда исходя из определения (1) жёсткость на кручение                

естественно закрученного стержня с симметричными поперечными 

сечениями примет вид [1, 2]  

 

2

2

0 .
p

кр кр r

J
K GJ E J

S


 
    

 
  (20) 

Однако, начиная с  
2

0 0,1R  , техническая теория начинает                 

давать завышенное значение для жёсткости на кручение. На рис. 3 

представлены результаты сравнения жёсткости на кручения техниче-

ской теории с результатами трёхмерных расчётов МКЭ 

  . . .Т Т МКЭ МКЭ

кр кр крK K K     

Уточнение технической теории. Таким образом, для расчётов 

стержней с  
2

0 0,1R   необходимо уточнение технической теории. 

Для получения поправок к технической теории естественно                              

закрученных стержней без её усложнения, обратим внимание на                        

обстоятельство, отмеченное в работах [1, 2], для вытянутых попереч-

ных сечений деформация z  приблизительно равна деформации               

винтового волокна    

 2 2 2 ,z z zl m n lm mn nl                   (21) 

где 

 0 0

2 2 2 2 2 2

0 0 0

1
, ,

1 1 1
l l l

r r r

   

  


  

  
  

— направляющие косинусы винтового волокна. 
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Учитывая, что деформации в локальных координатах определя-

ются выражениями 

 

0

0 0

0 0
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,

,

,

,

,
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z
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z
z
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
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
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
 


   

      


   

      









 
 
 

 
 
 

      
        
      

      
       
      

  (22) 

после несложных преобразований получим из (21) 

  
1

2 2 2

0 01 .zdw
r r

d



  

 

 
   

 
  (23) 

Рассмотрим пару векторов  01,0,   
1

e  и  00,1, 
2

e                   

(рис. 1б). Оба вектора лежат в плоскости перпендикулярной                     

винтовому волокну, и с точностью до 0  образуют с направляющим 

вектором винтового волокна правую тройку векторов, 2

0   1 2e e . 

Тензор напряжений в тройке векторов винтового волокна прибли-

жённо связан с тензором напряжений в локальных координатах                       

выражением 

 ,

z

T

z

z z z

T T

     

       

    

     

     

     

   
   

     
   
   

  (24) 

где матрица поворота 

 

0

0

0 0

1 0

0 1 .

1

T

 

 

   

 
 

 
 
  

  

С учётом принятого допущения о равенстве нулю  ,   и  , 

касательные напряжения в плоскости перпендикулярной винтовому 
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волокну с достаточной точностью будут равны 
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,

,
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   
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 

 
  (25) 

что с учётом (18) даёт 

 

,

.
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d F
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d
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




 




 







 



  (26) 

Таким образом, касательные напряжения в площадках нормаль-

ных винтовым волокнам с достаточной точностью совпадают с             

касательными напряжениями кручения незакрученного стержня. 

Учитывая два члена в разложении в ряд Тейлора знаменателя для 

выражения деформации винтового волокна, получим 

  2 2 2

0 01 .zdw
r r

d



  

 

 
   

 
  (27) 

Очевидно, что направления винтовых волокон не совпадают.             

Поэтому для определения жёсткости на кручение удобнее использо-

вать вариационный принцип. Ограничимся случаем симметричного 

поперечного сечения и пренебрежём надавливанием волокон.  

Полная вариация потенциальной энергии системы  

  ,U W      

где  

 i

V

U U dV    

— потенциальная энергия упругих деформаций, а zW M  — работа 

крутящего момента. С учётом принятых допущений вариация потен-

циальной энергии деформаций будет равна 
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Так как вариация работы крутящего момента не зависит от                            

вариации осевой деформации 0dw

d




 
 
 

, первый интеграл в (28) должен 

быть тождественно равен нулю, что даёт связь между осевой                                 

деформацией и кручением  

  
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2 20
01 0,z
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d d




 
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 
   (29) 

откуда после интегрирования получаем 
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  (30) 

где  

 .n

n

r

S

J r dS    

С учётом (28) и (30) 

 

  

 2 4 6

4 6 8

2 4

2
3 5

0 0 02 4 6

0 0 0 2 4

0 0

2
2 ,

2

z
z кр

r r r

r r r

r r

d
U GJ

d

J J J
E J J J

S J J


  



  
  

 

 

  
    
   

 

  

откуда так как вариация работы крутящего момента равна 

 ,zW M    

исходя из (1) получим уточнённое выражение для жёсткости на                    

кручение 
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  (31) 

которое при  
2

0 1R  переходит в зависимость технической теории 

естественно закрученных стержней [11] 
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Рис. 3. Отклонение значений жёсткости на кручение,  

полученных с применением технической теории от результатов,  

полученных трёхмерными расчётами МКЭ; квадратные маркеры  

отмечают результаты для стержней с эллиптическим поперечным сечением, 

треугольные маркеры — результаты для стержней с прямоугольным поперечным 

сечением; сплошные маркеры и крупная штриховка соответствуют базовой  

технической теории [1, 2], пустые маркеры и пунктир соответствуют  

уточнённой технической теории 

 

Результаты численного моделирования. На рис. 3 представлено 

сравнение полученной зависимости с результатами расчета жесткости 

кручения закрученных стержней методом конечных элементов с               

использованием трехмерных объемных моделей. Расчёты проводи-

лись для стержней с прямоугольными и эллиптическими поперечными 

сечениями с соотношением сторон 1 к 10 к 100 для различных углов 

начальной крутки. Можно видеть, что при увеличении начальной 

крутки, зависимость жёсткости на кручения от  
2

0R  существенно 

отличается от линейной зависимости. Предложенная поправка                         

позволяет получать значения жёсткости на кручения, хорошо                            

согласующиеся с результатами трёхмерных расчётов, без значитель-

ного усложнения модели. 

Выводы. Обобщая вышеизложенное, следует сделать вывод, что 

модель закрученных стержней позволяет быстро получать точные 

предсказания жёсткости на кручение для  
2

0 0,1R  . При увеличе-

нии начальной крутки техническая теория начинает давать завышен-

ные значения крутильной жёсткости. В практически важном случае 

стержней с поперечным сечением (
p крJ J ),развитие идеи винтового 

волокна из технической теории позволяет получить к ней поправки, 

расширяющие область её применения вплоть до  
2

0 0,3R . В этой 

статье принималось, что центр кручения совпадает с центром масс 
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стержня, исключительно для упрощения рассмотрения кручения без 

необходимости учёта изгиба. Однако из формулы (37) видно, что 

начальная крутка влияет на изгиб и в случае совпадения центра масс и 

центра кручения. Нетрудно осуществить уточнение модели закручен-

ного стержня, представленной в работе [1]. 
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At the initial stages of designing compressor blades, screws, cutting tools, it is advisable 

to use a finite element model based on a model of a naturally twisted beam. This model 

takes into account the influence of the angle of natural twist on the rigidity of the part. The 

torsional stiffness of a bar significantly affects the stiffness parameters of the finite element 

model. It is shown that the torsional stiffness correction obtained on the basis of the                      

relations of the technical theory of naturally twisted beams makes it possible to obtain 

results at small angles of natural twist that are in good agreement with the three-dimen-

sional calculation of a twisted FEM beam. At large specific angles of initial twist, the tech-

nical theory gives overestimated values of the torsional stiffness. The article proposes a 

modification of the relations of the technical theory to determine the torsional rigidity, 

taking into account large angles of initial twist. 
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