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Рассмотрена проблема разработки модели для расчета температурных полей в 

тонкостенных многослойных криволинейно-анизотропных тонких оболочках            

произвольной геометрической формы, в том числе составных. Как правило для                 

решения этой задачи используется конкретная координатная запись уравнений 

теории теплопроводности, что создает определенные трудности для расчета 

сложных составных оболочек. В данной работе предложено использовать инвари-

антную запись вариационной постановки задач теории теплопроводности, с            

последующим применением процедуры конечно-элементного алгоритма. В резуль-

таты выведены матричное дифференциальное уравнение для определения                          

температурного поля в узлах конечно-элементной сетки. Разработан программный             

модуль для конечно-элементного решения задачи нестационарной теплопроводно-

сти оболочек. Модуль функционирует в составе программного комплекса SMCM, 

созданного в Научно-образовательном центре «Суперкомпьютерного инженерного 

моделирования и разработки программных комплексов» МГТУ им. Н.Э. Баумана 

(НОЦ «СИМПЛЕКС»). Приведен пример решения задачи расчета нестационарного 

температурного поля в цилиндрической оболочке с продольно-поперечным                         

подкреплением. Проведено сравнение численного моделирования с аналогичными 

расчетами в ПК ANSYS, которое показало высокую точность предложенного           

метода: относительно отклонение результатов не превышает 0,5 %. 

 

Ключевые слова: тонкостенные оболочки, температурные поля, задача теплопро-

водности, вариационная постановка. конечно-элементное моделирование  

  

Введение. Во многих прикладных задачах возникает проблема 

расчета температурных полей в тонкостенных оболочечных               

конструкциях [1–6]. Несмотря на существование в настоящее время 

пакетов прикладных программ, основанных на трехмерном конечно-

элементном анализе процессов в элементах конструкций, и мощных 

вычислительных средств, расчет тонкостенных оболочки представ-

ляет особую, достаточно трудную задачу. Прямое применение               

трехмерных конечно-элементных методов приводит к необходимости 

использования больших объемов компьютерной памяти для хранения 

больших объемов матриц, или большого машинного времени при      

использовании итерационных методов. В этой связи по прежнему                

актуальным являются численные методы, основанные на двумерной 

теории оболочек [1–18]. В настоящей работе предложен метод                 

сведения общей трехмерной задачи теплопроводности к двумерной  
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задаче для тонкостенных оболочек, в также конечно-элементный             

алгоритм решения двумерной задачи. В основе предлагаемого метода 

положена вариационная постановка исходной трехмерной задачи.  

Геометрия многослойной оболочки. Рассмотрим многослойную 

тонкую оболочку [19] — область V  в трехмерном пространстве,                 

которая ограничена замкнутой поверхностью Σ , состоящей из трех 

частей: T      , где   — внешняя и внутренняя поверх-                  

ности оболочки, T  — торцевая поверхность оболочки (рис 1).                 

Поверхности   образованы на основе некоторой базовой двумерной 

поверхности 0 , для которой введены ортогональные, вообще говоря, 

криволинейные координаты IX , 1,2I   (т.е. введена параметризация 

поверхности). Вводится трехмерная ортогональная система  коорди-

нат iX , 1,2,3i  , в которой 3 0X   — это уравнение базовой поверх-

ности конструкции 0 , называемой далее срединной поверхностью, а 

поверхности   задаются уравнениями 3

2

h
X   , где  0h   —                    

толщина оболочки. Торцевую поверхность T  зададим следующим 

образом: 

 3

0{ | , },
2 2

i I

T

h h
X X X        (1) 

где 0  — граница двумерной области 0 , являющейся замкнутой 

кривой на поверхности 0 , без самопересечений.  

Тогда область V  всей оболочки можно описать следующим            

образом: 

 3

0V { | , }.
2 2

i I h h
X X X       (2) 

Будем полагать оболочку многослойной, т.е. область V  состоит 

из N  слоев sV    

 
3

0 1{ | , },

1,..., ,

i I

s s sV X X h X h

s N

   


  (3) 

где sh  — толщины слоев. Границы раздела слоев обозначим следую-

щим образом 

 
3

0{ | , },

1,..., .

i I

s sX X X h

s N

   


  (4) 
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Рис 1. Многослойная оболочка 

 

Постановка трехмерной нестационарной задачи теплопровод-

ности для многослойной оболочки. Рассмотрим постановку 

трехмерной нестационарной задачи теплопроводности [19] для 

многослойной оболочки 

 ,   в V,с q
t





 


  (5) 

 ,   в V ,q g   λ   (6) 

 ,  в V ,g     (7) 

 : [ ] 0,   [ ] 0,s n q       (8) 

 : ( ),еn q           (9) 

 : ,T en q q     (10) 

 00,  ,  в V,t      (11) 

где  — температура, q  — вектор теплового потока, с — удельная             

теплоемкость,   — плотность, — набла —оператор [20], g —                   

градиент температуры, λ  — тензор теплопроводности,  (5) —                    

уравнение теплопроводности, (6) — закон Фурье,  (8) — условия на 

границе идеального контакта слоев многослойной оболочки, (9) — 

условие конвективного теплообмена на поверхностях  ,   —                

коэффициенты теплообмена, е  — заданные температуры внешней 

среды, n  — вектор нормали, (10) — условие теплоизоляции на                 

торцевой поверхности.  

Слои оболочки полагаем криволинейно-анизотропными [19, 20]. 

Вариационная постановка нестационарной задачи теплопро-

водности для оболочки. Введем множество пробных функций v , 

определенных в области V, гладких в этой области. Домножим (5) на 

пробную функцию v ,  и проинтегрируем по всей области V  

Σ 0Σ

ΣT

Σ
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 .
V V

c vdV v qdV
t





  

    (12) 

Преобразуем правую часть в этом уравнении, с учетом граничных 
условий (9) и (10) 

 

( )

( )

( ) .

T

V V V

V

e e

e

V

v qdV vq dV q vdV

n qvd q vdV

q vd vd

vd q vdV

  

  







 

 

 



      

   

    

    

  

 

 

 

  (13) 

Подставляя (13) в (12), получаем вариационное уравнение                      
теплопроводности 

 

( )

0,

T

e e

V

V

c vdV q vd vd
t

q vdV


   



 

 


   



  

  


  (14) 

где .

    

     

Модель температурного поля для тонкостенной конструкции. 
Рассмотрим случай тонких оболочек, т.е. для которых выполняется 

условие  / 1h L , где 0L diam   — характерный размер                                 

области 0 . 

Для таких оболочек будем полагать, что температура распреде-
лена по толщине оболочки по линейному закону 

 
(0) 3 (1) ,  в V,X      (15) 

где 
(0) (1), , 1, 2IX I    — функции определенные на срединной             

поверхности 
0  (черта сверху означает замкнутые области V  и 

0 ). 

Введем радиус-векторы точек оболочки: 

 
3 3, , , .

2 2

I h h
x X n u X X        (16) 

Тогда можно ввести локальные векторы базиса 

 3
3

3
, ,I I

I

x x
r X n r n

X X


 
    
 

  (17) 
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 ,  .II I I

n
n

X X




 
 
 

  (18) 

Рассмотрим все векторы и тензоры в базисе 
ir , вообще говоря,               

неортогональном 

 ,    ,    = .i i i i ij i j
i i i ji i ijq q r q r g g r g r r r r r       λ   (19) 

Тогда:  

 ,ig r
iX





 


  (20) 

 ,iig r g
iX


  


  (21) 

 

(0) 3 (1) (0) 3 (1)

, , ,

(1)

3 3

,

.

I I I I II
g X g X g

X

g
X


 





    



 


  (22) 

Аналогично (15) полагаем, что пробные функции v  также                

линейно распределены по толщине 

 (0) 3 (1) ,v v X v    (23) 

где (0) (1), Iv v X . 

Тогда вектор-градиент пробной функции можно представить сле-

дующим образом 

 ,
i i i

i i i

v
g v g r g r r

X


    


  (24) 

 ,i i

v
g

X





  (25) 

 

(0) 3 (1) (0) 3 (1)

, , ,

(1)

3 3

,

.

I I I I II

v
g v X v g X g

X

v
g v

X


    



 


  (26) 

 Вариационное уравнение для тонкой оболочки. Преобразуем 

интегралы в (14) с учетом (15), (22), (23) и (26). 

Так как 

 
3 (0) 3 (1) 3 (1)

3 , ,( ) ,i I I

i I I Iq v q g q g q g q g q v X v q v           (27) 
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то 

 
0

0 0

/2

/2

/2 /2

(0) 3 (1) 3 3 (1) 3

, ,

/2 /2

( ) .

h

V h

h h

I

I I

h h

q vdV q vd dV

q v X v d dX q v d dX

 

   

    

    

  

   

  (28) 

Введем обозначения для средних по толщине тепловых потоков и 

моментов потоков: 

 

/2 /2

3 3 3

/2 /2

/2

3 3 3

/2

, ,

.

h h

I I I I

h h

h

h

q q dX m q X dX

q q dX

 



 



 



  (29) 

Тогда (28) можно записать в виде: 

 

0

(0) (1) 3 (1)

, ,( ) .I I

I I

V

q vdV q v m v q v d


        (30) 

Определяющие соотношения, вытекающие из уравнения (6) 

имеют вид 

 (0) 3 (1)

, ,( ),I IJ IJ

J J Jq g X          (31) 

 3 33 33 (1)

3 .q g        (32) 

Заметим, что 
ij  — здесь компоненты тензора   в базисе 

ir . Этот 

базис может не совпадать с базисом 
iс  — криволинейной                                

анизотропии, в котором заданы компоненты ˆ
ij  тензора теплопровод-

ности , тогда: 

 
' '

' '

ˆ ,

,

ij ij

i j i j

i j
ij i j

i j

с с r r

Q Q

  

 

   


  (33) 

где 
'

i

iQ — матрица преобразования базисов: 
' '

i

i i iс Q r . 

Для криволинейно-ортотропных материалов слоев оболочки           

матрица компонент 
ij

 — диагональная, при этом матрица 
ij может 

быть не диагональной, т.к. базис 
iс — ортонормированный, а 

ir ,                  

вообще говоря, нет. 

Будем полагать, что векторы 
3с и 

3r — коллинеарны (ориентиро-

ваны по нормали к 0 ), тогда: 
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1 1 11 12

1 2

2 2 12 22

2 2

3 33

3

0 0

0 , 0 .

0 0 0 0

i ij

j

Q Q

Q Q Q

Q

 

  



   
   

    
   
   

  (34) 

Вид матриц (34) учтем при записи соотношений (31), (32). 

Подставляем (31) и (32) в (29), получаем  

 

/2

(0) 3 (1) 3 (0) (1)

, , , ,

/2

/2

(0) 3 3 2 (1) 3 (0) (1)

, , , ,

/2

/2

3 33 (1) 3 33 (1)

/2

( ) ( ),

( ( ) ) ( ),

,

h

I IJ IJ IJ

J J J J

h

h

I IJ IJ IJ

J J J J

h

h

h

q X dX N

m X X dX N D

q dX

     

    

   







    

    

   







  (35) 

где обозначены: 

 

/2 /2

3 3 3

/2 /2

/2 /2

33 33 3 3 2 3

/2 /2

,  N ,

,  ( ) .

h h

IJ IJ IJ IJ

h h

h h

IJ IJ

h h

dX X dX

dX D X dX

  

  

 

 

 

 

 

 

  (36) 

Преобразуем первый интеграл в (14) 

 0

0

/2

(0) 3 (1) 3

/2

(0) (0) (1) (1)

( )

( ) ,

h

V h

c vdV c v X v dX d

v v d

   
 



   

   

  


  (37) 

где обозначены 

 

/2 2
(0) 3 (1) 3 3

/2

2

, .

h

h

hh

c dX c X dX
t t

 
 




 
   

     (38) 

Подставляя в эти выражения функции (15), получаем 

 

/2 (0) (1)
(0) 3 3 (0) (0) (1) (1)

/2

( ) ,

h

h

c X dX C C
t t

 
  



 
    

    (39) 

 

/2

(1) (0) 3 (1) 3 3 (1) (0) (2) (1)

/2

( ) ,

h

h

c X X dX C C    


       (40) 
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где обозначены осредненные массовые теплоемкости нулевого,            

первого и второго приближения 

 

/2 /2 /2

(0) 3 (1) 3 3 (2) 3 2 3

/2 /2 /2

,  ,  ( ) .

h h h

h h h

C cdX C cX dX C c X dX  
  

       (41) 

Преобразуем второй интеграл в (14) 

 0

0

2
(0) 3 (1) 3

2
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
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
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  

  



  (42) 

где обозначены осредненные тепловые потоки нулевого и первого             

порядка  
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q q dX q q X dX
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     (43) 

Преобразуем третий интеграл в (14) 

 

(0) (1) (0) (1)

(0) (0) (1) (1)

( ) ( )( )
2 2

( ) ,

e e

h h
vd v v d

q v q v d

      

 



   

 

 


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 
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  (44) 

где обозначены: 
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 

  (45) 

— тепловые потоки на поверхностях 0 , приходящие от   и  . 

Введем обозначения: 
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Тогда формулы (45) можно переписать так 

 

(0) (0) (0) (1) (1) (0)

(1) (1) (0) (2) (1) (1)

,

.

e

e
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 
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
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  (47) 

  Соберем теперь все интегралы (28), (37), (42) и (17), и подставим 
их в (14), тогда получим искомое вариационное уравнение 

 0 0

0 0

(0) (1) 3 (1) (0) (0) (1) (1)

0,
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  (48) 

Это уравнение дополняется соотношениями (35), которые                        
запишем в следующем виде: 

 

(0) (1)

(0) (1)

3 33 (1)

,

,

.

I IJ IJ

J J

I IJ IJ
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
  

 

  (49) 

а также соотношениями (39) и (40), а также соотношения для градиен-
тов температуры в нулевом и первом приближении 

 

(0) (0) (1) (1)

, , ,

(0) (1)
(0) (1)

, ,,

,  ,

,  .

I I I I

I II I

g g

g v g v

  

 
  (50) 

Конечно-элементное решение вариационного уравнения.               
Выберем в качестве пробной функции вариацию истинного темпера-
турного поля 

 ,v    (51) 

тогда согласно (15) имеем 

 
(0) (0) (1) (1),  .v v     (52) 

Введем координатную строку неизвестных функций — темпера-
тур нулевого и первого приближений 

   (0) (1)

1 2

( , ).
T

u  


   (53) 

Аппроксимируем срединную поверхность 0Σ  оболочки совокуп-

ностью конечных элементов (КЭ) 0Σe , в виде треугольных или                                       

четырехугольных элементов, в результате получим конечно-элемент-

ную модель (КЭМ) поверхности 0Σ . Для каждого КЭ зададим                         
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определенное число узлов, расположенных в вершинах, на ребрах и во 
внутренности КЭ [21]. 

Обозначим { }Ty  — строку  значений неизвестных функций u  в 

узлах КЭ  

 1
1 2

{ } ({ } ,...,{ } ),T

m
m

y u u


   (54) 

где m — число узлов на одном КЭ. На рис. 2 показаны примеры КЭ на 

срединной поверхности и соответствующие им трехмерные КЭ для 

оболочечных конструкций, которые могут быть применены с                   

помощью разработанного метода.   

Введем, как обычно [21], аппроксимирующее решение в КЭ 

 
2 22 1 2 1

{ } [ ]{ },
m m

u Ф y
 

   (55) 

где 
2 2

[ ]
m

Ф


 — матрица функций формы [21]. Образуем координатную 

строку градиентов температуры  

 
(0) (0) (1) (1) (1)

,1 ,2 ,1 ,2
1 5

{ } ( , , , , ).TG     


   (56) 

Эту координатную строку можно представить в виде матричного 

соотношения  

 
5 1 5 2 2 1

{ } [ ]{ },G L u
  

   (57) 

где 
5 2

[ ]L


 — матрица операторов дифференцирования 
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5 2
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0 1

L
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 
 
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 

 
 
 

  (58) 

Подставляя соотношения (55) в (57), получаем (59). Введем             

матрицу операторов дифференцирования 

 
5 1 5 2 5 22 1 2

{ } [ ]{ } [ ]{ },
m m

G L u B y
  

    (59) 

где введена матрица 

 
5 2 5 2 2 2

[ ] [ ][ ].
m m

B L Ф
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   (60) 

Введем строку тепловых потоков: 
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 1 2 1 2 3

1 5

{ } ( , , , , ),Tq q q m m q


   (61) 

тогда соотношения (49) можно записать в матричной форме: 

 
5 55 1 5 1

{ } [ ]{ },q G
 

    (62) 

где введена обобщенная матрица теплопроводности  
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  (63) 

Введем координатную строку   
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1 2
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T
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      (64) 

тогда из (39) и (40) следует, что имеет место соотношение: 
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где обозначена обобщенная матрица теплоемкости 
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C учетом (55) получаем 

 
2 2 2 22 1 2 1

{ } [ ][ ]{ } .
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    (67) 

Преобразуем теперь (47) к матричному виду 
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где введены матрицы 
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  (69) 
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Введем также координатный столбец тепловых потоков на            

торцевой поверхности 

   (0) (1)

1 2

( , ).
T

T T Tq q q


   (70) 

Тогда вариационное уравнение (48) можно записать для отдель-

ного КЭ в матричной форме 
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Подставляя в это уравнение соотношения (57), (63), (68), (69) и 

(55), получаем следующую систему обыкновенных дифференциаль-

ных уравнений: 
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где введены обозначения для основных матриц 
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Преобразуем 2{ }f  с учетом (69) 
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где обозначены: 
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Тогда уравнение (73) принимает вид: 

 1 3
2 2 2 2 2 22 1 2 1 2 1 2 1

ˆ[ ] { } [ ] [ ] { } { } { } 0
m m m m m mm m m m

М y K A y f f
     

      
 

  (75) 

— это итоговое разрешающее уравнение разработанного метода. 
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Разработка программного модуля и результаты его тестирова-

ния. Был разработан программный модуль в составе ПК SMCM,                   

созданного в Научно-образовательном центре «Суперкомпьютерного 

инженерного моделирования и разработки программных  комплексов» 

МГТУ им. Н.Э. Баумана (НОЦ «СИМПЛЕКС») [22], который                

реализует предложенный метод решения нестационарной задачи                   

теплопроводности для тонких оболочек.  

КЭ сетки для данного метода были построены 2 способами: был 

разработан тестовый генератор призматических КЭ сеток (рис. 2), на 

основе генератора 2D оболочечных сеток, разработанного в ПК 

SMCM, а также использовались призматические сетки на основе                

оболочечных сеток, полученные с помощью ПК ANSYS. 
 

 

 

а б 

Рис. 2.  Призматическая КЭ сетка: 
а — узловой КЭ на срединной поверхности оболочки;  

б — 18 узловой призматический трехмерный КЭ,  
соответствующий узловой КЭ 

 

Было проведено тестирование разработанного программного                       

модуля для тонкостенной цилиндрической оболочечной конструкции 

с продольно-поперечным подкреплением (рис. 3), причем элементы 

подкрепления рассматривались также как оболочечные элементы,                      

а не как фиктивные слои, как это реализуется во многих моделях                   

оболочек.   

При тестовых расчетах использовались следующие исходные                  

данные: все элементы оболочки — однослойные, материал слоев —            

типичный молибденовый сплав с характеристиками: 
310200 кг м  , 

135 Вт м К   , 244 Дж кг Кс   , 2250 Вт м К   , 0  , 

310 Кe   , 5 ммh  . Время нагрева: 60 секунд.  

Результаты расчетов показаны на рис. 3…6.   
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Рис. 3. Температурное поле в оболочечной конструкции 

 на срединной поверхности при 20 сt  , К: 

а — ПК ANSYS; б — ПК SMCM 
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Рис. 4. Температурное поле в оболочечной конструкции 

 на срединной поверхности при 40 сt  , К: 

а — ПК ANSYS; б — ПК SMCM 
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Рис. 5. Температурное поле в оболочечной конструкции 

 на срединной поверхности при 60 сt  , К: 

а — ПК ANSYS; б — ПК SMCM 
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Для оценки качества полученного решения проводилось                  

сравнение с результатами, полученными с помощью оболочечного              

решателя ПК ANSYS.  Результаты сравнения решений температур-

ного поля на срединной поверхности оболочечной конструкции                 

приведены в таблице 1. Относительное отклонение результатов             

расчетов вычислялось по формуле: 100A M

A

%
 




   , где A —                   

значение температуры, вычисленное с помощью ПК ANSYS, а M —  

значение температуры, вычисленное с помощью ПК SMCM. 

Результаты тестовых расчетов показали, что разработанный              

метод и программный модуль в составе ПК SMCM, обеспечивают               

хорошее согласование расчетов, получаемых с помощью ПК ANSYS.  

Таблица 1 

Результаты сравнения температурного поля на срединной поверхности                 

оболочечной конструкции, полученные с помощью ПК SMCM и ПК ANSYS  

Время t

, c 

Максимальная/ 
минимальная   

температура 
M , К 

(ПК SMCM) 

Максимальная/ 
минимальная   

температура 
M , К 

(ПК ANSYS) 

Относительная по-
грешность Δ , % 

20 
501,88 

489,40 

503,33 

492,00 

0,28 

0,53 

40 
645,68 

636,80 

647,90 

639,90 

0,34 

0,49 

60 
747,98 

741,66 

750,38 

744,69 

0,32 

0,40 

 

Выводы. Разработана математическая модель расчета                          

нестационарных температурных полей в тонкостенных оболочечных 

многослойных конструкциях. Модель основана на вариационной               

постановке нестационарной задачи теплопроводности в произвольных 

криволинейных координатах. Предложена методика конечно-             

элементной решения вариационной постановки задачи. Разработан 

программный модуль, реализующий данную методику. Проведенные 

тестовые результаты расчетов температурных полей для случая             

одностороннего нагрева цилиндрической подкрепленной оболочки и 

их сравнение с аналогичными результатами расчетов в ПК ANSYS                  

показали, что разработанный алгоритм и программный модуль             

обеспечивают достаточно хорошее совпадение результатов.                        

Разработанная математическая модель и программный модуль могут 

быть применены для практического решения задач расчета                                   

нестационарных температурных полей в оболочках сложной                       

геометрической формы.  
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Finite element modeling of temperature fields  

in thin-walled multilayer anisotropic shells 

© Yu.I. Dimitrienko, Yu.V. Yurin, M.N. Koryakov,                                          

A.A. Maremshaova 

Bauman Moscow State Technical University, Moscow, 105005, Russia                       
 

 

The problem of developing a model for calculating temperature fields in thin-walled                 

multilayer curvilinear-anisotropic thin shells of arbitrary geometric shape, including              

composite ones, is considered. As a rule, to solve this problem, a specific coordinate                    

notation of the equations of the theory of heat conduction is used, which creates certain 

difficulties for calculating complex composite shells. In this paper, it is proposed to use an 

invariant record of the variational formulation of problems in the theory of heat                             
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conduction, followed by the application of the finite element algorithm procedure. As a 

result, a matrix differential equation is derived for determining the temperature field at the 

nodes of a finite element mesh. A software module has been developed for the finite element 

solution of the problem of non-stationary thermal conductivity of shells. The module                 

functions as part of the SMCM software package, created at the Scientific and Educational 

Center for Supercomputer Engineering Modeling and Development of  Software Systems, 

Bauman Moscow State Technical University (REC SIMPLEX). An example of solving the 

problem of calculating a non-stationary temperature field in a cylindrical shell with                  

longitudinal-transverse reinforcement is given. Comparison of   numerical simulation with 

similar calculations in the ANSYS software was carried out, which showed the high                        

accuracy of the proposed method: the relative deviation of the results does                                           

not exceed 0,5 %. 
 

Keywords: thin-walled shells, temperature fields, heat conduction problem, variational 

statement, finite element modeling 
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