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Приведены результаты оценки точности для инженерной методики расчета массо-
вого расхода газа через ламинарный пограничный слой на полусфере из работы [1]. 
Предложена аналогичная инженерная методика повышенной точности. 
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Введение. Расчет массового расхода газа через ламинарный по-

граничный слой широко используют в теории пограничного слоя.  
В процессе численного решения уравнений пограничного слоя этот 
расход находят изопределяющего его из интегрального выражения [1]. 
Однако при использовании различных интегральных решений уравне-
ний пограничного слоя информация о расходе газа может быть полу-
чена только путем введения определенных допущений о профилях га-
зодинамических функций в пограничном слое. 

Для полусферы, в частности, в работе [1] приведена методика рас-
чета расхода газа через ламинарный пограничный слой, полученная 
способом эффективной длины и скорректированная по результатам 
строгих численных решений уравнений пограничного слоя. Однако 
информация о точности этой методики в литературе отсутствует. 

Решению этой задачи и рассмотрению возможности построения 
более корректной методики этого типа на базе систематических ре-
шений уравнений ламинарного пограничного слоя и посвящена дан-
ная работа. 

Расчетно-теоретические исследования, результаты которых при-
ведены далее, получены в широком диапазоне изменения опреде-
ляющих факторов: числа Маха M  в набегающем воздушном потоке, 

давления торможения 0p  этого потока и энтальпийного фактора hR , 

под которым понимают отношение энтальпии воздуха при темпера-
туре «стенки» к энтальпии торможения газового потока. Под терми-
ном «стенка» здесь и далее понимают поверхность тела, обтекаемую 
набегающим на него газовым потоком. 



Моделирование расхода газа через ламинарный пограничный слой… 

89 

Исследования выполнены для многокомпонентной газовой смеси 
в пограничном слое на абсолютно каталитичной «стенке», находя-
щейся в состоянии термохимического равновесия с расчетом диффу-
зионного тепломассопереноса в рамках уравнений Стефана – Мак-
свелла. 

В процессе проведения исследований принято: 
  химический состав газовой смеси ограничен набором химиче-

ских веществ O, O2, N, N2, NO, Ar,  образованных из химических 
элементов O, N, Ar;  

  в нормальных условиях воздух характеризуется следующим 
мольным химическим составом [2]: 

2Oκ = 0,2095;    
2Nκ = 0,7808;    Arκ = 0,0097;  

  область изменения определяющих параметров задана в виде 

M 4,25 ,      0p 0,001,p ,max     , min , max, ;h h hR R R     

  для расчета переносных свойств многокомпонентной газовой 
смеси использован метод Гиршфельдера [3]; 

  использованы потенциальная функция межмолекулярного взаи-
модействия Леннарда – Джонса [3] и методика расчета параметров 
этой функции из [4], базирующаяся на современных расчетно-
теоретических данных по вязкости воздуха, находящегося в состоянии 
термохимического равновесия [5, 6]; 

  использованы уточненные данные по параметрам идеального 
газа, набегающего на «стенку», полученные методом сплайновой ап-
проксимации [7]; 

 давление торможения измеряется в МПа; 
 maxp  = 10 при M > 10  и рmax = 1 в противном случае; 

 , minhR  — значение энтальпийного фактора, соответствующее 

температуре «стенки», равной примерно 300 K; 
 Значение , maxhR  минимально в диапазоне между 0,7 и значени-

ем энтальпийного фактора, соответствующим температуре кипения 
атомарного углерода. 

Результаты расчетно-теоретических исследований. Массовый 
расход газа через пограничный слой exp  относится к числу важных 
характеристик пограничного слоя и определяется интегральным вы-
ражением вида 

0
exp 2 ,

ye
r udy                                         (1) 

где y  — координата, отсчитываемая от «стенки» в направлении 
внешней нормали к ней; r  — удаление образующей сферы от оси, 
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проходящей через ее «критическую точку» в направлении вектора 
скорости набегающего газового потока; , u  — плотность газовой 
смеси и тангенциальная составляющая вектора скорости в погранич-
ном слое. Индекс е относится к внешней границе пограничного слоя. 

При использовании переменных ,   Лиза – Дородницына 

  2

0
;

s

e e es u r ds      
0

,
2

y
eu r

s y dy  


 и безразмерной функции тока 

,f  определяемой выражением ef u u  , формула (1) принимает вид 

exp 2 2 .ef                                                                  (2) 

Здесь s  — криволинейная координата, отсчитываемая вдоль обра-
зующей сферы от ее «критической точки», т.е. от точки торможения 
набегающего на сферу газового потока; ef  — значение безразмерной 

функции тока на условной внешней границе пограничного слоя, на ко-

торой координата e  удовлетворяет условию 1 0,005f   при 

e   . Индекс   означает частную производную по этой координате. 

Численное интегрирование уравнений пограничного слоя в дан-
ной работе проведено на неравномерной сетке по координате  ,  
в которой шаг между узлами этой координаты увеличивается по оп-
ределенному закону по мере удаления от «стенки». 

В работе [1] приведена следующая приближенная формула для 
расчета массового расхода газа через тонкий ламинарный погранич-
ный слой на непроницаемой «стенке» для полусферы:  

   effexp 2 3,3 .e e es u x s                                 (3) 

Здесь e  — коэффициент динамической вязкости газа;  effx s  — 

длина цилиндра, обтекаемого газовым потоком с параметрами, соот-
ветствующими точке полусферы с координатой s , для которого вы-
полняются условия [8]: 

  равенства удельного теплового потока в его концевом сечении 
аналогичному потоку на полусфере в точке с координатой ;s  

  равенства интегрального теплового потока к поверхности ци-
линдра аналогичному потоку на поверхности полусферы, ограничен-
ной сверху сечением с координатой .s  

На рис. 1 приведены результаты сопоставления расхода газа через 
пограничный слой по поверхности полусферы, рассчитанные по фор-
муле (3), с аналогичными результатами численных решений уравне-
ний пограничного слоя. Здесь exp numlitexp /exp ;   eff /2 s     — 

эффективный угол атаки, рад;  eff, lim effmax ;0,01    — эффектив-
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ный угол атаки, ограниченный снизу значением, равным 0,01; numexp  

— толщина потери импульса, найденная в результате численного ре-
шения уравнений пограничного слоя. 

 

Рис. 1. Зависимость отношения массового расхода газа 
через ламинарный пограничный слой, полученного по 
формуле (3) из работы [1] и в результате численного ре-
шения уравнений пограничного слоя, от эффективного 

угла атаки: 

M  = 25 (○○○); 15 (□□□); 8 (); 4 (∆∆∆) 

 

Как следует из рассмотрения представленных данных, погреш-
ность инженерного расчета по формуле (3) не превышает примерно 
25 %, что является приемлемым для многих технических приложе-
ний. В то же время актуально проведение исследований, направлен-
ных на создание аналогичной инженерной методики расчета расхода 
газа через пограничный слой, характеризуемой существенно мень-
шей погрешностью, чем формула (3). 

Как показали результаты проведенных исследований, наиболее 
просто эта задача решается путем: 

  введения поправочной функции к формуле (3), т.е. расчета рас-
хода газа через пограничный слой по формуле 

     eng expeff lit eff eff , limexp exp , ;hF R                               (4) 

  введения функции  eff , lim  , определенной на области 0,1   , 

вида 

     eff, lim eff, lim eff, lim
1 1

min 6,ctg 1 min 6,ctg ;
3 12

                 
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  расчета поправочной функции по формуле 

   
1

2 3
exp eff , lim .0,8 0,0056 0, 2789 0,3961 1,0883h h hF R R R


         

 

На рис. 2 представлено сопоставление расходов газа через лами-
нарный пограничный слой на поверхности полусферы, рассчитанных 
по формулам (3) и (4), с аналогичными данными, полученными в 
рамках численного решения уравнений пограничного слоя. Здесь 

exp, litexp /exp ;k k   lit, eng, num.k   

 

Рис. 2. Сопоставление массового расхода газа через 
ламинарный пограничный слой на полусфере, рассчитан-
ного по формулам (3) и (4), с аналогичными данными, по-
лученными  в  рамках численного   решения   уравнений  

пограничного слоя: 
1 — lit;k   2 — engk   

 
Из представленных на этом рисунке данных следует, что переход 

в инженерных расчетах от использования формулы (3) к применению 
формулы (4) позволяет качественно снизить погрешность. Так,  
в частности, максимальная погрешность вычислений снижается при 
этом с 25 до 9 %. 

Выводы. Установлено, что погрешность широко используемой на 
практике инженерной формулы, предназначенной для расчета толщи-
ны потери импульса в ламинарном пограничном слое на полусфере, 
сопряжена с внесением в расчет погрешностей, достигающих 25 %. 

Предложена модификация этой формулы, применение которой 
позволяет снизить максимальную погрешность вычислений до 9 %. 
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Simulation of gas flow through the laminar boundary layer 
on the hemisphere surface in a supersonic air flow 
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The article presents estimated accuracy of the engineering design procedure of the mass 
flow rate of gas through the laminar boundary layer on a hemisphere of [1]. A similar 
engineering method of extra accuracy is proposed. 
Keywords: mass flow, boundary layer, air flow, gas flow, thermochemical equilibrium, 
heat and mass transfer. 
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