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Излагаются теоретические основы методики и алгоритмы, разработанные для 
анализа устойчивости и закритического поведения тонких упругих оболочек. Об-
суждается задача численного анализа процесса нелинейного деформирования сфе-
рического купола, нагруженного равномерным внешним давлением. Описывается 
алгоритм численного анализа, основанный на использовании метода продолжения 
решения по параметру в сочетании с приемом смены подпространства управляющих 
параметров. Эффективность предложенного алгоритма иллюстрируется приме-
рами расчетов. 

Ключевые слова: гибкая оболочка, нелинейное деформирование, устойчивость, 
закритическое поведение, численный алгоритм. 

 
Введение. Исследования в области нелинейного деформирования 

тонкостенных оболочек имеют большую историю и не потеряли акту-
альности в наши дни. Практическая важность правильного и точного 
расчета тонкостенных конструкций, деталей, гибких элементов постоян-
но привлекала к исследованию многочисленных прикладных задач вни-
мание крупных специалистов. Революционные изменения, связанные с 
широким использованием современных вычислительных средств в на-
учных исследованиях, заставляют по-новому осмыслить стратегию не-
линейного анализа, позволяя отказаться при составлении расчетных 
схем от многих допущений, казавшихся естественными и неизбежны-
ми, и предоставляя возможность существенно расширить класс иссле-
дуемых задач.  

В настоящей работе дан обзор развития основных идей в области 
численного моделирования процессов нелинейного деформирования 
тонких упругих оболочек. Основное внимание уделяется задаче о на-
пряженном и деформированном состоянии сферической оболочки, на-
груженной внешним давлением (задаче, признанной расчетчиками в 
качестве классической модели). Результаты исследований сферической 
оболочки выходят далеко за рамки данной конкретной задачи, по-
скольку позволяют отрабатывать численные алгоритмы и осмысливать 
характерные особенности поведения тонкостенных конструкций при 
больших перемещениях. Следует отметить возросшую роль численных 
методов и алгоритмов расчета, приспособленных для решения задач на 
современных ЭВМ, в первую очередь метода конечных элементов [1]. 
Вместе с тем в ряду численных алгоритмов достойное место занимают 
алгоритмы, базирующиеся на численном решении краевых задач для 
систем нелинейных дифференциальных уравнений. 
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Исторический обзор. Первые экспериментальные исследования 
поведения сферических оболочек, согласно литературным источникам 
[2], датируются 1902 годом и принадлежат К. Баху, который обнаружил, 
что при некотором внешнем давлении, названном впоследствии крити-
ческим, сферическая форма оболочки оказывается неустойчивой и на 
ней появляются вмятины. В 1915 г. Р. Цолли рассмотрел в линейной 
постановке задачу устойчивости замкнутой тонкой упругой сфериче-
ской оболочки с учетом допущения о ее пологости и получил формулу 
для определения наименьшего критического давления. Несколько позд-
нее, в 1917 г., независимое исследование в этой области было проведено 
Л.С. Лейбензоном, поэтому формула для критического давления сфери-
ческой оболочки получила известность как формула Цолли – Лейбен-
зона: 
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где E — модуль упругости материала оболочки;  —  коэффициент Пу-
ассона; h — толщина оболочки; R — радиус кривизны сферической 
оболочки. 

Определенные этапы в развитии исследования нелинейного поведе-
ния оболочек связаны с опубликованием в 1938 г. К. Маргерром [3] 
дифференциальных уравнений для тонких упругих пологих оболочек 
конечного прогиба. Появилась возможность учесть нелинейность в про-
цессе деформирования оболочки и получить аналитическое описание 
процесса потери ее устойчивости посредством прощелкивания и ее за-
критического поведения. Впоследствии, в 1950 г., Е. Рейсснер [4] пред-
ложил уточненную систему дифференциальных уравнений конечных 
прогибов. Более подробно история развития теории и практики расчетов 
сферических оболочек отражена в книгах [2, 5–10], а также в обзорах 
[11, 12]. 

Решение Месколла. Несмотря на очевидный прогресс, в области 
расчетной практики возникла проблема, заключающаяся в том, что по-
лученные исследователями теоретические значения верхних критиче-
ских нагрузок для рассмотренных куполов, как правило, оказались су-
щественно больше экспериментальных (рис. 1).  

При анализе  экспериментальных результатов создавалось впечат-
ление, что значения верхних и нижних критических нагрузок не под-
чиняются какой-либо логической закономерности. Для объяснения 
данных фактов потребовались более корректные исследования, кото-
рые бы позволили оценить влияние начальных несовершенств формы 
купола и уточнить характер процесса нелинейного деформирования,  
в том числе и в закритической области.  К 1966 г. относится одно из 
первых численных решений задачи об осесимметричном закритическом 
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поведении пологого сферического купола (рис. 2), которое принадлежит 
Дж. Месколлу [13]. Решение было получено по уравнениям, приведен-
ным в [4], посредством конечно-разностной формализации и итераци-
онного метода Ньютона. 

Рис. 1.  Теоретическая зависимость 
верхних (В) и нижних (Н) критиче-
ских нагрузок пологого сферического 
купола Qкр от параметра тонкостен-
ности b в сравнении с результатами  
              экспериментов (■) 

 
 

Рис. 2. Зависимость прогиба в центре v0 для пологой сферической оболочки 
от безразмерного параметра давления Q  [4] 

 
Долгое время после опубликования статьи [13], по-видимому, из-за 

больших вычислительных трудностей никому не удавалось надежно 
воспроизвести процесс закритического деформирования купола полно-
стью, а работ самого Месколла не последовало. Вопрос о закритическом 
поведении купола оставался поэтому до конца не изученным.  Самого 
Месколла и некоторых других исследователей (см. например, [7]) сму-
тил факт появления на упругой характеристике точек самопересечения, 
которые были неверно истолкованы как точки бифуркации решения.  

Забегая несколько вперед, отметим, что к настоящему времени за-
дача Месколла достаточно хорошо изучена. Ее детальный и строгий 
разбор приведен в книге Э.И. Григолюка и Е.А. Лопаницына [2]. Эти 
авторы предложили оригинальную и наглядную трактовку представле-
ния результатов. Поскольку при  анализе осесимметричной деформации 
купола решается краевая задача для системы дифференциальных урав-
нений 6-го порядка, решение задачи Коши для заданных условий на-
гружения и опирания по контуру полностью определяется значениями 
трех неизвестных компонент начального вектора и параметра нагруже-
ния. Графическое представление равновесной траектории, построенной 
в пространстве с использованием той или иной комбинации этих пара-
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метров (рис. 3), весьма наглядно и снимает вопросы, связанные с фик-
тивным самопересечением траектории нагружения и неоднозначностью 
решения. 

Метод продолжения решения по параметру и прием смены па-
раметра продолжения.  Как до, так и после появления работы Мескол-
ла проводилось достаточно большое число исследований, в которых 
предпринимались попытки численно промоделировать процесс дефор-
мирования сферического купола в области конечных перемещений.  
В качестве методов решения применялись методы малого параметра,  
Бубнова – Галеркина, Рэлея – Ритца в высших приближениях, конечных 
разностей и др. При этом исследователи впервые столкнулись с трудно-
стью, а иногда и с невозможностью решения систем нелинейных урав-
нений, к которым приводились разрешающие уравнения. Практически 
единственным способом решения систем нелинейных уравнений в то 
время был метод продолжения по параметру нагрузки, заключавшийся 
в последовательном нахождении решений при пошаговом увеличении 
внешней нагрузки. 

Метод продолжения решения по параметру представляется естест-
венным и в определенной степени универсальным инструментом иссле-
дования применительно к классу нелинейных задач, зависящих от па-
раметра. 

При дискретном варианте этого метода процесс решения реализо-
вывался по схеме «предиктор-корректор». Для того чтобы получить 
решение на этапе «предиктор», методами экстраполяции решений на 

Рис. 3. Траектория нагружения тонкого пологого сферического купола в 
пространстве     , 0 , 0r rQ N M — нагрузка, радиальное усилие и радиаль- 
                     ный изгибающий момент в вершине купола [2] 
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предыдущих шагах по нагрузке строилось начальное приближение, ко-
торое затем корректировалось (уточнялось) итерационными методами. 
Такой способ оказывался вполне работоспособным на устойчивой док-
ритической части траектории нагружения. Однако при подходе к пре-
дельной точке якобиан разрешающей системы нелинейных алгебраиче-
ских уравнений становится плохо обусловленным, и итерационные 
процессы уточнения решения начинали расходиться.  

Пройти предельную точку и попасть на закритическую ветвь траек-
тории оказывалось невозможно. Объяснение, каким образом можно 
справиться с этой проблемой, было впервые дано в 1968 г. в работе  
Н.В. Валишвили [14]. Предложенный прием, получивший название 
прием смены параметра, заключался в смене параметра нагружения,  
в частности в замене параметра нагрузки на параметр прогиба в верши-
не купола. С современных позиций данное предложение кажется весьма 
естественным, однако его нельзя было представить в отрыве от формы 
записи разрешающих уравнений и от алгоритма численной реализации 
решения на ЭВМ. Для этого потребовалась прозорливость при выборе 
исходных соотношений и нормировании входящих в уравнение вели-
чин. Разрешающие уравнения, использованные Н.В. Валишвили,  
в определенной степени сохраняли преемственность с соотношениями 
из работ [3, 4] и предложенными позднее в [15] уравнениями Л.А. Ша-
повалова, вместе с тем они выгодно отличались более удобной для чис-
ленного счета структурой записи. Следует особо отметить алгоритм 
решения однопараметрической нелинейной краевой задачи, при кото-
ром она сводилась к решению задачи Коши и к итерационному реше-
нию нелинейного операторного уравнения относительно неизвестных 
параметров в начальном векторе Коши. Разработанная методика расчета 
оболочек позволила получить решение целого ряда новых задач, на-
шедших отражение в монографии [16]. 

Успехи, связанные с внедрением в расчетную практику приема 
смены параметра, вдохновили многих авторов на ряд работ, в которых 
идея смены параметра получила дальнейшее развитие. Здесь следует 
выделить работы E. Рикса [17] и M. Крисфилда [18], в которых были 
предложены практические приемы и алгоритмы, использующие идею 
методов продолжения при численном счете.  

В работах Рикса дано теоретическое обобщение предложенного 
приема. Основная идея заключалась в использовании дополнительного 
уравнения относительно параметра продолжения λ и уравнивании в 
правах внешнего параметра нагружения q с внутренними параметрами 
xi, характеризующими напряженно-деформированное состояние обо-
лочки. При этом оптимальному параметру продолжения λ можно дать 
следующее геометрическое толкование. Дополнительное уравнение 
представляет в пространстве состояний некоторую квазиповерхность 

 f (Xext, λ), вектор нормали n к которой в точке пересечения с траектори-

ей равновесных состояний r(Xext, λ) должен совпадать с направлением 
касательного вектора t к этой траектории (рис. 4).  
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Рис. 4. Геометрическая интерпретация выбора параметра продолжения 

Данная трактовка содержит определенное неудобство при решении 
прикладных задач, связанное с тем обстоятельством, что не совсем ясно, 
как рационально проводить нормирование (обезразмеривание) неиз-
вестных. Кроме того, параметр продолжения в определенной мере утра-
чивает физический смысл, что не всегда приемлемо при проведении 
инженерных расчетов. В современной вычислительной практике, осо-
бенно в рамках алгоритмов, приспособленных для использования мето-
да конечных элементов, популярность получил метод дуговых засечек 
(the arc-length method), при котором в качестве параметра продолжения 
используется длина дуги траектории нагружения в пространстве со-
стояний. Наглядно три варианта выбора параметра продолжения пред-
ставлены на рис. 5. 

Рис. 5. Геометрическая интерпретация вариантов выбора параметра про- 
  должения, предложенных Валишвили (а), Риксом (б) и Крисфилдом (в)  

Анализ и систематизация различных вариантов методов продолже-
ния для решения однопараметрических нелинейных задач проведены в 
монографии [19]. В монографии [16], по-видимому впервые, отмечается 
возможность численного исследования нелинейных задач тонких обо-
лочек посредством искусственного введения дополнительных парамет-
ров управления (внешних параметров). Для нахождения точки ветвле-
ния решения вводится параметр, характеризующий малые начальные 
несовершенства системы, и решается задача для оболочки с малыми не-
совершенствами. Полученное решение используется в качестве началь-
ного приближения для перехода на ветвь, соответствующую идеальной 
оболочке. Данная идея получила развитие в работе [20]. 



Численное моделирование процессов нелинейного деформирования… 

121 

Многопараметрический подход и прием смены подпространст-
ва управляющих параметров. Характерной особенностью многопа-
раметрического подхода являются построение и изучение поверхности 
равновесных состояний в пространстве «внешних» параметров. По-
верхности равновесных состояний строились в ряде работ с различной 
целью, в основном иллюстративной. Отметим, что способ построения 
поверхности путем последовательного решения ряда нелинейных задач 
для монотонно возрастающего параметра, используемый в большом 
числе работ, вполне очевиден. Такой подход не содержит новых идей и, 
по сути, является набором решений однопараметрических задач. Гораз-
до больший интерес представляют подходы и методы, реализующие 
движение по гиперповерхности равновесных состояний.  

При использовании многопараметрического подхода необходимо 
обеспечить, чтобы каждая отдельная задача была погружена в многопа-
раметрическое семейство задач, описываемое системами дифференци-
альных уравнений в обыкновенных или частных производных: 

 1 2( , ) .F X X 0   (2) 

Предполагается, что в общем случае система (2), имеющая порядок m, 

содержит  m  неизвестных 1 ( 1, 2, ..., ),jx j m  являющихся внутренни-

ми параметрами, характеризующими состояние системы, и зависит от  

n переменных 2 ( 1, 2, ..., ),jx j n  которые трактуются как внешние па-

раметры, или параметры управления. Параметры управления для част-
ного случая (2) могут входить в описание геометрии элемента, свойств 
материала, условий закрепления, внешних термомеханических воздей-
ствий и т. п. Разделение параметров на две группы в определенной сте-
пени условно. В случае однопараметрического семейства вектор X2  оп-
ределяется через одну независимую скалярную величину или один 
параметр — q: 

 2 2( ).qX X  (3) 

Совокупность всех решений системы (2) для заданного числа m + n 
внешних и внутренних параметров интерпретируется как некоторая по-
верхность (гиперповерхность) равновесных состояний, построенная в 
пространстве параметров  R

m+n
, а каждый однопараметрический про-

цесс — как некоторая траектория на этой поверхности. В пространстве 
состояний всего семейства задач можно описать последовательные  
равновесные состояния системы при монотонном изменении только од-

ного из параметров 2 ( 1, 2, ..., )jx j n  при фиксированных значениях 

остальных n – 1 компонент. Такие процессы можно трактовать как од-
нопараметрические задачи. При этом единственный управляющий па-
раметр удобно считать равноправным с остальными параметрами зада-
чи, рассматривая его как (m + 1)-ю неизвестную расширенного вектора 
Xеxt, и представлять систему уравнений, описывающих однопараметри-
ческий процесс, в форме 
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ext( ) .r X = 0  (4) 

Отметим, что порядок системы (4) равен m + 1, и ее решение прово-
дят с использованием дополнительного соотношения, содержащего не-

зависимую величину , называемую параметром продолжения: 

 ext( , ) 0.f  X  (5) 

Проекция поверхности равновесных состояний в подпространство 
управляющих параметров может иметь как регулярные, так и особые 
точки. В особых точках малое изменение управляющих параметров 
может вызвать резкий переход системы в новое состояние — бифурка-
цию или катастрофу [21]. Такие значения параметров управления назы-
вают критическими,  а частные случаи системы (2) — особыми, или вы-
рожденными. Системы, описывающие реальные процессы, зависят от 
параметров, которые не могут быть заданы абсолютно точно и, как пра-
вило, являются системами общего положения. При численном исследо-
вании нелинейных задач методами продолжения трудности возникают в 
окрестностях  особых точек в силу нарушения условия единственности 
решений. Традиционно в рамках постбифуркационного анализа иссле-
довалась проблема нахождения всех действительных решений, выхо-
дящих из точки бифуркации, так называемая задача ветвления [22].  
В настоящее время возможности теоретического анализа ограничива-
ются случаем только однопараметрических задач. Предлагаемая далее 
стратегия исследования позволяет за счет специальной организации 
процесса численного счета обойти  возникающие трудности.  

При численном моделировании используется стратегия последова-
тельного исследования однопараметрических нелинейных задач, при-
надлежащих многопараметрическому семейству, в которое погружена 
анализируемая задача, что позволяет выйти на решение задачи чис-
ленного синтеза конструкции. Алгоритм численного проектирования 
основан на использовании метода продолжения решения по параметру 
в сочетании с приемом смены подпространства управляющих пара-
метров.  

Известно, что в нелинейных механических системах даже при про-
стых видах возмущения могут возникнуть сложные и труднопредска-
зуемые переходы. В случае однопараметрического семейства систем 
общего положения (4) могут иметь место неустранимые особенности 
только типа складки. Реализация счета при прохождении окрестности 
предельных точек осуществляется с помощью смены параметра.  Осо-
бенности коразмерности 2 и выше можно устранить посредством шеве-
ления параметров системы, что принципиально позволяет выбрать тра-
екторию процесса, проходящую мимо окрестностей таких особых 
точек. Обход особых точек совершается с помощью приема численного 
счета, названного в [20] приемом смены подпространства  управляю-
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щих  параметров. Суть его заключается в следующем: при подходе к 
окрестности особой точки следует перейти к другой однопараметриче-
ской системе (4), для которой проекция равновесной поверхности на ось 
параметра управления в рассматриваемом диапазоне его изменений не 
имеет особенностей коразмерности выше единицы. Стратегия числен-
ного исследования представляет собой кусочно-гладкий процесс про-
должения решения по параметру в пространстве состояний всего семей-
ства задач, причем на каждом гладком участке процесса численный 
анализ сводится к решению однопараметрической задачи. 

Возможности многопараметрического подхода показаны на приме-
ре анализа нелинейной деформации шарнирно неподвижно опертой по 
контуру сферической оболочки, нагруженной равномерным внешним 
давлением. Для описания нелинейного деформирования использовалась 
следующая система нелинейных дифференциальных уравнений (вели-
чины, соответствующие меридиональному направлению, помечены ин-
дексом  m, а окружному — t): 
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где 0S  — независимая координата, отсчитываемая вдоль дуги недефор-

мированного меридиана оболочки; X0, X  —  координаты текущей точки 
срединной поверхности в исходном и текущем состоянии соответствен-

но; 0 ,   — углы наклона касательной к меридиану в исходном и те-

кущем состояниях соответственно; ,u v  — горизонтальная и вертикаль-

ная компоненты перемещения; 0 0,m m   — линейные деформация и 

кривизна в текущей точке срединной поверхности; U, V — интенсивно-
сти внутренних сил; Mm, Mt  — интенсивности моментов;  qu, qv — ком-
поненты внешнего давления. 

  Анализ проводился в пространстве коразмерности 3. В качестве 
компонент вектора внешних параметров, описывающих геометрию 
оболочки, использовались безразмерные параметры тонкостенности b 

и подъемистости  оболочки; нагрузка характеризовалась безразмер-
ным внешним параметром  Q,  ось состояний системы ассоциировалась 
с величиной безразмерного прогиба в центре v0: 

2
2

02

24
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4

12(1 ),

c c pR v
b Q v

R hEhRh
       

 

  

где с — радиус  опорного контура;  p — интенсивность равномерного 
внешнего давления. 

На рис. 6 показана часть проекции поверхности равновесных  

состояний в пространстве 0{ ,  , } Q b v  для  значений параметра b, лежа-

щих в пределах от 3,7 до 4,0.  Параметр подъемистости принимался по-

стоянным:  = 0,09484. 

Рис. 6.  Использование приема смены подпространства параметров  
для построения картины перестройки в окрестности бифуркационной  

точки  b = 3,89 
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Кривые 1 и 2  отвечают значениям параметра b, соответственно 

равным 3,8 и 4,0. Качественное изменение характера кривых 0 0( )v v Q  

при монотонном изменении b в отмеченном интервале позволяет пред-
положить существование особой точки, соответствующей некоторому  

критическому  значению параметра кр1 3,89,b    которое можно уточ-

нить посредством сужения рассматриваемого интервала. Важно отме-
тить, что приближение к критическому значению снизу приводит к по-
лучению зависимостей, аналогичных кривой 1. Если же к критическому 
значению подходить сверху, то кривые подобны кривой 2. Численные 
эксперименты показали, что для реализации счета в окрестности крити-
ческого значения параметра b требуется увеличить точность, иначе на-
блюдается либо самопроизвольный переход на другую ветвь решения, 
либо разворот назад, либо стопорение счета. Подобные ситуации, при 
которых процесс стопорился на неособенных участках кривых, описы-
вались рядом авторов. Важно отметить, что объяснение таких ситуаций 
следует искать не только в дефектах используемого алгоритма счета, но 
и в специфических особенностях исследуемого параметрического се-
мейства задач.  

Прием смены подпространства внешних параметров позволяет 
численно исследовать поведение системы в окрестности особой точ-
ки. С помощью этого приема можно ответвиться от кривой 2 и по-
строить зависимость (кривая 3), соответствующую однопараметриче-
скому семейству оболочек (b = var, Q = const). При достижении 
характерного значения b = 3,80 можно повторно ответвиться от кри-
вой 3 и вновь исследовать задачу в подпространстве (b = const). Та-
ким образом, получена изолированная ветвь (кривая 4), которая не 
имеет общих точек с основной кривой b = 3,80 (кривая 1). Глубину 
проникновения изолированного решения вдоль оси b можно опреде-
лить, продолжая счет по кривой 3, которая также имеет предельную 

точку (b  3,75). Очевидно, что при b < 3,75 изолированные решения 
отсутствуют. Продолжая счет по кривой 3, можно вернуться на кри-
вую 2 и, двигаясь в обратном направлении, попасть в первоначаль-
ную точку ответвления, т. е. завершить тем самым обход окрестности 
особой точки. Полученная таким образом информация характеризует 

перестройку в окрестности особой точки кр1.b   

При дальнейшем увеличении параметра b траектория решения 
претерпевает дальнейшие усложнения. На рис. 7 показан характер 
перестройки поверхности равновесных состояний в окрестности сле-

дующей особой точки 2b  = 4,79.  

На рис. 7 наглядно видно, как зарождается новое решение, растет 
и сливается с основной ветвью. Процесс зарождения новых решений 
продолжается по мере увеличения параметра b, что соответствует ус-
ложнению возможного деформирования оболочки. 
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Рис. 7. Характер перестройки поверхности равновесных состояний  
    в окрестности особой точки b2 = 4,79 
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Заключение. Изложенная методика численного исследования 
многопараметрических задач доказала свою ценность и эффектив-
ность при решении широкого круга задач нелинейной теории оболо-
чек [23–27] и легла в теоретическую основу алгоритмов и программ, 
используемых для расчета и проектирования тонкостенных конст-
рукций, деталей и гибких элементов, используемых в современных и 
перспективных технических системах и устройствах.  
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Numerical simulation of nonlinear deformation 
of thin elastic shells 

© S.S. Gavryushin 
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The article shows theoretical bases of the methods and algorithms developed to analyze 
the stability and supercritical behavior of thin elastic shells. The author deals with the 
problem of numerical analysis of nonlinear deformation of the spherical dome loaded 
with uniform external pressure. An algorithm for the numerical analysis method based on 
the parameter continuation method combined with the method of the subspace change of 
control parameters. The author illustrates the effectiveness of the proposed algorithm by 
sample calculations. 
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